Graphical Equations on Neighbourhood Chromatic Domination

P. Aristotle¹, S. Balamurugan², V. Swaminathan³

¹PG & Research Department of Mathematics, Raja Doraisingam Government Arts College,

Sivagangai – 630561, Tamilnadu, India

²PG Department of Mathematics, Government Arts College, Melur – 625106, Tamilnadu, India ³Ramanujan Research Centre in Mathematics, Saraswathi Narayanan College, Madurai – 625022,

Tamilnadu, India

Abstract—Equations connecting two parameters of a graph have already been studied. For example, $\gamma(G) + \chi(G) = n$ or n - 1 or $\Delta(G) + \chi(G) = n$ or n - 1. A subset S of G is called a neighbourhood chromatic dominating set if S is a dominating set and $\chi(\langle N(S) \rangle) = \chi(G)$. The minimum cardinality of a neighbourhood chromatic dominating set of G is called the neighbourhood chromatic domination number of G and is denoted by $\gamma_{nchd}(G)$. In this paper, graph equation $\gamma_{nchd}(G) + \Delta(G) = n$ is solved for $\Delta(G) = 1$ or 2 or 3 or n - 2. Further $\gamma_{nchd}(G) + \Delta(G) = n - 1$ is solved for $\Delta(G) = n - 3$.

Keywords—Dominating set, domination number, neighbourhood chromatic dominating set, neighbourhood chromatic domination number.

I. INTRODUCTION

Let G = (V, E) be a simple, finite and undirected graph. Throughout this paper $G \neq \overline{K_n}$ and order of G is at least 2. A dominating set D of V(G) is called a neighbourhood chromatic dominating set if $\chi(< N(D) >) = \chi(G)$. The minimum cardinality of a neighbourhood chromatic dominating set of G is called the neighbourhood chromatic domination number of G and is denoted by $\gamma_{nchd}(G)$. $\gamma_{nchd}(G) = n$ if and only if $G = K_2 \cup (n-2)K_1$. Therefore $\gamma_{nchd}(G) + \Delta(G) = n + 1$ can be solved with $\Delta(G) = 1$. The same equation can be solved with $\Delta(G) = 2$. The solution is $C_3 \cup (n-3)K_1$ or $P_3 \cup (n-3)K_1$. We consider the equations in which $\gamma_{nchd}(G) + \Delta(G) = n$ when $\Delta(G) = 1$ or 2 or 3 or n - 2 and characterize the graphs satisfying the above equation. Further the equation $\gamma_{nchd}(G) + \Delta(G) = n - 1$ is solved for $\Delta(G) = n - 3$.

For further notations and terminology refer to [[2], [3]].

II. PRIOR RESULTS

Definition 1. [1] A subset *D* of *V* is said to be a **neighbourhood chromatic dominating set** (nchd-set) if *D* is a dominating set and $\chi(< N(D) >) = \chi(G)$. The minimum cardinality of a neighbourhood chromatic dominating set of a graph G is called the **neighbourhood chromatic domination number** (nchd-number) of G and it is denoted by $\gamma_{nchd}(G)$.

Theorem 1. [1] Let G be a triangle free graph. If $\gamma_{nchd}(G) = 2$, then $\chi(G) = 2$.

III.GRAPHS EQUATION WITH RESPECT TO $\Delta(G)$

Proposition 1.Let G be a graph with $\Delta(G) = 1$. Then $\gamma_{nchd}(G) = n - 1$ if and only if $G = 2K_2 \cup (n - 4)K_1$.

Proof. Let G be a graph of order n with $\Delta(G) = 1$. Let $\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_k$ be the components of G such that $\sum_{i=1}^k |\mathcal{G}_i| = |G|$. Suppose $\gamma_{nchd}(G) = n - 1$. Since $\Delta(G) = 1$, G must have at least one non-trivial component. **Claim 1.** G has at least two non-trivial components.

Suppose G has exactly one non-trivial component. Then $\gamma_{nchd}(G) = n$, a contradiction. Hence the claim 1.

Claim 2. Number of non-trivial components of G is 2 and remaining components are isolate.

Suppose G contains three non-trivial components. Since $\Delta(G) = 1$, the non-trivial components are K_2 . Then $S = V(G) - \{y, z\}$ is a nehd-set of G, where $y \in V(G_i)$ and $z \in V(G_j)$ with $|S| \le n - 2$, a contradiction. Hence G contains only two non-trivial components and the remaining vertices are isolates. Therefore, G is isomorphic to $2K_2 \cup (n-4)K_1$. The converse is obvious.

Proposition 2. Let G be a graph with $\Delta(G) = 2$. Then $\gamma_{nchd}(G) = n-2$ if and only if $G = P_3 \cup K_2 \cup (n-5)K_1, C_3 \cup K_2 \cup (n-5)K_1, C_4 \cup (n-4)K_1, P_4 \cup (n-4)K_1 \text{ or } C_5 \cup (n-5)K_1$.

