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Abstract— This paper is concerned with the transient and steady state analysis of unreliable server batch arrival general bulk 

service queueing system with multiple vacation under a restricted admissibility policy of arriving batches. Arrivals occur in 
batches according to compound Poisson process. Unlike the usual batch arrival queueing system, the restricted admissibility 

policy differs during a busy period and a vacation period and hence all arriving batches are not allowed to join the system at all 

times. The service is done in bulk with minimum of ‘a’ customers and maximum of ‘b’ customers. The service time follows a 

general (arbitrary) distribution. In addition, the server subject to active breakdown. As soon as the breakdown occurs the server 

is sent for repair and the customer who was just being served before server breakdown waits for the remaining service to 

complete. In the proposed model, the transient and steady state results for queue size distribution by applying the 

supplementary variable technique are derived. Some performance measures, special and particular cases are also discussed. 

Numerical illustration is provided to see the effect and validity of the results. 
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I. INTRODUCTION  

 
     Interruption in the customer service is common in many queueing situations. As a result of a sudden breakdown, the service 

of a customer or a unit undergoing service has to be suspended and the customers have to wait till the server returns to the 

system or the system becomes operable again. Consequently, such failures have a definite effect on the system; particularly on 

the queue length and customer‟s waiting time in the system. Such systems with random breakdown have been studied by many 

authors, including Gaver [10], Avi-Itzhak and Naor [3] and Madan [16]. Dorda [8] has studied a finite single server queueing 
system subject to breakdowns where customer‟s interarrival and service times follow the Erlang distribution defined with 

certain fixed parameters and the times of failures and repairs are exponentially distributed. Recently, Rajadurai et al. [19] made 

a study on 1// GM  the feedback retrial queue, subject to server breakdown and repair under multiple working vacation policy.  

 

     A considerable amount of work has been done in a queueing system with vacation and successfully used in various applied 

problems such as production/inventory systems, communication systems, computer network, etc. A comprehensive and 
excellent study on vacation models can be found in Levy and Yechiali [15]. Doshi [9] and Takagi [20] have made a 

comprehensive survey of queuing systems with vacations. A batch arrival queueing system with multiple vacations was first 

studied by Baba [5]. Recently, Jeyakumar and Senthilnathan [14] analyzed the steady state behavior of batch arrival and bulk 

service queueing model with multiple working vacations.  

 

     In earlier literature, on different control models of queueing systems, namely control of servers, control of service rates, 

control of admission of customers and control of queue discipline, one can refer Crabill, Gross and Magazine [7]. Madan and 

Abu Dayyeah [17] studies some aspect of batch arrivals Bernoulli vacation models with restricted admissibility, where all 

arriving batches are not allowed into the system at all-time. Haridass and Arumuganathan [11] studied a bulk queueing system 

with multiple vacations and restricted admissibility policy. Ayyappan and Sathiya [1] analyzed 1// GM
X  feedback queue with 

three stage heterogeneous services, server vacations and restricted admissibility.  

 

     The theory of batch service queues originated with the work of Bailey [4]. He considered a queue with Poisson arrival and 

fixed batch service. He derived the transient solution of the queue size distribution. Neuts [18] proposed the “General Bulk 
Service Rule” in which service initiates only when a certain number of customers in the queue are available. His general bulk 

service rule was extended by Borthakur and Medhi. Holman, Chaudhry and Ghosal [12] studied 1/),(/ baGM  queues in which 

the server starts service only if a specified minimum say „a‟ of customers have accumulated in the queue and he does not take 
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more than „b‟ customers for service in one batch. Ho woo Lee et al. [13] consider the batch service queue with a single vacation. 

Ayyappan and Devipriya [2] studied a single server fixed batch service queueing system under multiple vacations with gated 

service. 
 

     The rest of the paper is organized as follows. In Section II, the detailed description of the mathematical model and notations 

are given. In Section III, we consider the queue size distribution at a random epoch. Steady state results and stability condition 

are derived in Section IV and Section V. Some important performance measures and steady state probabilities are derived in 

Section VI and Section VII. Special cases and particular cases are obtained in Section VIII and Section IX. In Section X, the 

effects of various parameters on the system performance are analyzed numerically. Finally, the conclusion of the present work 

is given in Section XI.  

