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I. INTRODUCTION  

 

In 1983, A. S. Mashhour et al. [29] introduced the supra topological spaces and studied S  continuous maps 

and 
*

S  continuous maps. In 2008, R. Devi et al [9] introduced and studied a class of sets and maps between 

topological spaces called supra   open sets and S continuous maps, respectively. In 2012,  S. Sekar et al 

[33] introduced and investigated a new class of sets and functions between topological spaces called supra 

I open sets and supra I continuous functions respectively. Recently Krishnaveni and Vigneshwaran [16] 

came out with supra bT  closed sets and gave their properties. In 2013, Jamal M. Mustafa [13] came out with 

the concept of supra b compact and supra b Lindelof spaces. Now we bring up with the new concepts of 

supra I compact, supra I Lindelof, countably supra I compact and supra I connected spaces and 

present several properties and characteristics of these concepts. 

 

II. PRELIMINARIES  

 

DEFINITION 2.1. Let X  be a nonempty set and let    *
P X A: A X .     Then 

*  is called a 

supra topology on X   if 
*
,  

*
X  and for all 

*
,    it implies that 

*
.  U  The pair  *

X ,    is 

called a supra topological space. Each element 
*

A  is called a supra open set in  *
X ,   and the 

complement of A  denoted by 
C

A X C   is called a supra closed set in  *
X , .  

DEFINITION 2.2. Let  *
X ,   be a supra topological space. The supra closure of a set A  is denoted by 

 Supra Cl A and is defined by 

   : .Supra Cl A B X B is a supra closed set in X such that A B   I  

The supra interior of a set A  is denoted by  Supra Int A  and is defined by 

   : .Supra Int A U X U is a supra open set in X such that U A   U  
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DEFINITION 2.3. Let  ,X   be a topological space and 
*  be a supra topology on X .  We call 

*  a supra 

topology associated with   if 
*
.    

DEFINITION 2.4. Let  *
X ,   be a supra topological space. A subset A  of X is called a supra I open set 

in X  if  A Supra Int Supra Cl A .      The complement of a supra I open  set is called a supra 

I closed  set.  

DEFINITION 2.5. Let  *
X ,   be a supra topological space. The supra I closure of a set A  is denoted by 

 Supra I Cl A ,   and is defined as given in the following: 

   : .Supra I Cl A B X B is supra I closed set in X such that A B     I  

The supra I interior of a set A  is denoted by   S u p r a I I n t A ,   and is defined 

by    : .Supra I Int A U X U is supra I open set in X such that U A     U Clearly 

 Supra I Cl A   is a supra I closed set and  Supra I Int A   is a supra I open set. 

Throughout this paper,  ,X   and  ,Y   will denote topological spaces and we will denote by 
*  and 

*  to be their associated supra topologies with   and   respectively such that 
*    and 

*
.    

THEOREM 2.6. Let  *
X ,   be a supra topological space. Then every supra open set in X  is supra 

I open  set in X .  

PROOF. Let A  be a supra open set in X .  Then  A Supra Cl A ,   

so  Supra Int A  Supra Int Supra Cl A .      Since 
*

A ,  so  Supra Int A A.   

Therefore  A Supra Int Supra Cl A .      Hence it follows that A  is supra I open  set in X .   

The converse of the above theorem need not be true as shown by the following example.  

EXAMPLE 2.7. Suppose  X , , , , 1 2 3 4 5  and have the supra topology 
*   

      , , , , , , , ,X . 13 2 3 12 3  The set   *
,3  so the set  3  is not a supra open set in  *

X , .  

Now since it clearly follows that   Supra Int Supra Cl    3   Supra Int X X .   

Therefore it follows that  3  is a supra I open  set  in  *
X , .  

DEFINITION 2.8. Let  *
X ,   be a supra topological space. Then a subset A  of X   is called a supra semi–

open set if  A Supra Cl Supra Int A .      

By the next two examples, we show that neither a supra I  open set may be a supra semi–open set nor a semi–

open set may be a supra I open set in a supra topological space.  

EXAMPLE 2.9. Suppose  X , , , 1 2 3 4  and have the supra topology as given by              

      *
, , , , , , , , X .   1 3 2 3 1 2 3  Let  A , , . 1 2 4  Then      Supra Cl A X.   Hence 

 A Supra Int Supra Cl A X.       It shows that A  is a supra I open set in X.  Since 

 Supra Cl Supra Int A .        It follows that A  is not a supra semi–open set.  

EXAMPLE 2.10. Let  X a, b, c  and       *
X , , a , b , a, b    be a supra topology on X .  

Then clearly  b, c  is a supra semi–open set,  but not a supra I open set.   

