ODD VERTEX MAGIC TOTAL LABELING OF SOME 2-REGULAR GRAPHS
 CT. NAGARAJ ${ }^{\# 1}$,C.Y. PONNAPPAN ${ }^{\star 2}$, G. PRABAKARAN ${ }^{\# 3}$
 ${ }^{1}$ Research Scholar, Department of Mathematics
 Research and Development centre
 Bharathiar University, Coimbatore-641 046, Tamilnadu, India.

${ }^{2}$ Department of Mathematics
Government Arts College, Melur - 625 106, Tamilnadu, India.
${ }^{3}$ Department of Mathematics
Thiagarajar College, Madurai - 625009, Tamilnadu, India.

Abstract

A vertex magic total labeling of a graph $G(V, E)$ is defined as one to - one mapping from the set of integers $\{1,2,3, \ldots,|V|+|E|\}$ to $V \cup E$ with the property that the sum of the label of a vertex and the labels of all edges adjacent to this vertex is the same constant for all vertices of the graph. Such a labeling is called odd if $f(V)=\{1,3,5, \ldots, 2 n-1\}$. In this paper, we present an odd vertex magic total labeling of of some 2 - regular graphs.

Key words: Magic, Labeling, Odd vertex magic total graph.
2010 Mathematics Subject Classification: 05C78.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. The graph G has vertex set $V=V(G)$ and edge set $E=E(G)$ and we let $n=|V|$ and $m=|E|$. The degree of a vertex v is the number of edges that have v as an end point and the set of neighbours of v is denoted by $N(v)$.

Macdougall et al. [2] introduced the notion of a vertex magic total labeling. The vertex magic total labeling. The vertex magic total labeling ($V M T L$) of a graph G is a one to one mapping from $V \cup E$ onto the integers $\{1,2,3, \ldots, m+n\}$ such that there is a constant k so that for every vertex u, $w_{f}(u)=f(u)+\sum_{v \in N(u)} f(u v)=k$, where $N(u)$ is the set of all vertices v that the adjacent to u. The constant k is called the magic constant for f and $w_{f}(u)$ is
called the weight of u under labeling f.

MacDougall et al. [3] introduced the concept of super vertex magic total labeling. They call a vertex magic total labeling is super if $f(V(G))=\{1,2,3, \ldots, n\}$. In this labeling, the smallest labels are assigned to the vertices.

For more details of vertex magic graphs see the book by wallis [6], and for other types of graph labeling see the dynamic survey by Gallian [1].

Nagaraj et al. [4] introduced the concept of an Odd vertex magic total labeling. A vertex magic total labeling is odd if $f(V(G))=\{1,3,5, \ldots, 2 n-1\}$.

The authors of [4] studied the basic properties of odd vertex magic graphs and showed among other things that C_{n} and P_{n} have an odd vertex magic total labelings for $n \geq 3$, that $r c_{s}$ is an odd vertex magic graph and that (s, t) - kite graph is an odd vertex magic graph iff $s+t$ is an odd.

Nagaraj et al. [5] proved the following results. A star graph $k_{1, r}$ is an odd vertex magic iff $r=2$. If a tree T is an odd vertex magic then n is odd. If T has s internal vertices and st leaves then T does not admit an odd vertex magic labeling if $t>\frac{(s+1)}{s}$. If Δ is the largest degree of any vertex in a tree T with n vertices and m edges then T doesnot admit an odd vertex magic labeling whenever $\Delta>\frac{-3+\sqrt{1+16 n}}{2}$.

2. Main Results

In this section, we will use the notation $\left[x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right]$ to denote labels of a cycle of length k in the sequence vertex -edge - vertex - edge and so on. Thus, x_{1} is the label of a vertex with weight $x_{1}+x_{2}+x_{2 k}$.

Theorem 2.1. The graph $C_{3} \cup C_{4 t}, t>1$ is an odd vertex magic graph.