Proof. Let G be a graph of order n with $\Delta(G) = 2$. Let $\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_k$ be the components of G such that $\sum_{i=1}^k |\mathcal{G}_i| = |G|$. Suppose $\gamma_{nchd}(G) = n-2$. Since $\Delta(G) = 2$, G must have at least one non-trivial component.

Claim 1. Number of non-trivial components of G is either 1 or 2 and remaining components are isolates.

Suppose G contains three non-trivial components. Let \mathcal{G}_i be a graph which contains the vertex u such that $\deg_{\mathcal{G}_i}(u) = \Delta = 2$ and $\chi(\langle \mathcal{G}_i \rangle) = \chi(\mathcal{G})$. Clearly, $S_1 = V(\mathcal{G}) - \{x, y, z\}$, where $x \in \mathcal{G}_i$, $y \in \mathcal{G}_j$ and $z \in \mathcal{G}_t$, is a ned-set of G with $|S_1| < n - 2$, a contradiction. Hence G contains either one or two non-trivial components.

Claim 2. Exactly one component of G contains a Δ -vertex v.

Suppose let us assume that u_1 and u_2 are the vertices of \mathcal{G}_i and \mathcal{G}_j respectively, such that $\deg_{\mathcal{G}_i}(u_1) = \Delta = \deg_{\mathcal{G}_j}(u_2)$. Without loss of generality assume that $\chi(\mathcal{G}_i) \ge \chi(\mathcal{G}_j)$. Clearly, $S_2 = V(\mathcal{G}) - \{x, y, z\}$, where $x \in V(\mathcal{G}_i), y, z \in V(\mathcal{G}_j)$ and $yz \notin E(\mathcal{G}_j)$, is a nehd-set of G with $|S_2| < n - 2$, a contradiction. Hence the claim 2.

Case 1. G has two non-trivial components, say $\mathcal{G}_1, \mathcal{G}_2$ and the components $\mathcal{G}_i, 3 \le i \le k$ are isolates.

By claim 2, G_1 or G_2 is K_2 . Let $G_2 = K_2$. Since $\Delta(G) = 2$, it follows that G_1 is either a path on *s* vertices or a cycle on *s* vertices. Thus, $s \ge 3$.

Claim 3.*s* = 3

Suppose $s \ge 4$. Then $S_3 = V(G) - \{x, y, z\}$ where $x, y \in V(G_1)$, $xy \in E(G_1)$ and $z \in V(G_2)$. Clearly, S_3 is a nchd-set of G with $|S_3| < n - 2$, a contradiction. Thus $s \le 3$. Therefore, s = 3. Hence G_1 is either P_3 or C_3 .

If $\mathcal{G}_1 \cong P_3$, then *G* is isomorphic to $P_3 \cup K_2 \cup (n-5)K_1$. If $\mathcal{G}_1 \cong \mathcal{C}_3$, then *G* is isomorphic to $\mathcal{C}_3 \cup K_2 \cup (n-5)K_1$.

Case 2. G has exactly one non-trivial component, say \mathcal{G}_1 and the components \mathcal{G}_j , $2 \le j \le k$ are isolates.

Since $\Delta(G) = 2$, it follows that \mathcal{G}_1 is either a path on *s* vertices or a cycle on *s* vertices. Thus, $s \ge 3$.

Claim 4.*s* = 4or 5.

Since $\gamma_{nchd}(G) = n - 2$, \mathcal{G}_1 is neither a path P_3 nor a cycle \mathcal{C}_3 . Let $s \ge 6$. Let $V(\mathcal{G}_1) = \{u_1, u_2, \dots, u_s\}$. Then $S_4 = V(G) - \{u_1, u_4, u_5\}$, where $u_4u_5 \in E(\mathcal{G}_1)$, is a nchd-set of G with $|S_4| < n - 2$, a contradiction. Therefore, $4 \le s \le 5$.

Let \mathcal{G}_1 be isomorphic to P_5 . Since $\gamma_{nchd}(\mathcal{G}_1) = 2$, it follows that $\gamma_{nchd}(\mathcal{G}) = n - 3 < n - 2$, a contradiction. Hence \mathcal{G}_1 is isomorphic to P_4 , \mathcal{C}_4 or \mathcal{C}_5 .

If G_1 is isomorphic to P_4 , then *G* is isomorphic to $P_4 \cup (n-4)K_1$. If G_1 is isomorphic to C_4 , then *G* is isomorphic to $C_4 \cup (n-4)K_1$.

If G_1 is isomorphic to C_5 , then *G* is isomorphic to $C_5 \cup (n-5)K_1$. The converse is obvious.

Proposition 3.Let G be a graph with $\Delta(G) = 3$. Then $\gamma_{nchd}(G) = n - 3$ if and only if G is one of the following graphs $G_i^* = G_i \cup (n - |G_i|)K_1$, $1 \le i \le 22$, where

Proof. Let G be a graph of order n with $\Delta(G) = 3$. Let $\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_k$ be the components of G such that $\sum_{i=1}^k |\mathcal{G}_i| = |G|$.

Suppose $\gamma_{nchd}(G) = n - 3$. Since $\Delta(G) = 3$, G must have at least one non-trivial component.

