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Abstract—Equations connecting two parameters of a graph have already been studied. For example,y(G) +
x(G@) =norn—1or A(G) + x(G) =norn—1. A subset S of G is called a neighbourhood chromatic
dominating set if S is a dominating set and y(< N(S) >) = x(G). The minimum cardinality of a
neighbourhood chromatic dominating set of G is called the neighbourhood chromatic domination number of G
and is denoted by ¥,,.nqa (G). In this paper, graph equation ¥,.xq(G) + A(G) = n is solved for A(G) = 1 or 2
or 3 or n — 2. Further ¥,,.pq4(G) + A(G) = n — 1 is solved for A(G) = n — 3.
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I. INTRODUCTION

Let G = (V, E) be a simple, finite and undirected graph. Throughout this paper G # K,, and order of G
is at least 2. A dominating set D of V(G) is called a neighbourhood chromatic dominating set if y(<
N(D) >) = x(G). The minimum cardinality of a neighbourhood chromatic dominating set of G is called the
neighbourhood chromatic domination number of G and is denoted by y,,.44(G). Vnerq (G) = nif and only if
G = K, U (n—2)K;. Therefore y,.,4(G) + A(G) = n+ 1 can be solved with A(G) = 1. The same equation
can be solved with A(G) = 2. The solution is C; U (n — 3)K; or P; U (n — 3)K;. We consider the equations in
which y,,.,4(G) + A(G) = n when A(G) = 1 or 2 or 3 or n — 2 and characterize the graphs satisfying the above
equation. Further the equation y,,.,4(G) + A(G) = n — 1 is solved for A(G) =n — 3.

For further notations and terminology refer to [[2], [3]].

Il. PRIORRESULTS

Definition 1. [1] A subset D of V' is said to be a neighbourhood chromatic dominating set (nchd-set) if D is a
dominating set and y(< N(D) >) = x(G). The minimum cardinality of a neighbourhood chromatic dominating
set of a graph G is called the neighbourhood chromatic domination number (nchd-number) of G and it is
denoted by y,,. 14 (G).

Theorem 1. [1] Let G be a triangle free graph. Ify,.,4 (G) = 2, then x(G) = 2.
111.GRAPHS EQUATION WITH RESPECT TO A(G)
Proposition 1.Let G be a graph with A(G) = 1. Then y,.,4(G) =n — 1 ifand only if G = 2K, U (n — 4)K;.

Proof. Let G be a graph of order n with A(G) = 1. Let G;,G,, ..., G, be the components of G such that
k_1G;| = |G|. Suppose ¥,epq (G) = n — 1. Since A(G) = 1, G must have at least one non-trivial component.
Claim 1. G has at least two non-trivial components.
Suppose G has exactly one non-trivial component. Then y,,.,4(G) = n, a contradiction. Hence the
claim 1.

Claim 2. Number of non-trivial components of G is 2 and remaining components are isolate.

Suppose G contains three non-trivial components. Since A(G) = 1, the non-trivial components are K,.
Then S = V(G) — {y, z} is a nchd-set of G, where y € V(G;) and z € V(G;) with |S| <n — 2, a contradiction.
Hence G contains only two non-trivial components and the remaining vertices are isolates.
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Therefore, G is isomorphic to 2K, U (n — 4)K;. The converse is obvious.

Proposition 2. Let G be a graph with A(G) =2. Then y,,.,q(G) =n—2 if and only if G =P; UK, U

Proof. Let G be a graph of order n with A(G) = 2. Let G;,G,, ..., G, be the components of G such that
Yk 1G;] = |G]. Suppose ¥, pq (G) = n — 2. Since A(G) = 2, G must have at least one non-trivial component.

Claim 1. Number of non-trivial components of G is either 1 or 2 and remaining components are isolates.

Suppose G contains three non-trivial components. Let G; be a graph which contains the vertex u such
that degg (u) = A = 2and x(< G; >) = x(G). Clearly, S; = V(G) — {x,y,z}, where x € G;, y € G; and z € G;,
is a nchd-set of G with |S;| <n—2, a contradiction. Hence G contains either one or two non-trivial
components.