THEOREM 2.11.  i  Arbitrary union of Supra I open sets is always a supra I open set.  

 ii  Finite intersection of supra I open sets may fail to be a supra I open set.  
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PROOF.  i  Let  *
X ,   be a supra topological space. Let  i

S :i I   be a family of supra I open 

sets in X .   Let  i
S :i IS .  U U  Since for each i I , i

S  is supra I  open set. Hence it follows 

that  i i
S Supra Int Supra Cl S       Supra Int Supra Cl S ,      for all i I .   So 

 i
S Supra Int Supra Cl S ,       for all i I .  Therefore clearly it follows that  

 i
i I

S S Supra - Int Supra - Cl S .


    U  Thus we conclude that S  is supra I open set.  

 ii  Let  X a, b, c  and           *
X , , a , c , a,b , a,c , b,c ,X    be a supra topology on 

X .  Then  a, b  and  b, c  are supra I open sets but their intersection  b  is a not a supra I open set.   

THEOREM 2.12.  i  The arbitrary intersection of supra I closed sets is always supra I closed.  

 ii  A finite union of supra I closed sets may fail to be a supra I closed set. 

PROOF.  i  Follows from Theorem 2.11 (i). 

 ii  Let  X , , , , 1 2 3 4 5  and         *
X , , , , , , , , , , ,   1 2 1 2 3 4 1 2 4   , ,3 4  

 , , ,1 2 3 4   be a supra topology on X .  Then  ,4 5  and  , ,1 2 5  are supra I closed sets but their 

union  , , ,1 2 4 5  is a not a supra I closed set as its complement  3  is not supra I open set.   

THEOREM 2.13. Let  *
X ,   be a supra topological space. Let A  be a subset of X .  Then the following 

statements are true. 

     a Supra I Int X A X Supra I Cl A .              

      b Supra I Cl X A X Supra I Int A .          

   Ac Supra I Int   is supra I open.        

 (d) ASupra I Cl   is supra I closed.           

    A =Ae Supra I Int   if and only if A  is a supra I open set. 

   A =Af Supra I Cl   if and only if A is a supra I closed set.  

  (g) Supra I Int A x X:There     exists a supra I open set U such that  

x U A .   

  (h) Supra I Cl A x X:for every supra I open subsetU containing x,     

U A . I  

DEFINITION 2.14.  A function    * *
f : X , Y ,    is called a supra I continuous functions if the 

inverse image of each supra open set in Y  is a supra I  open set in X .  

DEFINITION 2.15.  A function    * *
f : X , Y ,    is called a supra I irresolute function if  

 f V
1

  is supra I closed set in  *
X , ,  for every supra I closed  set V  in  *

Y , .  

DEFINITION 2.16. A function    * *
f : X , Y ,    is called strongly supra I  continuous if the 

inverse image  f V
1

 of every supra I  closed set  V  in Y  is supra closed in X .  

DEFINITION 2.17. A function    * *
f : X , Y ,    is called perfectly supra I continuous if the 

inverse image  f V
1

 of every supra I closed set V  in Y  is both supra closed and supra open in X .  

THEOREM 2.18.  Every continuous function is supra I continuous functions.  



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 53 Number 7- January 2018 

 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 528 

 PROOF. Let  X ,   and  Y ,   be two topological spaces and let 
*  and 

*  be associated supra 

topologies with   and   respectively. Let f : X Y  be a continuous function.  Therefore  f A
1

 is 

an open set in X  for each open set A  in Y. But, 
*  is associated with .  That is   

*
.    This implies 

that  f A
1

  is a supra open set in X.  Since every supra open set is supra I open set, this implies  f A
1

 

is supra I open in X .  Hence f  is a supra I continuous function.  

The converse of the above theorem is not true as shown in the following example.  

EXAMPLE 2.19.  Let  X a, b, c  and   X , , a, b   be a topology on X.  The supra topology 
*  

is defined as follows,     *
X , , c , a, b .    Suppose that f : X X  is a function defined as 

follows:      f a b, f b c, f c a.    The inverse image of the open set  a, b is  a, c which is 

not an open set but it is supra I open.  Also     f c b
 1

is a supra I open set in X .  Then f  is 

supra I continuous but it is not continuous.  

 

III. SUPRA I  COMPACTNESS 
 

DEFINITION 3.1. A collection  i
A :i I  of supra I open sets in a supra topological space  *

X,    is 

called a supra I open cover of a subset B  of X  if  i
B A :i I U  holds. 

DEFINITION 3.2. A supra topological space  *
X,   is called supra I compact if every supra I open 

cover of X  has a finite subcover. 

DEFINITION 3.3. A subset B  of a supra topological space  *
X,   is said to be supra I compact relative 

to  *
X,   if, for every collection  i

A :i I  of supra I open subsets of X  such that 

 i
B A :i I U  there exists a finite subset I0  of I  such that  i

B A :i I .  0U  

DEFINITION 3.4. A subset B  of a supra topological space  *
X,   is said to be supra I compact if B  is 

supra I compact as a subspace of X.  