Claim 1. Number of non-trivial components of G is either 1 or 2 and remaining components are isolates.

Suppose G contains three non-trivial components. Let $\mathcal{G}_1, \mathcal{G}_2$ and \mathcal{G}_3 be such components of G. Let \mathcal{G}_1 be a graph which contains the vertex u such that $\deg_{\mathcal{G}_1}(u) = \Delta = 3$ and $\chi(\langle \mathcal{G}_1 \rangle) = \chi(\mathcal{G})$. Then $S_1 = V(\mathcal{G}) - \{x, y, z, w\}$, where $x \in N(u)$, $xy \in E(\mathcal{G}_1)$, $z \in \mathcal{G}_2$ and $w \in \mathcal{G}_3$, is a ned-set of G with $|S_1| < n - 3$, a contradiction. Hence the claim 1.

Claim 2. Exactly one component of G contains a Δ -vertex v.

Suppose let us assume that u_1 and u_2 are the vertices of \mathcal{G}_1 and \mathcal{G}_2 respectively, such that $\deg_{\mathcal{G}_1}(u_1) = \Delta = \deg_{\mathcal{G}_2}(u_2)$. Without loss of generality assume that $\chi(\mathcal{G}_1) \ge \chi(\mathcal{G}_2)$. Clearly, $S_2 = V(\mathcal{G}) - \{x, y, z, w\}$, where $x \in N(u_1), y \in \mathcal{G}_1, xy \in E(\mathcal{G}_1), z \in N(u_2), w \in \mathcal{G}_2$ and $zw \in E(\mathcal{G}_2)$, is a nehd-set of G with $|\mathcal{S}_2| < n - 3$, a contradiction. Hence the claim 2.

Case 1. G has two non-trivial components, say $\mathcal{G}_1, \mathcal{G}_2$ and the components $\mathcal{G}_i, 3 \le i \le k$ contains isolate.

Let $\deg_{\mathcal{G}_1}(u_1) = \Delta = 3$. If there exists a vertex $v \in \mathcal{G}_2$ such that $\deg_{\mathcal{G}_2}(v) = 2$, then $S_3 = V(\mathcal{G}) - \{x, y, z, w\}$, where $x \in N(u_1), y \in \mathcal{G}_1, xy \in E(\mathcal{G}_1), z, w \in \mathcal{G}_2$ and $zw \notin E(\mathcal{G}_2)$, is a nedd-set of G with $|S_3| < n - 3$, a contradiction.

Hence $\mathcal{G}_2 \cong K_2$. Since $\Delta = 3$, $|\mathcal{G}_1| \ge 4$.

Claim 3. $|G_1| = 4$

Suppose assume that G_1 is a graph of order at least 5. Let u be a Δ -vertex of G_1 . Then $S_4 = V(G) - \{x, y, z, w\}$, where $x, y, z \in G_1$, $w \in G_2$ and $\langle x, y, z \rangle \geq \mathcal{Z}$ and P_3 , is a nehd-set of G with $|S_4| < n - 3$, a contradiction. Hence the claim 3.

Since $\Delta = 3$ and $|\mathcal{G}_1| = 4$, \mathcal{G}_1 is isomorphic to one of the graphs given below:

 $H_{\mathcal{G}_1} \stackrel{i}{\rightharpoonup} H_1$, then *G* is isomorphic to G_1^* . If $\mathcal{G}_1 \cong H_2$, $\dots \subseteq \mathcal{G}$ is isomorphic to G_3^* . $\dots \subseteq \mathcal{G}_1 \stackrel{i}{\rightharpoonup} H_3$, then *G* is isomorphic to G_{11}^* . If $\mathcal{G}_1 \cong H_4$, then *G* is isomorphic to G_2^* .

Case 2. *G* has exactly one non-trivial component, say \mathcal{G}_1 and the components \mathcal{G}_i , $2 \le i \le k$ are isolates. Let u be a Δ -vertex in \mathcal{G}_1 . Since $\gamma_{nchd}(\mathcal{G}) = n - 3$ and $\gamma_{nchd}(\mathcal{G}_1) \ge 2$, it follows that $|\mathcal{G}_1| \ge 5$.

Claim 4.5 $\leq |\mathcal{G}_1| \leq 6$.

Suppose assume that \mathcal{G}_1 is a graph of order at least 7. Then $S_5 = V(G) - \{x, y, z, w\}$, where $x, y \in N(u), z, w \notin N[u]$ and $zw \notin E(\mathcal{G}_1)$, is a nehd-set of *G* with $|S_5| < n - 3$, a contradiction. Hence the claim 4.

Let *A* be the set of all pendent vertices in \mathcal{G}_1 .

Case 3. $|G_1| = 5$.

Then A has at most three pendent vertices.

Subcase 3(a).|A| = 3

Let $x, y, z \in A$. Then there exist non-pendent vertices $u_1, u_2 \in \mathcal{G}_1$ such that $\langle \{u_1, u_2\} \rangle$ is connected. By the hypothesis, either u_1 or u_2 is a Δ -vertex. Then the graph \mathcal{G}_1 is isomorphic to \mathcal{G}_{21} . Hence \mathcal{G} is isomorphic to \mathcal{G}_{21}^* .