Claim 2. Exactly one component of G contains a A-vertex v.
Suppose let us assume that u; and u, are the vertices of G; and G; respectively, such that degg, (u;) =

A = degg, (up). Without loss of generality assume that x(G,) > x(G,). Clearly, S, = V(G) — {x,y, z}, where
x €V(G),y,z€V(G)andyz & E(G;), is anchd-set of G with |S,| <n — 2, a contradiction. Hence the claim
2.

Case 1.G has two non-trivial components, say G;, G, and the components G;, 3 < i < k are isolates.
By claim 2, G, or G, is K,. Let G, = K,. Since A(G) = 2, it follows that G, is either a path ons
vertices or a cycle on s vertices. Thus, s = 3.

Claim3.s =3

Suppose s = 4. Then S3 = V(G) — {x,y,z}where x,y € V(G;), xy € E(G;) and z € V(G,). Clearly,
S5 is a nchd-set of G with |S;| < n — 2, a contradiction. Thus s < 3. Therefore, s = 3. Hence G; is either P; or
Cs.

If G, = P, then G is isomorphicto P; U K, U (n — 5)K;.

If G, = Cs, then G is isomorphicto C; U K, U (n — 5)K;.

Case 2. G has exactly one non-trivial component, say G; and the components G;, 2 < j < k are isolates.
Since A(G) = 2, it follows that G; is either a path on s vertices or a cycle on s vertices. Thus, s > 3.

Claim 4.s = 4or 5.

Since ¥4 (G) = n — 2, G, is neither a path P; nor a cycle C5. Lets > 6. Let V(G,) = {uy, uy, ..., ug}.
Then S, = V(G) — {uy, us, us}, where u,us € E(G;), is a nchd-set of G with |S,| < n —2, a contradiction.
Therefore, 4 < s < 5.

Let G; be isomorphic to Ps. Since y,.,4(G;) = 2, it follows that y,.,4(G) =n—-3<n-2, a
contradiction. Hence G, is isomorphic toP,, C, or Cs.
If G, is isomorphic to P,, then G is isomorphicto P, U (n — 4)K;.
If G, is isomorphic to C,, then G is isomorphic to C, U (n — 4)K;.
If G, is isomorphic to Cs, then G is isomorphic to Cs U (n — 5)K;.
The converse is obvious.
Proposition 3.Let G be a graph with A(G) = 3. Then y,.,,4(G) = n — 3 if and only if G is one of the following
graphs G; = G; U (n — |G;)K;, 1 < i < 22, where

Gl:K4UK2; GZ:K1‘3UK2;
Gg:P?,OKl; G4:K30K1;
GS:(P3 +K1)UK2, GG:K2,3
& A e I I o k I o
G7 GR Gq G1ﬂ
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ATA AT

Gi1 Gz Gi3 G4

Gis Gie Gy7 Gig
G1o G2o G21 G2
Proof. Let G be a graph of order nwith A(G) = 3. Let G;,G,, ...,G, be the components of G such that

Z{‘(=1|gi| = |G|-

Suppose ¥,,.nq (G) = n — 3. Since A(G) = 3, G must have at least one non-trivial component.

Claim 1. Number of non-trivial components of G is either 1 or 2 and remaining components are isolates.

Suppose G contains three non-trivial components. Let G;, G, and G5 be such components of G. Let G,
be a graph which contains the vertex u such that degg, (w) = A = 3and y(< G; >) = x(G). Thens; =V(G) —
{x,y,z,w}, where x € N(u), xy € E(G,), Zz€ G, and w € G5, is a nchd-set of G with |S;|]<n—-3, a
contradiction. Hence the claim 1.

Claim 2. Exactly one component of G contains a A-vertex v.

Suppose let us assume that u, and u; are the vertices of G; and G, respectively, such that degg, (u;) =
A = degg, (uy). Without loss of generality assume that x(G;) = x(G;). Clearly, S, =V(G) — {x,y,z,w},
where x € N(w,), ¥y € G;, xy € E(G,),z € N(uy), w € G, and zw € E(G,), is a nchd-set of G with |S,| <n —
3, a contradiction. Hence the claim 2.

Case 1. G has two non-trivial components, say G;, G, and the components G;, 3 < i < kcontains isolate.