Proof. We label the vertex and edges of C_{3} with $[8 t+1,2 t+6,8 t+3,2 t+2,8 t+5,2 t+4]$ and then edge label $C_{4 t}$ as follows.

$$
f\left(e_{i}\right)= \begin{cases}i+3 & \text { if } i \quad \text { odd, } 1 \leq i \leq 2 t-3 \\ i+9 & \text { if } i \quad \text { odd, } 2 t-1 \leq i \leq 4 t-3 \\ 2 & \text { if } i=4 t-1 \\ 4 t+6+i & \text { if } i \text { even }\end{cases}
$$

The vertex label $C_{4 t}$ as follows

$$
f\left(v_{i}\right)= \begin{cases}4 t+1 & \text { if } \quad i=1 \\ 8 t+3-2 i & \text { if } \quad i=2,3, \ldots, 2 t-2 \\ 8 t-3-2 i & \text { if } \quad 2 t-1 \leq i \leq 4 t-2 \\ 4 t+3 & \text { if } \quad i=4 t \\ 4 t+5 & \text { if } \quad i=4 t-1\end{cases}
$$

We show firstly that each edge label appears only once.

Edge Number	Range of labels
$4 t-1$	2
i odd, $1 \leq i \leq 2 t-3$	$4,6,8, \ldots, 2 t$
C_{3} edges	$2 t+2,2 t+4,2 t+6$
i odd $2 t-1 \leq i \leq 4 t-3$	$2 t+8,2 t+10, \ldots, 4 t+6$.
i even	$4 t+8,4 t+10, \ldots, 8 t+6$

Next we show that each vertex label appears only once.

Vertex Number	Range of labels
1	$4 t+1$
$2 t-1 \leq i \leq 4 t-2$	$1,3,5, \ldots, 4 t-3,4 t-1$
$4 t$	$4 t+3$
$4 t-1$	$4 t+5$
$2 \leq i \leq 2 t-2$	$4 t+7,4 t+9, \ldots, 8 t-3,8 t-1$.
C_{3} vertex	$8 t+1,8 t+3,8 t+5$

$\therefore C_{3} \cup C_{4 t}, t>1$ is an odd vertex magic graph with magic constant $k=12 t+11$.

Figure 1. $C_{3} \cup C_{16} \quad k=59$

Theorem 2.2. The graph $C_{3} \cup C_{4 t+2}, t \geq 1$ is $O d d$ vertex magic graph.

Proof. For $t=1$ and $t=2$ the labelings are
[$15,4,17,8,11,10][9,2,13,14,3,12,1,16,7,6,5,16]$ and
$[23,6,25,10,19,12][13,2,21,18,7,16,5,20,17,4,15,22,11,8,9,24,3,14,1,26]$
For $t \geq 3$, we label the vertex and edges of C_{3} with $[8 t+7,2 t+2,8 t+9,2 t+6,8 t+$ $3,2 t+8]$ and then vertex label $C_{4 t+2}$ as follows.

$$
f\left(v_{i}\right)= \begin{cases}4 t+5 & \text { if } \quad i=1 \\ 8 t+5 & \text { if } \quad i=2 \\ 4 t-1 & \text { if } \quad i=3 \\ 4 t-3 & \text { if } \quad i=4 \\ 8 t+11-2 i & \text { if } \quad 5 \leq i \leq 2 t+2 \\ 4 t+3 & \text { if } \quad i=2 t+3 \\ 4 t+1 & \text { if } \quad i=2 t+4 \\ 8 t+5-2 i & \text { if } \quad 2 t+5 \leq i \leq 4 t+2\end{cases}
$$

The edge label $C_{4 t+2}$ as follows

$$
f\left(e_{i}\right)= \begin{cases}2 & \text { if } \quad i=1 \\ 4 t+8 & \text { if } \quad i=3 \\ i-1 & \text { if } \quad i \quad \text { odd, } 5 \leq i \leq 2 t+1 \\ 2 t+4 & \text { if } i=2 t+3 \\ i+5 & \text { if } \quad i \text { odd, } 2 t+5 \leq i \leq 4 t+1 \\ i+4 t+8 & \text { if } \quad i \text { even. }\end{cases}
$$

It is easily verified that f is an odd vertex magic total labeling. $C_{3} \cup C_{4 t+2}, t \geq 1$ is odd vertex magic graph magic constant $k=12 t+17$.

Figure 2. $C_{3} \cup C_{18} \quad k=65$

Theorem 2.3. The graph $C_{4} \cup C_{4 t-1}$ for $t>1$ is an odd vertex magic graph.