Subcase 3(b).|A| = 2.

Let $x, y \in A$. Then there exist non-pendent vertices $u_1, u_2, u_3 \in G_1$ such that $\langle \{u_1, u_2, u_3\} \rangle$ is connected.

Let $\langle \{u_1, u_2, u_3\} \rangle \cong P_3$. Since $u_1, u_3 \notin A$, $xu_1 \in E(\mathcal{G}_1)$ and $yu_3 \in E(\mathcal{G}_1)$, a contradiction to the hypothesis $\Delta = 3$. Hence $\langle \{u_1, u_2, u_3\} \rangle \cong C_3$. Since $\Delta = 3$, x and y adjacent to u_i and u_j , respectively, $i \neq j$, for $1 \leq i, j \leq 3$. Therefore G is isomorphic to G_8^* .

Subcase 3(c).|A| = 1

Let $x \in A$. Then there exist non-pendent vertices $u_1, u_2, u_3, u_4 \in G_1$ such that $\langle \{u_1, u_2, u_3, u_4\} \rangle$ is connected. If girth of G_1 is 3, then $\langle \{u_1, u_2, u_3, u_4\} \rangle$ is isomorphic to one of the graphs given below:

 H_5 H_6 For H_5 , as $\Delta = 3$, $xu_i \in \Box_{S1}$, for some *i* where $d_{\Box_{IS}} \downarrow_i = 2$. Then the graph *G* is isomorphic to G_{14}^* . For H_6 , as u_i 's are non-pendent, $xu_i \in E(G_1)$ where $\deg_{H_6}(u_i) = 1$. Then the graph *G* is isomorphic to G_{12}^* . If girth of G_1 is 4, then $\langle \{u_1, u_2, u_3, u_4\} \rangle$ is isomorphic to the graph given below:

For this graph, $xu_i \in E(\mathcal{G}_1)$ for some *i*, as $\Delta = 3$. Then the graph *G* is isomorphic to G_{20}^* .

Subcase 3(d).|A| = 0

As $\Delta = 3$, \mathcal{G}_1 is not isomorphic to \mathcal{C}_5 . Thus the graph \mathcal{G}_1 is isomorphic to one of the graphs given below:

Case 4. $|G_1| = 6$

Then A has at most three pendent vertices.

Subcase 4(a).|A| = 3

Let $x, y, z \in A$. Then there exist non-pendent vertices $v_1, v_2, v_3 \in G_1$ such that $\langle v_1, v_2, v_3 \rangle >$ is connected. Let $\langle v_1, v_2, v_3 \rangle \geq P_3$. Since v_i 's are non-pendent, the graph G_1 is isomorphic to one of the graphs given below:

Hence *G* is isomorphic to G_3^* or G_{22}^* . Let $\langle v_1, v_2, v_3 \rangle \geq C_3$. Since $\Delta = 3$, the graph *G* is isomorphic to G_4^* .

Subcase 4(b).|A| = 2.

Let $x, y \in A$. Then there exist non-pendent vertices $v_1, v_2, v_3, v_4 \in G_1$ such that $\langle v_1, v_2, v_3, v_4 \rangle >$ is connected.

Let $\langle v_1, v_2, v_3, v_4 \rangle \geq P_4$. Since $v_1, v_4 \notin A$, $xv_1 \in E(\mathcal{G}_1)$ and $yv_4 \in E(\mathcal{G}_1)$, a contradiction to the hypothesis $\Delta = 3$. Since \mathcal{G}_1 is connected, $\langle v_1, v_2, v_3, v_4 \rangle \geq K_4$. But the graph $\langle v_1, v_2, v_3, v_4 \rangle \geq is$ isomorphic to one of the graphs given below:

For graph H_{13} , x and y must be adjacent v_i and v_j respectively $w_{11} \neq j$ and $\deg_{H_{13}}(v_i) = 2 = \deg_{H_{13}}(v_j)$. Thus the graph G is isomorphic to G_{10}^* .

For graph H_{14} , if x and y are adjacent to v_i and v_{i+1} , then $\gamma_{nchd}(G) \neq n-3$, a contradiction. Hence the graph G is isomorphic to G_9^* .

For graph H_{15} , as v_i 's are non-pendent, if xv_4 , $yv_4 \in E(\mathcal{G}_1)$, then $\gamma_{nchd}(G) \neq n-3$, a contradiction. Hence the graph G is isomorphic to G_7^* .

Subcase 4(c).|A| = 1

Let $x \in A$. Then there exist non-pendent vertices $v_1, v_2, v_3, v_4, v_5 \in G_1$ such that $\langle v_1, v_2, v_3, v_4, v_5 \rangle$ is connected.

If the graph $\langle v_1, v_2, v_3, v_4, v_5 \rangle$ is isomorphic to one of the graphs given below:

then $xv_5 \in \bigcup_{n \in H_{16}} H_{16}$ H_{17} where $\deg_{H_{16}}(v_5) = 1 = \deg_{H_{17}}(v_5)$, since $\sum_{n \in H_{17}} H_{17}$ is that $\gamma_{nchd}(G) \neq n-3$, a contradiction.