Let degg, (u;) = A= 3. If there exists a vertex v € G, such that degg, (v) = 2, then S; = V(G) —
{x,v,z,w}, wherex € N(u;),y € G;, xy € E(G,), z,w € G, and zw & E(G,), is a nchd-set of G with |S;| <
n — 3, a contradiction.

Hence G, = K,. Since A = 3, |G, | = 4.
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Claim 3.|G;| = 4

Suppose assume that G, is a graph of order at least 5. Let u be a A-vertex of G;. Then S, = V(G) —
{x,y,z,w}, where x,y,z € G;,w € G, and < {x,y,z} >% C; and P;, is a nchd-set of G with |S,| <n -3, a
contradiction. Hence the claim 3.

Since A = 3and |G; | = 4, G, is isomorphic to one of the graphs given below:

Hy H, Hj H,
vy = Hy, then G is isOMuipiue 10 Gy. 1T Gy = Hy, w... G iS iSomorphic to G3. .. 5, = H;, then G is
isomorphic to G{;. If G; = H,, then G is isomorphic to G;.

Case 2.Ghas exactly one non-trivial component, say G; and the components G;, 2 < i < k are isolates.
Let u be a A-vertex in G;. Since y,,.1,4(G) = n — 3and y,,.,4(G1) = 2, it follows that |G, | = 5.

Claim4.5 < |G| < 6.
Suppose assume that G, is a graph of order at least 7. Then S5 = V(G) — {x, vy, z,w}, where x,y €
N(u), z,w ¢ N[u] and zw & E(G,), is a nchd-set of G with |Ss| < n — 3, a contradiction. Hence the claim 4.
Let A be the set of all pendent vertices in G;.

Case 3.|G;| = 5.
Then A has at most three pendent vertices.

Subcase 3(a).|A| =3

Let x,y,z € A. Then there exist non-pendent vertices u;, u, € G; such that < {u;,u,} > is connected.
By the hypothesis, either u; or u, is a A-vertex. Then the graph G, is isomorphic to G,;. Hence G is isomorphic
to Gy .

Subcase 3(b).|A4| = 2.

Let x,y € A. Then there exist non-pendent vertices u;,u,,u; € G; such that < {uq,u,,uz} > is
connected.

Let < {uy,uy,uz} >= P;. Since u;,uz € A, xu; € E(G;) and yu; € E(G;), a contradiction to the
hypothesis A = 3. Hence < {u;,u,,u3;} >= C;. Since A = 3, x and y adjacent to u; and u;, respectively, i # j,
for 1 <1i,j < 3. Therefore G is isomorphic to Gg.

Subcase 3(c).|4| = 1
Let x € A. Then there exist non-pendent vertices uy, u,, us, uy € G; such that < {uy,u,, us, us} > is
connected. If girth of G, is 3, then < {uy,u,, us,u,} > is isomorphic to one of the graphs given below:

D

6 L .
For Hs, as A = 3, xu; € ..\y;, for some i where ¢ _ 1) = 2. Then the graph G is isomorphic to
Giy. For Hg, as u;’s are non-pendent, xu; € E(G;) where degy, (u;) = 1. Then the graph G is isomorphic to G, .
If girth of G, is 4, then < {uy,u,, us,u,} > is isomorphic to the graph given below:

H-
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For this graph, xu; € E(G;) for some i, as A = 3. Then the graph G is isomorphic to G5, .

Subcase 3(d).|[A| = 0
As A = 3, G; isnot isomorphic to Cs. Thus the graph G, is isomorphic to one of the graphs given below:

A

Hence G norphic to G, G{ ?

Case 4.|G;| =6
Then A has at most three pendent vertices.

Subcase 4(a).|A| = 3

Let x,y,z € A. Then there exist non-pendent vertices vy, v,,v; € G; such that < {vy,v,,v3}> is
connected. Let < {v;,v,,v3} >= P;. Since v;’s are non-pendent, the graph G; is isomorphic to one of the
graphs given below:

Hi Hy,
Hence G is iSGiiuipiuc to G3or Gy, .
Let < {v;,v,,v3} >= (5. Since A = 3, the graph G is isomorphic to G;.