THEOREM 3.5. Every supra I compact space  *
X,   is supra compact.  

PROOF. Let  i
A :i I  be a supra open cover of X.  Since every supra open set in X is a supra I open 

set in X.  So  i
A :i I  is a supra I open cover of  *

X, .  Since  *
X,   is supra I compact.  

Therefore the supra I open cover  i
A :i I  of  *

X,   has a finite subcover say 

 i
A :i , , . . ., n1 2  for X.  Hence  *

X,   is a supra compact space. 

THEOREM 3.6. Every supra I closed subset of a supra I compact space is supra I compact relative to 

X.  

PROOF. Let A  be a supra I closed subset of a supra topological space  *
X, .  Then 

C
A X A   is 

supra I open in  *
X, .  Let  i

A :i I    be a supra I  open cover of A  by supra I open 

subsets in  *
X, .  Let    * C

i
A : i I A   U  be a supra I open cover of  *

X, .  That is 

  * C

i
X A : i I A .   U U U  By hypothesis  *

X,   is supra I compact and hence 
*  is 

reducible to a finite subcover of  *
X,   say 

C

n
X A A ... A A ; 1 2U U U U  

k
A for k , , . . . , n. 1 2  But A and 

C
A  are disjoint. Hence n

A A A ... A ; 1 2U U U  
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k
A for k , , . . . ,n.  1 2  Thus a supra I open cover   of A  contains a finite subcover. Hence A  is 

supra I compact relative to  *
X, .  

THEOREM 3.7 A supra I continuous image of a supra I compact space is supra compact.  

PROOF. Let    * *
f : X , Y ,    be a supra I continuous map from a supra I compact space 

X  onto a supra topological space Y. Let  i
A :i I  be a supra open cover of Y.  Then 

  1
:

i
f A i I
   is a supra I open cover of X,  as f  is supra I continuous. Since X  is supra 

I compact, the supra I open cover of X,   1
:

i
f A i I
   has a finite subcover say 

  1
: 1, 2, . . ., .

i
f A i n
  Therefore   1

: 1, 2, . . ., ,
i

X f A i n
  which implies 

   : 1,2,..., ,
i

f X A i n   then  : 1,2,..., .
i

Y A i n   That is  : 1,2,...,
i

A i n  is a 

finite subcover of  i
A :i I  for .Y  Hence Y  is supra compact. 

THEOREM 3.8. Suppose that  a map    * *
f : X , Y ,    is supra I irresolute and a subset S of 

X  is supra I compact relative to  *
X , ,  then the image  f S  is supra I compact relative to 

 *
Y , .  

PROOF. Let  i
A :i I  be a collection of supra I open cover of  *

Y , ,  such that 

   i
f S A : i I . U  Since f  is supra I irresolute. Therefore   i

S f A : i I ,
 1

U  where 

  i
f A : i I
 1

 is a family of supra I open sets in X.  Since S is supra I  compact relative to 

 *
X , ,  so there exists a finite subcollection  1 2

, , . . .,
n

A A A  such that 

  i
S f A : i , ,...,n .

 1 12U  That is    n
f S A ,A ,...,A . 1 2U   Hence  f S  is supra 

I compact relative to  *
Y , .  

THEOREM 3.9. Suppose that a map    * *
f : X , Y ,    is strongly supra I continuous map from 

a supra compact space  *
X,   onto a supra topological space  *

Y , ,    then  *
Y ,    is supra compact. 

PROOF. Let  i
A :i I  be a supra open cover of  *

Y , .  Since f  is strongly supra I continuous, 

  i
f A : i I
 1

 is a supra I open cover of  *
X, .  Again, since  *

X,   is supra I – compact, the 

supra I open cover   i
f A : i I
 1

 of  *
X,   has a finite subcover say 

  i
f A : i , ,...,n .
 1 12  Therefore   i

X f A : i , , . . ., n ,
 1 1 2U  which implies 

   i
f X A : i , ,...,n , 12U  so that  i

Y A : i , ,...,n . 12U   That is  n
A ,A ,...,A1 2

 is a 

finite subcover of  i
A :i I  for  *

Y , .  Hence  *
Y ,   is supra compact. 

THEOREM 3.10. Suppose that a map    * *
f : X , Y ,    is perfectly supra I continuous map 

from a supra compact space  *
X ,   onto a supra topological space  *

Y , .  Then  *
Y ,   is supra 

compact.  