Thus $\langle v_1, v_2, v_3, v_4, v_5 \rangle$ is isomorphic to one of the graphs given below:

For graph H_{20} , x must be adjacent to the vertex v_i for some *i* where deg_{H_{20}(v_i) = 2. This implies $\gamma_{nchd}(G) < n-3$, a contradiction. Hence the graph G is isomorphic to G_{18}^* , G_{17}^* or G_{13}^* .

Suppose that the graph \mathcal{G}_1 is isomorphic to one of the graphs given below:

For H_{22} graphs, $\gamma_{nchd}(G) \neq H_{23}$ a contradiction. Thu H_{24} aph G is isomorphic H_{25} . The converse is obvious.

Proposition 4. Let *G* be a graph with $\Delta(G) = n - 2$. Then $\gamma_{nchd}(G) + \Delta(G) = n$ if and only if *G* is connected.

Proof. Let *G* be a graph with $\gamma_{nchd}(G) = 2$ and $\Delta(G) = n - 2$. Suppose that *G* is disconnected. Let $\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_k$ be the components of *G*, $k \ge 2$. Since $\Delta(G) = n - 2$, there exist two components of *G* such that \mathcal{G}_1 contains Δ -vertex, say *u*, and \mathcal{G}_2 contains an isolate, say *v*.

Clearly, $D = \{u, x, v\}$ is a γ_{nchd} -set of G, as G_1 has the vertex of degree $|G_1| - 1$. Therefore $\gamma_{nchd}(G) = |D| = 3$, a contradiction. Hence G is connected.

Subcase 4(d).|A| = 0

Conversely, suppose that *G* is connected and $\Delta(G) = n - 2$. Let *u* be a Δ -vertex. Then there exists a vertex $v \in G$ such that $v \notin N[u]$. Since *G* is connected, $vx \in E(G)$ where $x \in N(u)$. Then $\{u, x\}$ is a ned-set of *G*. Thus $\gamma_{nchd}(G) \leq 2$. But $\gamma_{nchd}(G) \geq 2$. Hence $\gamma_{nchd}(G) = 2$.

Proposition 5. Let G be a graph with $\Delta(G) = n - 3$. Then $\gamma_{nchd}(G) + \Delta(G) = n - 1$ if and only if G is connected such that one of the following conditions hold:

Let *u* be a Δ -vertex and $v, w \notin N[u]$.

(i).Let $N(v) \cap N(w) \neq \phi$. Then every vertex $v_i \in N(v) \cap N(w)$ is adjacent to at most |N(u)| - 2 vertices excluding v and w.

(ii).Let $N(v) \cap N(w) = \phi$.

(a). Let $vw \notin E(G)$ and let $N(u) - [N[v] \cup N[w]] = \phi$. Then $2 \le |N(v)| \le n - 5$ and $2 \le |N(w)| \le n - 5$. If $u_t u_k \in E(G)$ where $u_t \in N(v)$ and $u_k \in N(w)$, then either $u_t v_s \in E(G)$ and $u_k w_s \in E(G)$ for every $v_s \in N(v) - \{u_t\}$ and $w_s \in N(w) - \{u_k\}$, or, exactly one vertex, say $v_j \ne u_t \in N(v)$, and exactly one vertex, say $w_j \ne u_k \in N(w)$, which is adjacent with every other vertex of N(v) and N(w), respectively.

If $N(u) - [N[v] \cup N[w]] \neq \phi$ and if $v_i w_j \notin E(G)$ for every $v_i \in N(v)$ and $w_j \in N(w)$, then |N(u)| = 4, |N(v)| = 2, |N(w)| = 1 and < N(v) > is non-independent set. Also $u_i \in N(u) - [N[v] \cup N[w]]$ is adjacent with exactly one vertex of N(v) and N(w).

If $v_i w_j \in E(G)$ for some $v_i \in N(v)$ and some $w_j \in N(w)$, then $v_i v_k \in E(G)$ and $w_j w_k \in E(G)$ for every $v_k \in N(v)$ and $w_k \in N(w)$. Also u_i is adjacent with v_i or w_j .

(b). Let $vw \in E(G)$ and let $N(u) - [N[v] \cup N[w]] = \phi$. Then $2 \le |N(v)| \le n - 5$ and $2 \le |N(w)| \le n - 5$. Also < N(u) > is a non-independent set.

If $u_i u_j \notin E(G)$ for every $u_i \in N(v)$ and $u_j \in N(w)$, then $\chi(\langle N[u] \rangle) = \chi(G)$.

If $u_i u_j \in E(G)$ for some $u_i \in N(v)$ and $u_j \in N(w)$ and

if $\chi(\langle N[u] \rangle) = \chi(G)$, then |N(u)| = 2 or $|N(u)| \ge 5$.