Subcase 4(b).|A| = 2.
Let x,y € A. Then there exist non-pendent vertices v;, v,, v3, v, € G; such that < {v;,v,,v3,v,} > iS
connected.

Let < {v1,v,,v3,1,} >= P,. Since vy, v, € A, xv; € E(G,) and yv, € E(G;), a contradiction to the
hypothesis A = 3. Since G; is connected, < {v;,v,,v3,v,} >% K, . But the graph < {v;,v,,v3,1v,}> is
isomorphic to one of the graphs given below:

Hy3 Hyy His

For graph Hys, » aid y must be adjacent . .; und v; respectively w..... . # j and degy,, (v;) = 2 =
degy,, (v;). Thus the graph G is isomorphic to Gy .

For graph Hy,, if x and y are adjacent to v; and v, 4, then y,,.,4(G) # n — 3, a contradiction. Hence
the graph G is isomorphic to Gs.
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For graph Hys, as v;’s are non-pendent, if xv,, yv, € E(G;), then y,.,4(G) # n — 3, a contradiction.
Hence the graph G is isomorphic to G5.

Subcase 4(c).|A| =1

Let x € A. Then there exist non-pendent vertices vy, v,,v3, v, vs € Gy such that < {v,,v,,v3,v,,vs5} >
is connected.

If the graph < {v;,v,,v3,v4,v5} > is isomorphic to one of the graphs given below:

[_[ | M |
H16 H17

thenxvs €, wheredegy, (vs) =1 = degy,, (vs), since ., .- 1on-pendent. But this implies that
Ynena (G) # n — 3, a contradiction.
Thus < {vy,v,,v3,v,,v5} > isisomorphic to one of the graphs given below:

190

Hl HZO H21

Forgraph Hy,, x must be adjacent to the vertex v;for some i where degy, (v;) = 2. This implies
Ynena (G) < m — 3, a contradiction. Hence the graph G is isomorphic to Gg, Gy or Gy5.

Subcase 4(d).|[A] = 0
Suppose that the graph G; is isomorphic to one of the graphs given below:

@lsiss

H23

Has

For Hz yraphs, ¥,cna (G) # a contradiction. Thu Has aph G is isomorphit

The converse is obvious.
Proposition 4. Let G be a graph with A(G) = n — 2. Then y,,.,4(G) + A(G) = nifand only if G is connected.

Proof. Let G be a graph with y,,.;,; (G) = 2and A(G) = n — 2. Suppose that G is disconnected. Let G, G, ..., G
be the components of G, k = 2. Since A(G) = n — 2, there exist two components of G such that G, contains A-
vertex, say u, and G, contains an isolate, say v.

Clearly, D = {u,x,v} is a y,.pq -S6t of G, as G, has the vertex of degree |G,| — 1. Therefore
Ynena (G) = |D| = 3, a contradiction. Hence G is connected.
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Conversely, suppose that G is connected and A(G) = n — 2. Let u be a A-vertex. Then there exists a
vertex v € G such that v € N[u]. Since G is connected, vx € E(G)where x € N(u). Then {u, x} is a nchd-set of
G. Thus ¥ pq (G) < 2. But ¥, 1q (G) = 2. Hence y,,. 1,4 (G) = 2.

Proposition 5. Let G be a graph with A(G) =n—3. Then y,.,4(G) + A(G) =n—1 if and only if G is
connected such that one of the following conditions hold:
Let u be a A-vertex and v,w & N[u].

(i).Let N(v) N N(w) # ¢. Then every vertex v; € N(v) n N(w) is adjacent to at most |[N(u)| — 2
vertices excluding vand w.

(ii).Let N(v) n N(w) = ¢.

(). Let vw ¢ E(G) and let N(w) — [N[v]UN[w]] =¢ . Then 2 < |N(v)| <n—5and
2<|INwW)| <n-5. Ifu,u, € E(G) where u, € N(v) and u;, € N(w), then either u, v, € E(G) and w,w, €
E(G) for every v, € N(v) — {u.} and w, € N(w) — {w,}, or, exactly one vertex, say v; # u, € N(v), and
exactly one vertex, say w; # u, € N(w), which is adjacent with every other vertex of N(v) and N(w),
respectively.