PROOF. Let  i
A :i I  be a supra I open cover of  *

Y , .  Since f  is perfectly supra I continuous, 

  i
f A : i I
 1

 is a supra open cover of  *
X , .  Again, since  *

X ,   is supra compact, the supra 

open cover   i
f A : i I
 1

 of  *
X ,   has a finite subcover say   i

f A : i , , . . ., n .
 1 12  
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Therefore   i
X f A : i , ,...,n ,

 1 12U  which implies    i
f X A : i , ,...,n , 12U  so that 

 i
Y A : i , , . . ., n . 1 2U  That is  n

A , A , . . ., A1 2
 is a finite subcover of  i

A :i I  for 

 *
Y , . Hence  *

Y ,   is supra compact. 

THEOREM 3.11. Suppose that a function     * *
f : X , Y ,   is supra I irresolute map from a 

supra I  compact space  *
X ,   onto a supra topological space  *

Y , .  Then  *
Y ,   is supra I  

compact.  

PROOF. Let  i
A :i I  be a supra I  open cover of  *

Y , .  Then   i
f A : i I
 1

 is a supra I  

open cover of  *
X , ,  since f  is supra I  irresolute. As  *

X ,   is supra I compact, the supra 

I open cover   i
f A : i I
 1

 of  *
X ,   has a finite subcover say   i

f A : i , , . . ., n .
 1 1 2  

Therefore   i
X f A : i , , . . ., n ,

 1 1 2U  which implies    i
f X A : i , ,...,n , 12U  so that 

 i
Y A : i , , . . ., n . 1 2U  That is  n

A , A ,. . ., A1 2
 is a finite subcover of  i

A :i I  for 

 *
Y , .  Hence  *

Y ,   is supra I compact. 

THEOREM 3.12. If  *
X ,   is supra compact and every supra I closed set in X  is also supra closed in 

X,  then   *
X ,   is supra I compact.  

PROOF. Let  i
A :i I  be a supra I open cover of  X.  Since every supra I  closed set in X  is also 

supra closed in X.  Thus  i
X A : i I   is a supra closed cover of X  and hence  i

A :i I  is a supra 

open cover of X,  Since  *
X ,   is supra compact. So there exists a finite subcover  i

A : i , , . . ., n1 2  

of  i
A :i I such that  i

X A : i , , . . ., n . 1 2U  Hence  *
X ,   is a supra I compact space. 

THEOREM 3.13. A supra topological space  *
X ,   is supra I compact if and only if every family of supra 

I closed sets of  *
X ,   having finite intersection property has a nonempty intersection.  

PROOF. Suppose  *
X ,   is supra I compact, Let  i

A :i I  be a family of supra I closed sets with 

finite intersection property. Suppose i
i I

A ,


 I  then   i
X A : i I X.  I  This implies 

  i
X A : i I X.  U  Thus   i

X A : i I   is a supra I open cover of  *
X , .  Then as 

 *
X ,   is supra I compact, the supra I open cover   i

X A : i I   of  X  has a finite subcover 

say   i
X A : i , ,...,n . 12  This implies that   i

X X A : i , ,...,n ,  12U  which implies 

 i
X X A :i , ,...,n ,  12I  which implies  i

X X A :i , ,...,n ,  12I  and which implies 

 i
A :i , ,...,n .  12I   This disproves the assumption. Hence  i

A :i I .  I  

 Conversely, suppose  *
X ,   is not supra I compact. Then there exits a supra I open cover of  *

X ,   

say  i
G :i I  having no finite subcover. This implies that for any finite subfamily  i

G :i , ,...,n12  of 

 i
G :i I ,  we have  i

G :i , ,...,n X, 12U  which implies 

  i
X G : i , ,...,n X X,   12U hence  i

X G :i , ,...,n .   1 2I   Therefore the family 

 i
X G :i I   of supra I closed sets has a finite intersection property. Then by assumption 
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 i
X G :i I   I  which implies   i

X G : i I ,   U  so that  i
G :i I X. U   This 

implies that  i
G :i I  is not a cover of  *

X , .  This disproves the fact that  i
G :i I  is a cover for 

 *
X , .  Therefore any supra I open cover  i

G :i I  of  *
X ,   has a finite subcover 

 i
G :i , ,. . ., n .1 2  Hence  *

X ,   is supra I compact. 

THEOREM 3.14. Let A  be a supra I compact set relative to a supra topological space X  and B   be a 

supra I closed subset of X.  Then A BI  is supra I  compact relative to X.  

PROOF. Let A  be supra I compact relative to X.  Let  i
A :i I  be a cover of A BI  by supra 

I open sets in X.  Then    C

i
A : i I B U  is a cover of A  by supra I open sets in X,  but A  is 

supra I compact relative to X,  so there exist n
i , i , . . . , i I1 2  such that 

  
k

C

i
A A : k , , ...,n B . 1 2U U Then  

ki
A B A B :k , ,...,n  12I U I

 
ki

A : k , , . . ., n .1 2U   Hence A BI  is supra I compact relative to X.  