If $\chi(\langle N[u] \rangle) \langle \chi(G)$, then $u_i v_k \in E(G)$ and $u_j w_k \in E(G)$ for every $v_k \in N(v) - \{u_i\}$ and $w_k \in N(w) - \{u_i\}$.

If $N(u) - [N[v] \cup N[w]] \neq \phi$, then either $|N(v)| \ge 1$ or $|N(w)| \ge 1$ or both.

If $u_i u_j \in E(G)$ where $u_i \in N(v)$ and $u_j \in N(w)$, then $u_i v_k \in E(G)$ and $u_j w_k \in E(G)$ for every $v_k \in N(v) - \{u_i\}$ and $w_k \in N(w) - \{u_j\}$. Also either $u_i x_j \in E(G)$ or $u_j x_j \in E(G)$ or both where $x_i \in N(u) - [N[v] \cup N[w]]$.

Proof.Let *G* be a graph with $\Delta(G) = n - 3$ and $\gamma_{nchd}(G) = 2$. Following the argument in Proposition 4,*G* is connected. Let *u* be a Δ -vertex. Since $\Delta(G) = n - 3$, there exist two vertices $v, w \in G$ such that $v, w \notin N[u]$.

Case 1.N(v) \cap N(w) $\neq \phi$

Let $N(v) \cap N(w) = \{v_1, v_2, ..., v_k\}$ where $v_i \in N(u), 1 \le i \le k$. Since $\Delta(G) = n - 3$, every vertex $v_i \in N(v) \cap N(w)$ is adjacent to at most |N(u)| - 2 vertices excluding v and w.

Case 2. $N(v) \cap N(w) = \phi$

Subcase 2(a). $vw \notin E(G)$

As G is connected, $|N(v)| \ge 1$ and $|N(w)| \ge 1$.

Subcase 2(a)(i). $N(u) - [N[v] \cup N[w]] = \phi$

Let |N(w)| = 1 and |N(v)| = n - 4. Then $N(w) = \{v_1\}$. If v_1 is adjacent to any of the vertices in N(u) and $\chi(< N[u] - \{v_1\} >) < \chi(G)$, then $\{v_1, v\}$ is the only γ -set of G. But $\chi(< N(\{v, v_1\}) >) < \chi(G)$.

Let $N(v) = \{u_1, u_2, \dots, u_s\}$ and $N(w) = \{u_{s+1}, u_{s+2}, \dots, u_{n-3}\}$ where $2 \le s \le n-5$.

If N(v) does not contain a full degree vertex or N(w) does not contain a full degree vertex, then $D = \{u, v, w\}$ is a γ -set of G. For this graph, $\gamma_{nchd}(G) \neq 2$, a contradiction.

Therefore, there exists a vertex of N(v), say u_1 , which is adjacent to every other vertex of N(v) and there exists a vertex of N(w), say u_{s+1} , which is adjacent to every other vertex of N(w).

Suppose that no vertex of N(v) is adjacent with any vertex of N(w). Since $uv \notin E(G)$, $uw \notin E(G)$ and $vw \notin E(G)$, it follows that $D_1 = \{u_1, u_{s+1}\}$ is a γ -set of G. But $\chi(\langle N(D_1) \rangle) \langle \chi(G)$. Thus $\gamma_{nchd}(G) \neq 2$, a contradiction.

Hence there exists a vertex in N(v), say u_t , which is adjacent with some vertex of N(w), say u_k , where $t \le s$ and $k \ge s + 1$.

Suppose that u_t is not adjacent with every other vertex of N(v), or, u_k is not adjacent with every other vertex of N(w). Note that $u_t u_k \in E(G)$.

Suppose that u_1 is the only vertex of N(v) which is adjacent with every other vertex of N(v) and u_{s+1} is the only vertex of N(w) which is adjacent with every other vertex of N(w). Then there is nothing to prove, as $\{u_1, u_{s+1}\}$ is a γ_{nchd} -set of G.

Suppose that either N(v) has at least two vertices but not every vertex which is adjacent with every other vertex of N(v), or, N(w) has at least two vertices but not every vertex which is adjacent with every other vertex of N(w). Then $D_2 = \{u_1, u_{s+1}\}$ is a γ -set of G. Since u_t and u_k are not a full degree vertex of N(v) and N(w), respectively, it follows that $\chi(\langle N(D_2) \rangle) \langle \chi(G)$. Therefore $\gamma_{nchd}(G) \neq 2$, a contradiction.

Hence for this case, $u_t \in N(v)$ must be adjacent with every other vertex of N(v) and $u_k \in N(w)$ must be adjacent with every other vertex of N(w).

Subcase 2(a)(ii). $N(u) - [N[v] \cup N[w]] \neq \phi$

Then there exists a vertex $u_i \in N(u)$ such that $u_i \notin N[v]$ and $u_i \notin N[w]$ for some *i*. Note that |N(u)| = n - 3. Also *v* is adjacent to at least one point *x* of N(u) and *w* is adjacent to at least one point yof N(u), where $x \neq y$. Therefore, $|N(u) - [N[v] \cup N[w]]| \le n - 5$. Let $N(v) = \{u_1, u_2, ..., u_k\}$ and $N(w) = \{u_{k+1}, u_{k+2}, ..., u_t\}$ where $1 \le k \le t < n - 4$. Let $N(u) - [N[v] \cup N[w]] = \{u_{t+1}, u_{t+2}, ..., u_{n-5}\}$.