If N(w) — [N[v] U N[w]] # ¢ and if v,w; & E(G) for every v; € N(v) andw; € N(w), then
INW| =4, INw)| =2, IN(w)| = 1 and < N(v) > is non-independent set. Alsou; € N(u) — [N[v] U N[w]]
is adjacent with exactly one vertex of N(v)and N (w).

If v,w; € E(G) for some v; € N(v) and some w; € N(w), then v;v, € E(G) and wywy, €
E(G) for every v, € N(v) and w;, € N(w). Also u; is adjacent with v;or w;.

(b). Let vw € E(G) and let N(w) — [N[v]JUN[w]] =¢ . Then 2<|N(v)|<n-5and
2 < |N(w)| <n—5. Also < N(u) > is anon-independent set.

Ifu,u; € E(G) for every u; € N(v)andy; € N(w), then y(< N[u] >) = x(G).

If u;u; € E(G) for some w; € N(v) and w; € N(w) and

if (< N[u] >) = x(G), then IN(w)| = 2 or IN(uw)| = 5.

If x(< N[u] >) < x(G), then w,v, € E(G) and wyw, € E(G) for every v, € N(v) — {u;}
and w, € N(w) — {u;}.

If N(u) — [N[v] U N[w]] # ¢, then either [N (v)| > 1 or [N(w)| = 1 or both.

If u;u; € E(G) where u; € N(v)and w; € N(w), then u;v, € E(G) and wywy €
E(G) for every v, € N(v) — {u;} and w, € N(w) — {i;}. Also either w;x; € E(G) or wx; € E(G) or both
where x; € N(u) — [N[v] U N[w]].

Proof.Let G be a graph with A(G) = n — 3and y,,.,4(G) = 2. Following the argument in Proposition 4,G is
connected. Let u be a A-vertex. Since A(G) = n — 3, there exist two vertices v,w € G such that v,w & N[u].

Case LN(w)NNWw) # ¢
Let Nw) N N(w) = {vy,v,, ..., v Jwhere v; E N(u), 1 <i < k. Since A(G) =n — 3, every vertex
v; € N(v) n N(w) is adjacent to at most |N (u)| — 2 vertices excluding v and w.

Case 2N(w) NN(w) = ¢

Subcase 2(a).vw € E(G)
As G is connected, |[N(v)| = 1land IN(w)| = 1.

Subcase 2(a)(i).N (w) — [N[v] UN[w]] = ¢

Let IN(w)| = 1and [IN(v)| = n — 4. Then N(w) = {v,}. If v, is adjacent to any of the vertices in
N@)and y(< N[u] — {v,} >) < x(G), then {v,,v} is the only y-set of G. But y(< N({v,v,}) >) < x(G).

Let N(v) = {uq, uy, ..., us} and N(w) = {ugyq, Ugyz, -, Up_3JWhere2 < s <n —5.

If N(v) does not contain a full degree vertex or N(w) does not contain a full degree vertex, then
D = {u,v,w}isay-set of G. For this graph, y,.»s (G) # 2, a contradiction.

Therefore, there exists a vertex of N(v), say u;, which is adjacent to every other vertex of N(v) and
there exists a vertex of N(w), say u,, which is adjacent to every other vertex of N(w).

Suppose that no vertex of N(v) is adjacent with any vertex of N(w). Since uv ¢ E(G), uw € E(G)
and vw ¢ E(G), it follows that D; = {u;,u,,,} isay-set of G.But y(< N(D;) >) < x(G). Thus ¥4 (G) # 2,
a contradiction.

Hence there exists a vertex in N(v), say u,, which is adjacent with some vertex of N(w), say uy,
wheret <sandk > s+ 1.
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Suppose that u, is not adjacent with every other vertex of N (v), or, u; is not adjacent with every other
vertex of N(w). Note that u,u; € E(G).

Suppose that u, is the only vertex of N (v) which is adjacent with every other vertex of N(v) and ug 4
is the only vertex of N(w) which is adjacent with every other vertex of N(w). Then there is nothing to prove, as
{u, ug 1} isayyepq-Set of G.