THEOREM 3.15. Suppose that a function    * *
f : X , Y ,    is supra I irresolute and a subset 

B  of X  is supra I compact relative to X.  Then  f B  is supra I compact relative to Y.  

PROOF. Let  i
A :i I  be a cover of  f B  by supra I open subsets of Y.  Since f  is supra 

I irresolute. Then   i
f A : i I
 1

 is a cover of  B  by supra I open subsets of  X .  Since B is supra 

I compact relative to X,  so   i
f A : i I
 1

 has a finite subcover say 

      n
f A , f A , . .., f A
  1 1 1

1 2  for B.   Then it implies that  i
A :i , ,. . ., n1 2  is a finite 

subcover of  i
A :i I  for  f B .  So  f B  is supra I compact relative to Y .  

 

IV. COUNTABLY SUPRA I – COMPACTNESS     

 

In this section, we present the concept of countably supra I compactness and its properties. 

DEFINITION 4.1. A supra topological space  *
X ,   is said to be countably supra I compact if every 

countable supra I open cover of  X  has a finite subcover. 

THEOREM 4.2. If  *
X ,   is a countably supra I compact space, then  *

X ,   is countably supra 

compact.  

PROOF. Let  *
X ,   be a countably supra I compact space. Let  i

A :i I   be a countable supra open 

cover of  *
X , .  Since every supra open set in X  is always supra I open set in X.  So  i

A :i I  is a 

countable supra I open cover of  *
X , .  Since  *

X ,   is countably supra I compact, so the 

countable supra I open cover  i
A :i I  of  *

X ,   has a finite subcover say  i
A :i , ,...,n12  for 

X.  Hence  *
X ,    is a countably supra compact space. 

THEOREM 4.3.  If   *
X ,    is countably supra compact and every supra I closed subset of  X   is supra 

closed in X,  then  *
X ,    is countably supra I compact.  

PROOF. Let  *
X ,   be a countably supra compact space. Let  i

A :i I  be a countable supra I open 

cover of  *
X , .   Since every supra I  closed subset of X  is supra closed in X .  Thus every supra 
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I open set in X  is supra open in X.  Therefore  i
A :i I  is a countable supra open cover of  *

X , .   

Since  *
X ,    is countably supra compact, so the countable supra open cover  i

A :i I  of   *
X ,    

has a finite subcover say  i
A :i , , . . ., n1 2  for X.  Hence  *

X ,   is a countably supra I compact 

space. 

THEOREM 4.4. Every supra I compact space is countably supra I compact.  

PROOF. Let  *
X ,    be a supra I compact space. Let  i

A :i I  be a countable supra I open cover 

of  *
X, .  Since  *

X ,    is supra I  compact, so the supra I open cover  i
A :i I  of  *

X ,   

has a finite subcover say  i
A :i , ,...,n12  for  *

X , .  Hence  *
X ,    is countably supra 

I compact space. 

THEOREM 4.5. Let    * *
f : X , Y ,    be a supra I continuous onjective mapping. If X  is 

countably supra I  compact space, then  Y ,   is countably supra compact.  

PROOF. Let    * *
f : X , Y ,    be a supra I continuous map from a countably supra 

I compact space  *
X ,   onto a supra topological space  *

Y , .  Let  i
A :i I  be a countable supra 

open cover of Y .  Then   i
f A : i I
 1

 is a countable supra I open cover of X ,  as f  is supra 

I continuous. Since X  is countably supra I compact. So the countable supra I open cover 

  i
f A : i I
 1

 of  X   has a finite subcover say   i
f A : i , , . . ., n .
 1 1 2  Therefore 

  i
X f A : i , ,. . .,n ,

 1 1 2U  which implies    i
Y f X A : i , ,...,n .  12U  That is 

 i
A : i , , . . ., n1 2  is a finite subcover of  i

A :i I  for Y.  Hence Y  is countably supra compact.  

THEOREM 4.6. Suppose that a map    * *
f : X , Y ,    is perfectly supra I  continuous map 

from a countably supra compact space  *
X ,   onto a supra topological space  *

Y , .  Then  *
Y ,   is 

countably supra I compact.  

PROOF. Let  i
A :i I  be a countable supra I open cover of  *

Y , .  Since f  is perfectly supra 

I continuous. So   i
f A : i I
 1

 is a countable supra open cover of  *
X , .  Again, since  *

X ,   

is countably supra compact. Hence the countable supra open cover   i
f A : i I
 1

 of   *
X ,    has a 

finite subcover say   i
f A : i , , . . ., n .
 1 1 2  Therefore   i

X f A : i , , . . ., n ,
 1 1 2U  

which implies    i
f X A : i , ,...,n , 12U  so that  i

Y A : i , , . . ., n . 1 2U That is 

 n
A ,A , . . ., A1 2

 is a finite subcover of  i
A :i I  for  *

Y , .  Hence  *
Y ,    is countably supra 

I compact.  