Proof. We label the vertex and edges of C_{4} consecutively as $[1,4 t+4,3,8 t+4,7,4 t, 5,8 t+6]$

We label the edges of $C_{4 t-1}$ consecutively as follows

$$
f\left(e_{i}\right)= \begin{cases}i+3 & \text { if } \quad i \equiv 1 \bmod 4, i<4 t-3 \\ 4 t+6 & \text { if } \quad i=2 \\ i+4 t+2 & \text { if } \quad i \equiv 2 \bmod 4, i>2 \\ i-1 & \text { if } \quad i \equiv 3 \bmod 4, i<4 t-1 \\ i+4 t+6 & \text { if } \quad i \equiv 0 \bmod 4 \\ 4 t-2 & \text { if } \quad i=4 t-3 \\ 4 t-2 & \text { if } \quad i=4 t-1\end{cases}
$$

We label the vertex of $C_{4 t-1}$ consecutively as follows

$$
f\left(v_{i}\right)= \begin{cases}8 t+5 & \text { if } \quad i=1 \\ 8 t-7 & \text { if } \quad i=5, t \neq 2 \\ 11 & \text { if } \quad t=2, i=5 \\ 8 t+1 & \text { if } \quad i=2 \\ 8 t-2 i+7 & \text { if } \quad i \equiv 6 \bmod 4 \\ 13 & \text { if } \quad i=4 t-2 \\ 9 & \text { if } \quad i=4 t-1 \\ 8 t+3 & \text { if } \quad i=3 \\ 8 t-2 i+11 & \text { if } \quad 7 \leq i \leq 4 t-5, i \equiv 3 \bmod 4 \\ 8 t-2 i+7 & \text { if } \quad i \equiv 0 \bmod 4 \\ 8 t-2 i+3 & \text { if } \quad i \equiv 5 \bmod 4, i \leq 4 t-7 \\ 11 & \text { if } \quad i=4 t-3\end{cases}
$$

It is easily verified that f is an odd vertex magic total labeling.
\therefore The graph $C_{4} \cup C_{4 t-1}, t>1$ is odd vertex magic graph with magic constant $k=12 t+11$.

Figure 3. $C_{4} \cup C_{15} \quad k=59$

Theorem 2.4. The graph $c_{4} \cup C_{4 t-3}, t>1$ is odd vertex magic graph.
Proof. We label the edges of C_{4} consecutively as $[1,4 t+2,3,8 t, 7,4 t-2,5,8 t+2]$ and then edge label $C_{4 t-3}$ as follows

$$
f\left(e_{i}\right)= \begin{cases}i+3 & \text { if } \quad i \equiv 1 \bmod 4 \\ i+4 t+4 & \text { if } \quad i \equiv 2 \bmod 4 \\ i-1 & \text { if } \quad i \equiv 3 \bmod 4 \\ i+4 t & \text { if } \quad i \equiv 0 \bmod 4\end{cases}
$$

The vertex label $C_{4 t-3}$ as follows

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
8 t-2 i+3 & \text { if } \quad i \equiv 1,3 \bmod 4 \\
8 t-2 i-1 & \text { if } \quad i \equiv 2 \bmod 4 \\
8 t-2 i+7 & \text { if } \quad i \equiv 0 \bmod 4
\end{array}\right.
$$

It is easily verified that f is an odd vertex magic total labeling.
\therefore The graph $C_{4} \cup C_{4 t-3}, t>1$ is an odd vertex magic graph.

Figure 4. $C_{4} \cup C_{13} \quad k=53$

References

[1] J.A. Gallian, A dynamic survey of graph labeling electronic, J.Combinatorics 5(2002) \# D56.
[2] J.A. MacDougall, M.Miller, Slamin, W.D.Wallis, Vertex magic total labeling of graphs, Util.Math 61 (2002) 3-21.
[3] J.A.MacDougall, M.Miller,K.A.Sugeng,Super vertex magic total labelling of graphs, in: Proc.of the $15^{t} h$ Australian Workshop on Combinatorial Algorithms,2004,pp.222-229.
[4] CT.Nagaraj, C.Y.Ponnappan, G.Prabakaran, Odd vertex magic total labeling of some graphs, Communicated
[5] CT.Nagaraj, C.Y.Ponnappan, G.Prabakaran, Odd vertex magic total labeling of Trees, International Journal of Mathematics Trends and Technology, Volume 52,No.6,December(2017).
[6] W.D.Wallis, magic Graphs, Birkhauser, Barel, 2001.

