EVEN VERTEX MAGIC TOTAL LABELING OF SOME 2-REGULAR GRAPHS
CT. NAGARAJ ${ }^{\# 1}$,C.Y. PONNAPPAN ${ }^{\star 2}$, G. PRABAKARAN ${ }^{\# 3}$
${ }^{1}$ Research Scholar, Department of Mathematics
Research and Development centre
Bharathiar University, Coimbatore-641046, Tamilnadu, India.

${ }^{2}$ Department of Mathematics
Government Arts College, Melur - 625 106, Tamilnadu, India.
${ }^{3}$ Department of Mathematics
Thiagarajar College, Madurai - 625009, Tamilnadu, India.

Abstract

A vertex magic total labeling of a graph $G(V, E)$ is defined as one - to - one map f from $V \cup E$ onto the integers $\{1,2,3, \ldots,|V|+|E|\}$ such that $f(u)+\sum f(u v)$ where the sum is over all vertices v adjacent to u, is a constant, independent of the choice of vertex u. Such a labeling is even if $f(V(G))=$ $\{2,4,6, \ldots, 2 n\}$. In this paper, we present an even vertex magic total labeling of some 2 - regular graphs.

Key words: Even vertex magic total labeling, Even vertex magic graph.
2010 Mathematics Subject Classification: 05C78.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. The graph G has vertex set $V=V(G)$ and edge set $E=E(G)$ and we let $n=|V|$ and $m=|E|$. The degree of a vertex v is the number of edges that have v as an end point and the set of neighbours of v is denoted by $N(v)$.

A labeling of a graph G is a mapping that carries a set of graph elements usually the vertices and / or edges, into a set of numbers, usually integers, called labels. Many kinds of labelings have been studied and an excellent survey of graph labelings can be found in 1

Macdougall et al. 2] introduced the concept of vertex magic total labeling. If G is a finite simple undirected graph with n vertices and e edges, then a vertex ISSN: 2231-5373 http://www.ijmttjournal.org
magic total labeling $(V M T L)$ is a bijection f from $V(G) \cup E(G)$ to the integers $1,2, \ldots, m+n$ with the property that for every u in $V(G)$, $f(u)+\sum_{v \in N(u)} f(u v)=k$, for some constant k (which we call the magic constant for f).

MacDougall et al. [4] introduced the concept of super vertex magic total labeling. They call a vertex magic total labeling is super if $f(V(G))=\{1,2,3, \ldots, n\}$. In this labeling, the smallest labels are assigned to the vertices.

Nagaraj et al. [3] introduced the concept of an Even vertex magic total labeling. They call vertex magic total labeling is even if $f(V(G))=\{2,4,6, \ldots, 2 n\}$. A graph is called an even vertex magic if the graph has an even vertex magic total labeling.

2. Main Results

In this section, we will use the notation $\left[x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right]$ to denote labels of a cycle of length k in the sequence vertex -edge - vertex - edge and so on. Thus, x_{1} is the label of a vertex with weight $x_{1}+x_{2}+x_{2 k}$.

Theorem 2.1. The graph $C_{3} \cup C_{4 t}, t>1$ is even vertex magic graph.

Proof. we label the vertex and edges of C_{3} with $[8 t+2,2 t+5,8 t+4,2 t+1,8 t+6,2 t+3]$ and then edge label $C_{4 t}$ as follows.

$$
f\left(e_{i}\right)= \begin{cases}i+2 & \text { if } i \quad \text { odd, } 1 \leq i \leq 2 t-3 \\ i+8 & \text { if } i \text { odd, } 2 t-1 \leq i \leq 4 t-3 \\ 1 & \text { if } i=4 t-1 \\ 4 t+5+i & \text { if } i \text { even }\end{cases}
$$

The vertex label $C_{4 t}$ as follows

$$
f\left(v_{i}\right)= \begin{cases}4 t+2 & i=1 \\ 8 t+4-2 i & i=2,3, \ldots, 2 t-2 \\ 8 t-2-2 i & 2 t-1 \leq i \leq 4 t-2 \\ 4 t+4 & i=4 t \\ 4 t+6 & i=4 t-1\end{cases}
$$

We show firstly that each edge label appears only once.

Edge Number	Range of labels
$4 t-1$	1
i odd, $1 \leq i \leq 2 t-3$	$3,5,7, \ldots, 2 t-1$
C_{3} edges	$2 t+1,2 t+3,2 t+5$
i odd, $2 t-1 \leq i \leq 4 t-3$	$2 t+7,2 t+9, \ldots, 4 t+5$
i even	$4 t+7,4 t+9, \ldots, 8 t+5$.

Next we show that each vertex label appear only once

Vertex Number	Range of labels
1	$4 t+2$
$2 t-1 \leq i \leq 4 t-2$	$2,4,6, \ldots, 4 t-2,4 t$
$4 t$	$4 t+4$
$4 t-1$	$4 t+6$
$2 \leq i \leq 2 t-2$	$4 t+8,4 t+10, \ldots, 8 t-2,8 t$.
C_{3} vertex	$8 t+2,8 t+4,8 t+6$

$\therefore C_{3} \cup C_{4 t}, t>1$ is an even vertex magic graph with magic constant $k=12 t+10$.