THEOREM 4.7. Suppose that a map    * *
f : X , Y ,    is strongly supra I continuous map from 

a countably supra compact space  *
X ,   onto a supra topological space  *

Y , .  Then  *
Y ,   is 

countably supra I compact.  

PROOF. Let  i
A :i I  be a countable supra I open cover of  *

Y , .  Since f  is strongly supra 

I continuous, so   i
f A : i I
 1

 is a countable supra open cover of  *
X , .  Again, since  *

X ,   

is countably supra compact, so the countable supra open cover    i
f A : i I
 1

of  *
X ,   has a finite 
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subcover say   i
f A : i , ,...,n .
 1 12  Therefore   i

X f A : i , ,...,n ,
 1 12U  which implies 

   i
f X A : i , ,...,n , 12U  so that  i

Y A : i , ,...,n . 12U  That is  n
A ,A ,...,A1 2

is a finite 

subcover of  i
A :i I  for  *

Y , .  Hence  *
Y ,   is countably supra I compact.  

THEOREM 4.8. The image of a countably supra I compact space under a supra I irresolute map is 

countably supra I compact.  

PROOF. Suppose that a map     * *
f : X , Y ,    is a supra I irresolute map from a countably 

supra I compact space  *
X ,   onto a supra topological space  *

Y , .  Let  i
A :i I  be a countable 

supra I open cover of   *
Y , .  Then   i

f A : i I
 1

 is a countable supra I open cover of 

 *
X, ,  since f  is supra I irresolute. As  *

X ,   is countably supra I compact, so the countable 

supra I open cover   i
f A : i I
 1

 of  *
X ,   has a finite subcover say 

  i
f A : i , , . . ., n .
 1 1 2  Therefore   i

X f A : i , , . . ., n ,
 1 1 2U  which implies 

   i
f X A : i , ,...,n , 12U  so that  i

Y A : i , , . . ., n . 1 2U  That is  n
A , A , . . ., A1 2

 is 

a finite subcover of  i
A :i I  for  *

Y , .  Hence  *
Y ,   is countably supra I compact. 

 

V. SUPRA I LINDELOF SPACE 

 

In this section, we concentrate on the concept of supra I Lindelof space and its properties. 

DEFINITION 5.1. A supra topological space  *
X ,    is said to be supra I Lindelof space if every supra 

I open cover of X has a countable subcover. 

THEOREM 5.2. Every supra I  Lindelof space  *
X ,   is supra Lindelof space.  

PROOF. Let  *
X,   be a supra I Lindelof space. Let  i

A :i I  be a supra open cover of  *
X, .  

Since every supra open set in X  is always supra I open set in X .  Therefore  i
A :i I  is a supra 

I open cover of  *
X, .  Since  *

X,   is supra I Lindelof space, so the supra I open cover 

 i
A :i I  of  *

X,   has a countable subcover say  i
A :i , , . . ., n1 2  for X.  Hence  *

X,   is a 

supra Lindelof space. 

THEOREM 5.3. If  *
X,   is supra I Lindelof space, then  X ,   is Lindelof space.  

PROOF. Let  i
A :i I  be an open cover of  X.  Since every open set in X  being a supra open set in X  is 

also supra I open set in X .  Therefore  i
A :i I  is a supra I open cover of  *

X, .  Since  *
X,   

is supra I Lindelof, so the supra I open cover  i
A :i I  of  *

X,   has a countable subcover say 

 i
A :i , , . . ., n1 2  for X .  Hence  X,   is a Lindelof space. 

THEOREM 5.4. Every supra I compact space is supra I Lindelof space.  

PROOF. Let  *
X,   be a supra I compact space. Let  i

A :i I  be a supra I open cover of 

 *
X, .  Since  *

X ,   is supra I compact space. Then  i
A :i I  has a finite subcover say 

 i
A :i , ,. . ., n .1 2  Since every finite subcover is always countable subcover and therefore 

 i
A :i , ,. . ., n1 2  is a countable subcover of  i

A :i I .  Hence  *
X ,    is a supra I Lindelof 

space.  
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THEOREM 5.5. A supra I continuous image of a supra I Lindelof space is supra Lindelof space.  

PROOF. Let    * *
f : X , Y ,    be a supra I continuous map from a supra I Lindelof space 

X  onto a supra topological space Y .  Let  i
A :i I  be a supra open cover of Y .  Then 

  i
f A : i I
 1

  is a supra I open cover of X ,  as f  is supra I continuous. Since X  is supra 

I Lindelof space, so the supra I open cover   i
f A : i I
 1

 of X  has a countable subcover say 

  i
f A : i I
 1

0
 for some countable set I I .0  Therefore   i

X f A : i I ,
 1

0U  which 

implies    i
f X A : i I ,  0U  then  i

Y A : i I .  0U   That is  i
A : i I 0

 is a countable 

subcover of  i
A :i I  for Y .  Hence Y  is a supra Lindelof space. 