Subsubcase 2(a)(ii)(a). $v_i w_i \notin E(G)$ for every $v_i \in N(v)$ and $w_i \in N(w)$

Suppose that |N(u)| = 3. Then |N(v)| = 1 and |N(w)| = 1. Clearly $\gamma_{nchd}(G) \neq 2$, a contradiction.

Suppose that $|N(u)| \ge 5$. Then $u_i \in N(u) - [N[v] \cup N[w]]$ is adjacent with exactly one vertices of N(v), say v_t , and one vertex of N(w), say w_t . Also $v_t v_k \in E(G)$ and $w_t w_k \in E(G)$ for every $v_k \in N(v)$ and $w_k \in N(w)$. Otherwise there always exists a γ -set of cardinality greater than or equal to 3. Now let $D_3 = \{v_t, w_t\}$ be the γ -set of G. Since v and w receives the color of $u, \chi(< N[u] >) = \chi(G)$. Therefore $G - \{v_t\}$ or $G - \{w_t\}$ has the chromatic number less than the chromatic number of G. Since $v_t w_t \notin E(G)$, D_3 is not a nedd-set of cardinality 2, a contradiction. Therefore |N(u)| = 4.

Let |N(u)| = 4. Then either |N(v)| = 1 and |N(w)| = 1, or, |N(v)| = 2 and |N(w)| = 1.

Suppose that |N(v)| = 1 and |N(w)| = 1. Then $\gamma_{nchd}(G) \neq 2$, a contradiction.

Let |N(v)| = 2 and |N(w)| = 1. Suppose that $\langle N(v) \rangle$ is an independent set.

If $u_i \in N(u) - [N[v] \cup N[w]]$ is adjacent with every vertices of N(v) and N(w), then again $\gamma_{nchd}(G) \neq 2$, a contradiction. If $u_i \in N(u) - [N[v] \cup N[w]]$ is not adjacent with any of the vertices of N(v) or N(w) or both, then again $\gamma_{nchd}(G) \neq 2$, a contradiction. Therefore $\langle N(v) \rangle$ is a non-independent set.

Now, suppose that $u_i \in N(u) - [N[v] \cup N[w]]$ is adjacent with every vertex of N(v) and N(w). Then $D_4 = \{v_i, w_j\}$ is the only γ -set of G. It is easy to verify that $\chi(\langle N(D_4) \rangle) \langle \chi(G) \rangle$ and hence $\gamma_{nchd}(G) \neq 2$, a contradiction. Therefore $u_i \in N(u) - [N[v] \cup N[w]]$ is adjacent with exactly one vertex of N(v) and exactly one vertex of N(w).

Subsubcase 2(a)(ii)(b). $v_i w_i \in E(G)$ for some $v_i \in N(v)$ and $w_i \in N(w)$

Then $2 \le |N(v)| \le n - 6$ and $2 \le |N(w)| \le n - 6$.

Suppose that $v_i v_k \notin E(G)$ and $w_j w_k \notin E(G)$ for some $v_k \in N(v)$ and $w_k \in N(w)$. Then clearly $D_5 = \{u, v_i, w_j\}$ is a γ -set of G. Therefore $\gamma_{nchd}(G) \ge 3$, a contradiction. Therefore, $v_i v_k \in E(G)$ and $w_j w_k \in E(G)$ for every $v_k \in N(v) - \{v_i\}$ and $w_k \in N(w) - \{w_i\}$.

If $u_i \in N(u) - [N[v] \cup N[w]]$ is not adjacent with v_i and w_j , where $v_i \in N(v)$ and $w_j \in N(w)$, then $\gamma_{nchd}(G) \ge 3$, a contradiction. Therefore $u_i \in N(u) - [N[v] \cup N[w]]$ is adjacent with $v_i \in N(v)$ or $w_j \in N(w)$.

Subcase $2(b).vw \in E(G)$

As *G* is connected and $vw \in E(G)$, either $|N(v)| \ge 2$ or $|N(w)| \ge 2$.

Subcase 2(b)(i). $N(u) - [N[v] \cup N[w]] = \phi$

If |N(w)| = 1 and |N(v)| = n - 4, as in subcase 2(a)(i), either v_1 is not adjacent to any of the vertices in N(u) or $\chi(\langle N[u] - \{v_1\} \rangle) = \chi(G)$.

Let $N(v) = \{u_1, u_2, \dots, u_s\}$ and $N(w) = \{u_{s+1}, u_{s+2}, \dots, u_{n-3}\}$ where $2 \le s \le n-5$.

Suppose that $\langle N(u) \rangle$ is independent. Since $vw \in E(G)$, it follows that C_5 as an induced subgraph and triangle free. Therefore $\gamma_{nchd}(G) \geq 3 \neq 2$. Hence $\langle N(u) \rangle$ is a non-independent set.