II. The Mathematical Model 

 
      We consider a single server queueing system in which arrivals occur according to a compound Poisson process with batches 

of random size X. Further, it is assumed that not all batches are allowed to join the system at all times. During the busy period 

of the server, the arrivals are admitted with probability‟π‟,whereas with probability „θ‟, they are admitted when the server is on 
vacation. Such assumptions are quite meaningful in many real life situations. The service follows the “General Bulk Service 

Rule” in which service done with a minimum of „a‟ customers and maximum of „b‟ customers. The service time random 

variable B is assumed to follow a general (arbitrary) distribution with distribution function )( xB , Laplace Stieltjes transform 

)( sB  and finite moments )1)(( KBE
K . After finishing a service, if the queue length is less than „a‟, the server leaves for a 

vacation of random length. When he returns, if he finds less than „a‟ customers, he leaves for another vacation and so on, until 

he finds „a‟ customers in the queue. Next, we assume the vacation time random variable V follows a general (arbitrary) 

distribution with distribution function )( xV , Laplace Stieltjes transform )( sV  and finite moments )1)(( KVE
K . The busy server 

may break down at any instant and the service channel will fail for a short interval of time. Now, we assume that the time 

between breakdowns occur according to a Poisson process with a mean rate of breakdown as‟η‟.  As soon as the breakdown 

occurs, the server is sent for repair, during that time it stops providing service to the customers till service channel is repaired. 
The customers, who were just being served before server breakdown, wait for the remaining service to complete. Further, we 

assume that the repair time random variable R follows a general (arbitrary) distribution with distribution function )( yR , Laplace 

Stieltjes transform )( sR  and finite moments )1)(( KRE
K . 

A.  Notations 

 
In this section, we first set up the system state equations for the distribution of the queue size (the number of customers in the 

queue excluding the batch being served, if any) at a random epoch by treating the elapsed service time, elapsed vacation time 

and elapsed repair time as supplementary variables. Then we solve these equations and derive the probability generating 

function (PGF) of the queue size. 

 

Now, let us define 

  - batch arrival rate, 

X - arrival batch size (a random variable), 

k
c  = Prob ]=[ kX , 1,k  

k

k

k

czzC 


1=

=)(  is the PGF of X. 

Further, it may be noted that since )( xB , )( xV , )( yR  are distribution functions, we have 

0=(0)=(0)=(0) RVB  and 1=)(=)(=)(  RVB
 

Moreover, since ),( xB )( xV , )( yR  are continuous at 0=x  and 0=y , so that 

,
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xdB
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)(1

)(
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 differential functions (hazard rates) of )( xB , )( xV , and )( yR  respectively. 
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Let )( tN
Q

 be the queue size at time „t‟, )(
0

tB  be the elapsed service time at time „t‟, )(
0

tV  be the elapsed vacation time at 

time „t‟ and )(
0

tR  be the elapsed repair time at time „t‟. 

Further, we introduce the random variable 

 


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=)( tY  

 

 Thus, the supplementary variables )(
0

tB , )(
0

tV  and )(
0

tR  are introduced in order to obtain a bivariate Markov process 

)}(),({ tLtN
Q

, where )(=)(
0

tBtL  if 1=)( tY , )(=)(
0

tVtL  if 2=)( tY  and )(=)(
0

tRtL  if 3=)( tY . 

 

 We define the following probabilities: 

 

),( txP
n

 = Probability that at time „t‟, the server is actively providing service and there are exactly „n‟ customers in the queue, 

excluding the batch under service with an  elapsed service time of batch of customers undergoing service is „x‟. 

 

),( txV
n

 = Probability that at time „t‟, the server is on vacation and there are exactly „n‟ customers in the queue with an elapsed 

vacation time is „x‟. 

 

),,( tyxR
n

 = Probability that at time „t‟, there are exactly „n ‟customers in the queue with an elapsed service time of the batch 

of customers undergoing service is „x‟ and an  elapsed repair time of server is „y‟. 

 

For the Process, we define the following limiting probabilities: 

 

0  0,>  ];)(< ,=)( 1,=)([lim=)(
0
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and for fixed value of x  and 0 n  
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III. Queue size distribution at a Random Epoch 

 

The supplementary variable technique was introduced by Cox [6]. Using supplementary variables, one 

 can convert non-Markovian models into Markovian models.  