THEOREM 5.6. The image of a supra I  Lindelof space under a supra I  irresolute map is supra I  
Lindelof space. 

PROOF. Suppose that a map    * *
f : X , Y ,    is supra I irresolute map from a supra 

I Lindelof space  *
X,   onto a supra topological space  *

Y , .  Let  i
A :i I  be a supra I open 

cover of  *
Y , .  Since f   is supra I irresolute. Therefore   i

f A : i I
 1

 is a supra I open 

cover of  *
X, .  As   *

X,   is supra I Lindelof space, so the supra I open cover 

  i
f A : i I
 1

 of  *
X,   has a countable subcover say   i

f A : i I
 1

0  for some countable set 

I I .0  Therefore   i
X f A : i I ,

 1

0U  which implies    i
f X A : i I ,  0U  so that 

 i
Y A : i I .  0U  That is  i

A : i I 0
 is a countable subcover of  i

A :i I  for Y .  Hence 

 *
Y ,   is a supra I  Lindelof space. 

THEOREM 5.7. If  *
X,   is supra I Lindelof space and countably supra I compact space, then 

 *
X,   is supra I compact space. 

PROOF. Suppose  *
X,   is supra I Lindelof space and countably supra I compact space. Let 

 i
A :i I  be a supra I open cover of  *

X, .  Since  *
X,   is supra I Lindelof space, so 

 i
A :i I  has a countable subcover say  i

A : i I 0
 for some countable set I I .0  Therefore 

 i
A : i I 0

 is a countable supra I open cover of  *
X,  . Again, since  *

X,   is countably supra 

I compact space, so  i
A : i I 0

 has a finite subcover and say  i
A :i , , . . ., n .1 2   Therefore 

 i
A :i , ,...,n12  is a finite subcover of  i

A :i I  for  *
X, .  Hence  *

X ,   is a supra 

I compact space. 

THEOREM 5.8. If a function    * *
f : X , Y ,    is supra I  irresolute and a subset B of X  is 

supra I Lindelof relative to X ,  then  f B  is supra I Lindelof relative to Y .   

PROOF. Let  i
A :i I  be a cover of  f B  by supra I open subsets of Y .  By hypothesis f  is supra 

I irresolute  and so   i
f A : i I
 1

 is a cover of B  by supra I  open subsets of X.  Since B  is 

supra I Lindelof relative to X,   i
f A : i I
 1

 has a countable subcover say   i
f A : i I
 1

0  for 

B,  where I0  is a countable subset of I .  Now  i
A : i I 0

 is a countable subcover of  i
A :i I  for 

 f B .  So  f B  is supra I  Lindelof relative to Y .  
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VI. SUPRA I CONNECTEDNESS 

 

DEFINITION 6.1. A supra topological space  *
X ,   is said to be supra connected if X  cannot be written as 

a disjoint union of two nonempty supra open subsets of X .  A subset of  *
X ,   is supra connected if it is 

supra connected as a subspace. 

DEFINITION 6.2. A supra topological space  *
X ,   is said to be supra I connected if X  cannot be 

written as a disjoint union of two nonempty supra I open sets. A subset of  *
X ,    is supra I connected 

if it is supra I  connected as a subspace. 

THEOREM 6.3. Every supra I connected space  *
X ,   is supra connected. 

PROOF. Let A  and B  be two nonempty disjoint proper supra open sets in X.  Since every supra open set is 

supra I open set. Therefore A  and B  are nonempty disjoint proper supra I open sets in X.  By 

hypothesis X  is supra I connected space. Hence  X A B. U  Therefore X  is supra I connected. 

The converse of the above theorem need not be true in general, which follows from the following example.  

EXAMPLE 6.4. Let  X , , , 1 2 3 4  and     *
, , , , , , X .   1 2 1 2 3  Then  *

X ,    is a supra 

topological space.  Since X  cannot be written as a disjoint union of any two nonempty supra open sets. 

Therefore  *
X ,   is a supra connected topological space. We notice that both  1  and  , ,2 3 4  are 

supra I open  sets in  *
X ,   because 

    Supra Int Supra Cl    1 1  Supra Int X X   and  

    , , Supra Int Supra Cl , ,    2 3 4 2 3 4  Supra Int X X.    Therefore  1  and 

 , ,2 3 4  are nonempty disjoint supra I open sets such that    X , , . 1 2 3 4U  Hence   *
X ,   is not 

a supra I connected space.   