Figure 1. $C_{3} \cup C_{16}$, Magic constant $k=58$
Theorem 2.2. The graph $C_{3} \cup C_{4 t+2}, t \geq 1$ is an even vertex magic graph.
Proof. For $t=1$ and $t=2$ the labelings are
$[16,3,18,7,12,9][10,1,14,13,4,11,2,15,8,5,6,17]$ and
$[24,5,26,9,20,11][14,1,22,17,8,15,6,19,18,3,16,21,12,7,10,23,4,13,2,25]$
For $t \geq 3$, we label the vertex and edge of C_{3} with $[8 t+8,2 t+1,8 t+10,2 t+5,8 t+$ $4,2 t+7]$ and then vertex label $C_{4 t+2}$ as follows.

$$
f\left(v_{i}\right)= \begin{cases}4 t+6 & \text { if } \quad i=1 \\ 8 t+6 & \text { if } \quad i=2 \\ 4 t & \text { if } \quad i=3 \\ 4 t-2 & \text { if } \quad i=4 \\ 8 t+12-2 i & \text { if } \quad 5 \leq i \leq 2 t+2 \\ 4 t+4 & \text { if } \quad i=2 t+3 \\ 4 t+2 & \text { if } \quad i=2 t+4 \\ 8 t+6-2 i & \text { if } \quad 2 t+5 \leq i \leq 4 t+2\end{cases}
$$

The edge label $C_{4 t+2}$ as follows

$$
f\left(e_{i}\right)= \begin{cases}1 & \text { if } \quad i=1 \\ 4 t+7 & \text { if } \quad i=3 \\ i-2 & \text { if } \quad i \quad \text { odd, } 5 \leq i \leq 2 t+1 \\ 2 t+3 & \text { if } i=2 t+3 \\ i+4 & \text { if } i \text { odd, } 2 t+5 \leq i \leq 4 t+1 \\ i+4 t+7 & \text { if } \quad i \text { even. }\end{cases}
$$

$\therefore C_{3} \cup C_{4 t+2}, t \geq 1$ is an even vertex magic graph magic constant $k=12 t+16$.

Figure 2. $C_{3} \cup C_{18} \quad k=64$

Theorem 2.3. The graph $C_{4} \cup C_{4 t-1}$ for $t>1$ is an even vertex magic graph.
Proof. We label the vertex and edges of C_{4} consecutively as $[2,4 t+3,4,8 t+3,8,4 t-$ $1,6,8 t+5]$
We label the edges of $C_{4 t-1}$ consecutively as follows

$$
f\left(e_{i}\right)= \begin{cases}i+2 & \text { if } \quad i \equiv 1 \bmod 4, i<4 t-3 \\ 4 t+5 & \text { if } \quad i=2 \\ i+4 t+1 & \text { if } \quad i \equiv 2 \bmod 4, i>2 \\ i-2 & \text { if } \quad i \equiv 3 \bmod 4, i<4 t-1 \\ i+4 t+5 & \text { if } \quad i \equiv 0 \bmod 4 \\ 4 t-3 & \text { if } \quad i=4 t-3 \\ 4 t-1 & \text { if } \quad i=4 t-1\end{cases}
$$

We label the vertex of $C_{4 t-1}$ consecutively as follows

$$
f\left(v_{i}\right)= \begin{cases}8 t+6 & \text { if } \quad i=1 \\ 8 t-6 & \text { if } \quad i=5, t \neq 2 \\ 12 & \text { if } \quad t=2, i=5 \\ 8 t+2 & \text { if } \quad i=2 \\ 8 t-2 i+8 & \text { if } \quad i \equiv 6 \bmod 4 \\ 14 & \text { if } \quad i=4 t-2 \\ 10 & \text { if } \quad i=4 t-1 \\ 8 t+4 & \text { if } \quad i=3 \\ 8 t-2 i+12 & \text { if } \quad 7 \leq i \leq 4 t-5, i \equiv 3 \bmod 4 \\ 8 t-2 i+8 & \text { if } \quad i \equiv 0 \bmod 4 \\ 8 t-2 i+4 & \text { if } \quad i \equiv 5 \bmod 4, i \leq 4 t-7 \\ 12 & \text { if } \quad i=4 t-3\end{cases}
$$

\therefore The graph $C_{4} \cup C_{4 t-1}, t>1$ is an even vertex magic graph with magic constant $k=12 t+10$.

Figure 3. $C_{4} \cup C_{15} \quad k=58$

Theorem 2.4. The graph $c_{4} \cup C_{4 t-3}, t>1$ is an even vertex magic graph.
Proof. We label the edges of C_{4} consecutively as $[2,4 t+1,8 t-1,8,4 t-3,6,8 t+1]$ and then edge label $C_{4 t-3}$ as follows

$$
f\left(e_{i}\right)= \begin{cases}i+2 & \text { if } \quad i \equiv 1 \bmod 4 \\ i+4 t+3 & \text { if } \quad i \equiv 2 \bmod 4 \\ i-2 & \text { if } \quad i \equiv 3 \bmod 4 \\ i+4 t-1 & \text { if } \quad i \equiv 0 \bmod 4\end{cases}
$$

The vertex label $C_{4 t-3}$ as follows

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
8 t-2 i+4 & \text { if } \quad i \equiv 1,3 \bmod 4 \\
8 t-2 i & \text { if } \quad i \equiv 2 \bmod 4 \\
8 t-2 i+8 & \text { if } \quad i \equiv 0 \bmod 4
\end{array}\right.
$$

Figure 4. $C_{4} \cup C_{13} \quad k=52$

References

[1] J.A. Gallian, A dynamic survey of graph labeling electronic, J.Combinatorics 5(2002) \# D56.
[2] J.A. MacDougall, M.Miller, Slamin, W.D.Wallis, Vertex magic total labeling of graphs, Util.Math 61 (2002) 3-21.
[3] CT.Nagaraj, C.Y.Ponnappan, G.Prabakaran, Even vertex magic total labeling of Trees, International Journal of pure and Applied Mathematics, Volume 115,No.9,(2017), 363-375.
[4] J.A.MacDougall, M.Miller,K.A.Sugeng,Super vertex magic total labelling of graphs, in: Proc.of the $15^{t} h$ Australian Workshop on Combinatorial Algorithms,2004,pp.222-229.