 

 

The Kolmogorov forward equations to govern the system in transient state can be written as follows: 
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The normalizing condition is:  
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To solve the above equations, we define the following Probability generating functions for  1|| z :  
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The Laplace transform of a function )( tf  is defined as: 
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Taking the Laplace transform of both sides of the equations (1) to (11) and using an equation 
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By multiplying equation (16) by zn, summing over, (n=0,1,2…) and adding to the equation 
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Applying the same process in equation (18) and using (17), gives  
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Similarly from equations (19) and (20), we get 
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Further integrating equations (26) to (28), we get  
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A.Appendixin given  are  (z)  and  (z)  (z),  where 
 

 

Next, multiply the boundary condition by suitable powers of „z‟ and taking summation over all  

possible values of „n‟ and using generating functions, we get  
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Multiplying both sides of the equation (29) by µ(x) and (30) by ν(x) and integrating 
 

over „x‟, we obtain, 
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Multiplying both sides of the equation (31) by ζ(y) and integrating over „y‟ we obtain  
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Utilizing equations (35) and (36) in equation (32), we obtain 
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Again integrating equations (29) to (31), we have 
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Inserting equations (34) and (39) in (42), we get 
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 are completely determined from equations (39), (40) and (43) 
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IV. The steady state results 

 

In this section, we shall derive the steady state probability distribution for our queueing model  

by applying the well-known Tauberian property,  
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Therefore, in steady state, the PGF of queue size when the server is busy, on vacation and  

under repair is given below:  
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 Finally, the PGF of queue size is  
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 Substituting equations (45) to (47) in equation (48), we get  

 

A.-Appendixin given  are (z) and (z)  (z),  , ,q where
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 (49) 

V. Stability condition 

 

The probability generating function has to satisfy 1=(1)P . In order to satisfy this condition, apply L‟Hopital rule and 

equating the expression to 1. Consecutively, 

                           )]()()())[()(1(

1

=

1

0=

rbqVEXEREBE
r

b

ar

r

a

r

 


  

                                   

))]()(()([)(

1

0=

REBEXEbqVE
r

a

r

  


))].()(()([= REBEXEb    

 Since 
r

q ,
r

  are probabilities of „r‟ customers being in the queue, if follows that left hand side of the above expression must 

be positive. Thus 1=(1)P  is satisfied if 0>))((
1

zBz
b

 , if bREBEXE ))/()(()(=    then 1<  is the 

condition to be satisfied for the existence of steady state for the model under consideration. Equation (49) gives the PGF of the 

number of customers involving only „b‟ unknowns. By a Rouche‟s theorem of complex variables, it can be proved that 

[ ))((
1

zBz
b

 ] has b-1 zeros inside and one on the unit circle |z|=1. Since P(z) is analytic within and on the unit circle, the 

numerator must vanish at these points, which gives „b‟ equations in „b‟ unknowns. These equations can be solved by any 

suitable numerical techniques. 

VI. Performance Measures 

 

In this section, some useful performance measures of the proposed model like expected number of customers in the queue  
q

L , 

expected waiting time in the queue 
q

W , probability that the server is on vacation P (V), the probability that the server is busy P 

(B) and probability that the server is under repair P(R) are derived. 

 

A.  Expected Queue Length 

The expected queue length 
q

L  at an arbitrary epoch is obtained by differentiating )( ZP  at 1=z  and is given by 
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 where  
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B.  Expected waiting time in the queue 

 

The expected waiting time is obtained by using Little‟s formula as,  
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 where 
q

L  is given in equation (50).  

 

VII. System state probabilities 

 

A.  Probability that the server is on vacation 

 

Let P(V), be the probability that the server is on multiple vacation at time „t‟. 

From equation (46), we get .)(=(1)=)(
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B. Probability that the server is busy 

 

Let P(B), be the probability that the server is in the busy period at time „t‟. 

From equation (45), we get .
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C.  Probability that the server is under repair 

 
Let P(R), be the probability that the server is under repair at time „t‟. 

 

From equation (47), we get .
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VIII. Special cases 

 

In this model, we take service time and vacation time as general (arbitrary). But for practical purposes, 

 service time and vacation time with particular distribution are required. In this section, some special  

cases of the proposed model by specifying vacation time random variable and bulk service time 
 random variable as exponentialy distributed are discussed. 

 

Case (i):  
 Single server batch arrival queue with exponential service time and restricted admissibility policy. 

The service time distribution is exponential with a parameter  , then LST of B is given by 
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 Hence, the PGF of queue size distribution can be obtained by,  
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Case (ii):  
Single server batch arrival queue with exponential vacation time and restricted admissibility policy. 