Suppose that either N(v) has at least two vertices but not every vertex which is adjacent with every
other vertex of N(v), or, N(w) has at least two vertices but not every vertex which is adjacent with every other
vertex of N(w). Then D, = {u;,u,,} is a y-set of G. Since u, and u,, are not a full degree vertex of N(v)and
N (w), respectively, it follows that y(< N(D,) >) < x(G). Therefore y,,.;4(G) # 2, a contradiction.

Hence for this case, u, € N(v) must be adjacent with every other vertex of N(v) and u, € N(w) must
be adjacent with every other vertex of N(w).

Subcase 2(a)(ii).N(w) — [N[v] U N[w]] # ¢

Then there exists a vertex u; € N(u) such that u; € N[v] and u; € N[w] for some i. Note that
IN(w)| = n —3. Also v is adjacent to at least one point x of N(u) and w is adjacent to at least one point yof
N(u), where x #y. Therefore, [N(w) — [N[v]U N[w]]| <n—5. Let N(v) = {u;,uy, ..., u; } and N(w) =
(U1, Upeszs - U JWhere 1 Sk <t <n—4. Let N(w) — [N[v] U N[W]] = (uepq, teqz s U5}

Subsubcase 2(a)(ii)(a).v;w; & E(G)for every v; € N(v) and w; € N(w)

Suppose that [N(u)| = 3. Then [IN(v)| = 1and [N(w)| = 1. Clearly y,,.,4 (G) # 2, a contradiction.

Suppose that [N(u)| = 5. Then u; € N(u) — [N[v] U N[w]] is adjacent with exactly one vertices of
N(v), say v,, and one vertex of N(w), say w,. Also v,v, € E(G) and w,w,, € E(G) for every v, € N(v)and
w;, € N(w). Otherwise there always exists a y-set of cardinality greater than or equal to 3. Now let D; =
{v,,w,} be the y-set of G. Since v and w receives the color of u, y(< N[u] >) = y(G). Therefore G — {v,} or
G — {w, } has the chromatic number less than the chromatic number of G. Since v,w, & E(G), D is not a nchd-
set of cardinality 2, a contradiction. Therefore [N (w)| = 4.

Let IN(u)| = 4. Then either IN(v)| = 1and IN(w)| = 1, or, IN(v)| = 2 and IN(w)| = 1.

Suppose that [N(v)| = 1and [N(w)| = 1. Then y,,.,4(G) # 2, a contradiction.

Let [IN(v)| = 2and [N(w)| = 1. Suppose that < N(v) > is an independent set.

If u; € N(u) —[N[v]U N[w]] is adjacent with every vertices of N(v) and N(w), then again
Ynena (G) # 2, a contradiction. If u; € N(u) — [N[v] U N[w]] is not adjacent with any of the vertices of N (v)
or N(w) or both, then again y,,.,4(G) # 2, a contradiction. Therefore < N(v) > is a non-independent set.

Now, suppose that u; € N(u) — [N[v] U N[w]] is adjacent with every vertex of N (v)and N(w). Then
D, = {v;,w;} is the only y-set of G. It is easy to verify that y(< N(D,) >) < x(G) and hence y,,.4(G) # 2, a
contradiction. Therefore u; € N(u) — [N[v] U N[w]] is adjacent with exactly one vertex of N(v) and exactly
one vertex of N(w).

Subsubcase 2(a)(ii)(b).v;w; € E(G)for some v; € N(v) andw; € N(w)

Then2 < INw)|<n—-6and2 < |[N(w)| <n—6.

Suppose that v;v, € E(G) and ww, € E(G) for some v, € N(v)and w;, € N(w). Then clearly
Ds = {u,v;,w; } is ay-set of G. Therefore y,,.,4(G) = 3, a contradiction. Therefore, v,v;, € E(G) and w,w;, €
E(G) for every v, € N(v) — {v;}and w;, € N(w) — {w; }.

Ifu; € N(w) — [N[v] U N[w]] is not adjacent with v;and w;, where v; € N(v) and w; € N(w), then
Ynena (G) = 3, a contradiction. Therefore u; € N(u) — [N[v] U N[w]] is adjacent with v; € N(v) or w; €
N(w).