THEOREM 6.5. Let  *
X ,   be a supra topological space. Then the following statements are equivalent  

 i  *
X ,   is supra I connected.  

 ii The only subsets of  *
X ,   which are both supra I  open and supra I closed are the empty sets   

and X .  

 iii  Each supra I continuous map of   *
X ,   into a discrete space  *

Y ,   with at least two points is a 

constant map.  

PROOF.    i ii : Let G be a nonempty proper supra I open and supra I closed subset of  *
X , .  

Then X G  is also both supra I  open and supra I  closed set. Then  X G X G U  is a disjoint 

union of two nonempty supra I open sets,  which contradicts the fact that  *
X ,   is supra I connected.  

Hence G    or G X .   

   ii i :  Suppose that X A B U  where A  and B  are disjoint nonempty supra I – open subsets of  

 *
X , .  Since A X B,   then A  is both supra I  open and supra I  closed set.  By assumption 

A    or A X ,  which is a contradiction. Hence  *
X ,   is supra I connected.  

   ii iii : Let    * *
f : X , Y ,    be a supra I  continuous map, where  *

Y ,   is 

discrete space with at least two points. Then  f y
1

 is supra I closed and supra I  open for each 
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y Y .  Thus  *
X ,   is covered by supra I closed and supra I  open covering   f y : y Y .

 1
 

By assumption,  f y
  1

  or  f y X
 1

 for each y Y .  If  f y
  1

 for each y Y ,  then f  

fails to be a map. Therefore their exists at least one point say 
*

y Y such that  *
f y X .
 1

 This shows 

that f  is a constant map.  

   iii ii :  Let G be both supra I  open and supra I closed nonempty set in  *
X , .  Suppose 

G X .  Then    * *
f : X , Y ,    is a nonconstant supra I continuous map defined by 

   f G a  and    f X G b   where a b  and a, b Y .  By assumption, f  is constant so we 

conclude that G X .   

THEOREM 6.6. If    * *
f : X , Y ,    is a supra I continuous surjection and  *

X ,   is supra 

I connected, then  *
Y ,   is supra connected.  

PROOF. Suppose  *
Y ,   is not supra connected. Let Y A B, U  where A  and B   are disjoint nonempty 

supra open subsets of  *
Y , .  Since f  is supra I continuous and onto, so    X f A f B ,

  1 1
U  

where  f A
1

 and  f B
1

 are disjoint nonempty supra I  open subsets of  *
X , .  This disproves the 

fact that  *
X ,   is supra I connected.  Hence  *

Y ,   is supra connected. 

THEOREM 6.7. If    * *
f : X , Y ,    is a supra I irresolute surjection and X  is supra 

I connected, then Y  is supra I connected.  

PROOF. Suppose that Y  is not supra I  connected. Let Y A B, U  where A  and B  are disjoint 

nonempty supra I  open sets in Y .   Since f  is supra I irresolute and onto, so 

   X f A f B ,
  1 1

U  where  f A
1

 and  f B
1

 are disjoint nonempty supra I open sets in 

 *
X , .  This contradicts the fact that  *

X ,   is supra I connected. Hence  *
Y ,   is supra 

I connected. 

THEOREM 6.8. If every supra I closed set in X  is supra closed in X  and X  is supra connected, then X  

is supra I connected. 

PROOF. Suppose that X  is supra connected. Then X  cannot be expressed as a disjoint union of two nonempty 

proper supra open subset of X.  Suppose X  is not supra I  connected space. Let A  and B  be any two 

nonempty supra I open subsets of X  such that X A B, U  where A B  I .  Since every supra 

I closed set in X  is supra closed in X. Therefore every supra I open set in X  is supra open in X.  Hence 

A  and B  are supra open subsets of X,  which contradicts the fact that X  is supra connected. Therefore X  

is supra I connected. 

THEOREM 6.9. If two supra I open sets C and D  form a separation of X  and if Y is supra I connected 

subspace of X,  then Y  lies entirely within C  or D.   

PROOF. By hypothesis C  and D  are both supra I open sets in X.  The sets C YI and D YI  are supra 

I open in Y.  These two sets are disjoint and their union is Y.  If they were both nonempty, then they would 

constitute a separation of Y. Therefore, one of them is empty. Hence Y  must lie entirely in C  or D.  

THEOREM 6.10. Let A  be a supra I connected subspace of X.  If  A B Supra I Cl A ,     then 

B is also supra I connected.  

PROOF. Let A  be supra I connected. Let  A B Supra I Cl A .     Suppose that B C D U  is 

a separation of B  by supra I open sets. Thus by the previous theorem A  must lie entirely in C  or D.  

Suppose that A C,  then it implies that    Supra I Cl A Supra I Cl C .      Since 
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 Supra I Cl C   and D  are disjoint, B  cannot intersect D.  This disproves the fact that D  is 

nonempty subset of B. So D    which implies B is supra I connected. 
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