The vacation time distribution is exponential with a parameter  , then LST of V is given by 
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 Hence, the PGF of queue size distribution can be obtained by,  
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IX. Particular cases 

 Case (i):  
When there is no server breakdown, the equation (49) reduces to  
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which exactly coincides with the PGF of Haridass and Arumuganathan [11] , for an )/1,(/ baGM
X

 queue  

with multiple vacations and restricted admissibility of arriving batches.  

 

Case (ii):  
When there is no server breakdown and all arrivals are allowed to join the system, equation (49) reduces to  
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 which exactly coincides with the PGF of Jeyakumar and Senthilnathan [15] for an )/1,(/ baGM
X

 
 queue with multiple vacation , without server breakdown and closedown time zero. 

 

X. Numerical Illustration 

 

The unknown probabilities of the queue size distribution are computed using numerical techniques. Using MATLAB, 

 the zeroes of the function [ ))((
1

zBz
b

 ] are obtained and simultaneous equations are solved. 

 

A numerical example is analyzed with the following assumptions and notations: 

 
1. Service time distribution is Erlang-2.  

2. Batch size distribution of the arrival is geometric with mean 2. 

3. Vacation time and Repair time are exponential with parameter 10=  and 2= . 

4. Minimum service capacity is 3=a  and maximum service capacity 6.=b  

5. Probability of arriving batch will be allowed to join the system during the busy period is 0.2.=  

6. Probability of arriving batch will be allowed to join the system during the vacation period is 0.2.=  

 

The expected queue length 
q

L , expected waiting time in the queue 
q

W , is calculated for various service rates, breakdown rate, 

repair rate and the results are tabulated. 

 

From Table (1) to Table (3) the following observations are made. 

1. As service rate   increases, the expected queue length and expected waiting time decreases. 

2. As arrival rate   increases, the expected queue length and expected waiting  time increases. 

3. For a fixed value of breakdown rate,  if we increase the repair rate, the expected queue length and expected waiting time        

    decrease. 
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Table I 
Service rate (Vs) performance measure 

0.2= and 0.2=1,=10,=2,=4,=6,=3,= ba  

 

 

 

 

 

 

 
Table II  

Arrival rate (Vs) performance measure 

0.2= and 0.2=1,=10,=2,=7,=6,=3,= ba  

 

 

 

 

 

 

 
 

Table  III 
Breakdown and Repair rate (Vs) performance measure 

0.2= and 0.2=10,=4,=7,=6,= 3,= ba  

 

 

 

 

 

 

 

 

 

XI. Conclusion 

 

     In this paper, an )/1,(/ baGM
X  queue with a restricted admissibility policy of arriving batches and multiple vacation for an 

unreliable server is analyzed. The probability generating function of the number of customers in the queue when the server is 

busy, on vacation and under repair are found using the supplementary variable technique. Some important performance 

measures like mean number of customers in the queue and average waiting time in the queue are obtained. Particular and special 

cases of the model are also presented. From the numerical results, it is observed that the arrival rate increases, the expected 

queue length and waiting time of the customers increases, and if the service rate increase, the expected queue length and 

expected waiting time decrease. 
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L  
q

W  
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6 

7 

8 
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0.1867 

0.1556 

0.1333 

0.1167 

0.1037 

1.4039 

1.2484 

1.1551 

1.0938 

1.0509 

0.1755 

0.1561 

0.1444 

0.1367 

0.1314 

    
q

L  
q

W  

6 

7 

8 

9 

10 

0.2000 

0.2333 

0.2667 

0.3000 

0.3333 

1.6722 

2.0387 

2.4970 

3.0658 

3.7678 

0.1392 

0.1456 

0.1561 

0.1703 

0.1884 

η             
  

           
q

L  
q

W  

 

1 

            2 

            3 

            4 

          1.1551 

          1.0227 

          0.9746 

0.1444 

0.1278 

0.1218 

 

2 

            2 

            3 

            4 

          1.6020 

           1.2184 

           1.0918 

0.2003 

0.1523 

0.1365 

 

3 

            2 

            3 

            4 

           2.3368 

           1.4948 

           1.2448 

0.2921 

0.1868 

0.1556 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 54 Number 1- February 2018 

 

ISSN: 2231-5373                             http://www.ijmttjournal.org                                   Page 99 

References 

 

 

[1]   G. Ayyappan,  and K. Sathya,  “ X
M /G/1 Feedback Queue  with Three  Stage Heterogeneous Service and Server Vacations having Restricted       

         Admissibility,”  Journal of  computations and Modelling, vol. 3,   pp. 203 -225, 2013 .  