Subsubcase 2(b)(i)(a). $u_i u_i \notin E(G)$ for every $u_i \in N(v)$ and $u_i \in N(w)$

Suppose that $\chi(\langle N[u] \rangle) \langle \chi(G)$. Then *v* or *w* must receive different color from *u*. Thus $G - \{v\}$ or $G - \{w\}$ or $G - \{v, w\}$ have a chromatic number less than the chromatic number of *G*. Clearly, $D_6 = \{u, v\}$ or $D_7 = \{u, w\}$ or $D_8 = \{x, y\}$ are the only γ -sets of *G*, where $x \in N(v)$ and $y \in N(w)$. But D_6 and D_7 are independent sets of *G*. Since $xy \notin E(G)$, D_8 is also an independent set of *G*. Thus $\langle N(D_6) \rangle$ has $G - \{u, v\}$ as an induced subgraph and $\langle N(D_7) \rangle$ has $G - \{u, w\}$ as an induced subgraph. Therefore D_6 and D_7 are not a nchd-set of *G*.

Suppose that *G* is a triangle free. Since $\gamma_{nchd}(G) = 2$ and by Theorem 1, $\chi(G) = 2$. But this is not possible, since $\chi(\langle N[u] \rangle) \ge 2$. Therefore *G* contains a triangle.

Suppose that $\chi(\langle N[v] \rangle) \langle \chi(\langle N[w] \rangle)$. Then *v* may receive some of the color from N(w) and *w* may receives the color of *u*. Thus $\chi(\langle N[u] \rangle) = \chi(G)$, a contradiction. Therefore $\chi(\langle N[v] \rangle) = \chi(\langle N[w] \rangle)$.

Without loss of generality, assume that x and y receive the unique color. Then $\langle N(D_8) \rangle$ has $G - \{x, y\}$ as an induced subgraph and hence $\chi(\langle N(D_8) \rangle) \langle \chi(G) \rangle$. Therefore no dominating set of cardinality two is a nchd-set of G and hence $\gamma_{nchd}(G) > 2$, a contradiction. Therefore $\chi(\langle N[u] \rangle) = \chi(G)$.

Subsubcase 2(b)(i)(b). $u_i u_i \in E(G)$ for some $u_i \in N(v)$ and some $u_i \in N(w)$.

Let $\chi(\langle N[u] \rangle) = \chi(G)$. Suppose that |N(u)| = 3 or 4 and both $\langle N(v) \rangle$ and $\langle N(w) \rangle$ are independent. Then clearly, $\gamma_{nchd}(G) \neq 2$, a contradiction. Therefore $|N(u)| = 2 \text{ or } |N(u)| \ge 5$.

Let $\chi(\langle N[u] \rangle) \langle \chi(G)$. Then v or w must receive different color from u. Thus $G - \{v\}$ or $G - \{w\}$ or $G - \{v, w\}$ have a chromatic number less than the chromatic number of G. Suppose that $u_i v_k \notin E(G)$ or $u_j w_k \notin E(G)$ for every $v_k \in N(v) - \{u_i\}$ and $w_k \in N(w) - \{u_j\}$. Then clearly $D_9 = \{u, v\}$ or $D_{10} = \{u, w\}$ or $D_{11} = \{x, y\}$ are the γ -sets of G, where $x \in N(v)$ and $y \in N(w)$. Then this proof is analogous to the proof of Subsubcase 2(b)(i)(a). Therefore $\gamma_{nchd}(G) \neq 2$, a contradiction. Therefore $u_i v_k \in E(G)$ and $u_j w_k \in E(G)$ for every $v_k \in N(v) - \{u_i\}$ and $w_k \in N(w) - \{u_j\}$.

Subcase 2(b)(ii). $N(u) - [N[v] \cup N[w]] \neq \phi$

This is analogous to the proof of subcase 2(b)(i).

Let $u_i u_j \in E(G)$ where $u_i \in N(v)$ and $u_j \in N(w)$. Suppose that u_i and u_j are not a full degree vertex of N(v) and N(w), respectively. Then $\gamma_{nchd}(G) \neq 2$, a contradiction. Therefore u_i and u_j must be a full degree vertex of N(v) and N(w), respectively.

Suppose that u_i and u_j are not adjacent with the vertices of $N(u) - [N[v] \cup N[w]]$. Then $\{u, u_i, u_j\}$ is a γ -set of G and hence $\gamma_{nchd}(G) \neq 2$, a contradiction. Therefore u_i or u_j is adjacent with every other vertex of $N(u) - [N[v] \cup N[w]]$.

The converse is obvious.

REFERENCES

- S. Balamurgan, P. Aristotle, V. Swaminathan and G. Prabakaran, On Graphs whose Neighbourhood Chromatic Domination Number is two, Proceedings of the National Conference on Recent Developments on Emerging Fields in Pure and Applied Mathematics, ISBN No. 978-93-83209-02-6, Vol. 1, pp. 88 – 99, India 2015.
- [2] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc.. New York, 1998.
- [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, Inc. 1998.