Subcase 2(b).vw € E(G)
As G is connected and vw € E(G), either IN(v)| = 2 or IN(w)| = 2.

Subcase 2(b)(i).N(w) — [N[v] U N[w]] = ¢

If INw)| = 1and [N(v)| = n — 4, as in subcase 2(a)(i), either v, is not adjacent to any of the vertices
in N(u) or x(< N[u] — {v,} >) = x(G).

Let N(v) = {uy, uy, ..., us} and N(w) = {ugyq, Ugyz, - Uy_3JWhere2 < s <n — 5.

Suppose that < N(u) > is independent. Since vw € E(G), it follows that C; as an induced subgraph
and triangle free. Therefore y,,.,4(G) = 3 # 2. Hence < N(u) > is a non-independent set.

Subsubcase 2(b)(i)(a).u;w; & E(G)for every u; € N(v) andw; € N(w)
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Suppose that y(< N[u] >) < x(G). Then v or w must receive different color from u. Thus G — {v} or
G — {w} or G — {v,w} have a chromatic number less than the chromatic number of G. Clearly, D¢ = {u, v} or
D, = {u,w} or Dg = {x,y} are the only y-sets of G, where x € N(v) and y € N(w). But Dy and D, are
independent sets of G. Since xy & E(G), Dg is also an independent set of G. Thus < N(D¢) > has G — {u, v} as
an induced subgraph and < N(D,) > has G — {u,w} as an induced subgraph. Therefore D, and D, are not a
nchd-set of G.

Suppose that G is a triangle free. Since y,,.,4(G) = 2 and by Theorem 1, y(G) = 2. But this is not
possible, since y(< N[u] >) = 2. Therefore G contains a triangle.

Suppose that y(< N[v] >) < y(< N[w] >). Then v may receive some of the color from N(w) and w
may receives the color of u. Thus y(< N[u] >) = x(G), a contradiction. Therefore y(< N[v] >) = y(<
N[w] >).

Without loss of generality, assume that x and y receive the unique color. Then < N(Dg) > has
G —{x,y} as an induced subgraph and hence y(< N(Dg) >) < y(G). Therefore no dominating set of
cardinality two is a nchd-set of G and hence y,,.,4 (G) > 2, a contradiction. Therefore y(< N[u] >) = x(G).

Subsubcase 2(b)(i)(b).w;w; € E(G)for some u; € N(v) and some u; € N(w).

Let y(< N[u] >) = x(G). Suppose that |[N(u)| =3 or 4 and both < N(v) > and < N(w) > are
independent. Then clearly, y,.,4(G) # 2, a contradiction. Therefore |[N(u)| = 2or [N(u)| = 5.

Let y(< N[u] >) < x(G). Then v or w must receive different color from u. Thus G — {v} or G — {w}
or G — {v,w} have a chromatic number less than the chromatic number of G. Suppose that u;,v, & E(G) or
wwy € E(G) for every v, € N(v) — {u;}and w, € N(w) — {x;}. Then clearly Dy = {u, v} or Dyy = {u,w} or
D1 = {x,y} are the y-sets of G, where x € N(v) and y € N(w). Then this proof is analogous to the proof of
Subsubcase 2(b)(i)(a). Therefore y,,.4(G) # 2, a contradiction. Therefore w;v, € E(G) and w;w, € E(G) for
every v, € N(v) — {u;Jand w, € N(w) — {w; }.

Subcase 2(b)(ii).N (u) — [N[v] U N[w]] # ¢

This is analogous to the proof of subcase 2(b)(i).

Let w,u; € E(G) whereu; € N(v)and w; € N(w). Suppose that u; and w; are not a full degree vertex
of N(v)and N(w), respectively. Then y,,,(G) # 2, a contradiction. Therefore u; and u;must be a full degree
vertex of N(v)and N (w), respectively.

Suppose that u; and u; are not adjacent with the vertices of N(uw) — [N[v] U N[w]]. Then {u,u;, v} is
ay-set of G and hence y,,.,4 (G) # 2, a contradiction. Therefore u; or v; is adjacent with every other vertex of
N@) — [N[v]u N[w]].

The converse is obvious.
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