[2]   G. Ayyappan, and G. Devipriya, “Analysis of Single Server Fixed Batch  service Queueing System under Multiple Vacations with Gated Service,”     

         International Journal of   Computer Applications, vol. 89,  pp. 0975-8887, 2014. 

 [3]   B Avi-Itzhak, and  P.Naor, “Some Queueing Problems with the Service  Station subject to Breakdown,” Operations Research, vol. 11, pp. 303-320, 1963. 

 [4]   N. T. J. Bailey, “On queueing processes with bulk service,” J. Roy.Statist. Soc. Ser. vol. 16,  pp. 80-87,  1954. 

 [5]   Y. Baba, “On the /1/GM
X  queue with vacation tim,” Operations  Research Letters, vol. 5,pp. 93-98, 1986.   

 [6]   D. R. Cox, “The analysis of non-markovian stochastic  processes   by the inclusion of supplementary variables,” in Proc. of Computer  Philosophical   

          Society, vol.51,  pp. 433- 441, 1965. 

 [7]   T. Crabill, D. Gross and M. Magazine, “A classified  bibliography of    research on optimal design and control of  queues,” Operations   Research, vol. 25,    

          pp. 219-232, 1977. 

 [8]   M. Dorda, “ On Two Modifications of E2/E2/1/m Queueing System  with a Server Subject to Breakdowns,” Applied Mathematical   Sciences , vol. 7,  pp.  

          539-550,  2013. 

  [9]   B. T. Doshi, “Queueing systems with vacations : a survey,”. Queueing systems 1, pp. 129-66, 1986.   

 [10]  D. P. Gaver, “A Waiting Line with Interrupted Service  Including  Priorities,” Journal of Royal Statistical Society B , vol. 24, pp. 73-90, 1962. 

 [11]   M. Haridas and  R. Arumuganathan, “Optimal Cost  Analysis  of   a  Bulk Queueing System with Multiple Vacations and   Restricted  Admissibility  of  

            Arriving  Batches,” International Journal of  Operation Research, vol. 9, pp. 27-43,  2012. 

 [12]   D. F. Holman, M. L. Chaudhry and  A. Ghosal, “Some results  for the general bulk service queueing system,” Bull. Austral. Math. Soc. ,  vol.  23,  pp.        

            161- 179, 1981. 

 [13]    Ho Woo Lee, Soon Seok Lee, , K. C. Chae and R. Nadarajan, “On   a batch service queue with single vacation,” Appl. Math. Modeling, vol 16,  pp. 6- 42,  

           1992. 

 [14]   S. Jeyakumar and B. Senthilnathan, “Steady state analysis of  bulk  arrival and bulk service queueing model with multiple working  vacations,” Int.  

           Journal of Mathematics in Operational Research , vol.  9, pp. 375-394,  2016. 

 [15]   S. Jeyakumar and B. Senthilnathan, “ A study on the behaviour of the server breakdown without interruption in a X
M /G(a,b)/1 queueing system with  

            multiple vacations and closedown time,” Applied Mathematics and Computation, vol.  219,  pp.  2618-2633, 2012. 

 [16]   Y. Levy and , U. Yechiali, “ Utilizations of the idle time in an /1/GM  queueing systems,” Mgmt. Sci. vol. 22, pp. 202- 211, 1975. 

 [17]   K. C. Madan, “ Queueing System with Random Failures and  Delayed Repairs,” Journal of Indian Statistical Associations , vol. 32,  pp. 39- 48, 1994.   

 [18]   K. C. Madan and Abu-Dayyeb Walid, “ Restricted  admissibility of   batches in an /1/GM
X  type bulk queue with modified Bernoulli  schedule server  

           vacations,” ESAIM   Probab. Statist., vol. 6,  pp. 113-125, 2002. 

 [19]   M. F. Neuts, “ A general class of bulk queues with poisson input,” The  Annals of Mathematical Statistics , vol. 38,  pp.757-770,  1967. 

 [20]    P. Rajadurai, M. C. Saravanarajan and V. M. Chandrasekaran,   “A study on /1/GM  feedback retrail queue with subject to server  breakdown and repair  

            under multiple vcation policy,” Alexandria  engineering Journal, 2017. 

 [21]    H. Takagi, “ Vacations and Priority systems. Part-1  Queueing Analysis: A foundation of performance  evaluation, North- Holland.  Amsterdam,  

           New York, vol. 1 , 1991. 

 

 

Appendix-A 

The following expressions are used throughout this paper 
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