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1. INTRODUCTION 
Connectedness and compactness are powerful tools in topology but they have many dissimilar 

properties. The concept of Hausdorff spaces is almost an integral part of compactness. Investigations into the 

properties of cut points of topological spaces which are connected, compact and Hausdorff date back to the 

1920’s. Connectedness together with compactness with the assumption of Hausdorff has been studied in from 

the view point of cut points. A cover (or covering) of a space X is a collection  of subsets of X whose union is 
X. The axioms that involve the notion of coverings are known as covering axioms. Compactness, one of the 

oldest covering  axiom, plays almost the same role in General Topology as the closed and bounded intervals 

play in Classical Analysis. Pervin [4] was first to define connectedness and components in a bitopological 

spaces, whereas the concept of quasi components in bitopological spaces was introduced by Reilly and Young 

[6]. Recently, the notions of pairwise S*GO - connected spaces was introduced by K.Kannan [1] in 
bitopological spaces in 2009. In this section we introduce the new type of connected and disconnected spaces 

called pairwise s**g - connected spaces, pairwise s**g - disconnected spaces. 

 

2. PRELIMINARIES 

 Let (X, 1, 2) be a bitopological space or simply X. For any subset A is contained in X, the interior of 

A is denoted by i– int(A) and the closure of A is denoted by i– cl(A), respectively.Ac  or X – A denotes the 
complement of A in X unless explicitly stated.We shall now require the following known definitions. 

Definition 2.1 Let (X, 1, 2) be a bitopological space. Then (X, 1, 2) is said to be pairwise connected if X 

cannot be expressed  as the union of two non-empty disjoint sets A and B such that  (A  τ1 cl (B))  (τ2 cl (A) 

 B) =   … (1).  If (1) is satisfied, we call A and B as pairwise separated sets. If X = A  B, where A, B satisfy 
(1), then X is called a pairwise  disconnected space. In this case, we write X = A \B,  a pairwise separation of X. 

Definition 2.2 A function f : (X, 1, 2) → (Y, µ1, µ2) is said to be pairwise continuous if  𝑓−1(U) is j- closed in 
X for every µj closed set U in Y. 

Definition 2.3 A  function f : (X, 1, 2) →  (Y, µ1, µ2) is said to be pairwise pre semi closed if f(U) is µj – semi 

closed in Y for every j- semi closed set U in X. 

Definition 2.4 A subset A of a bitopological space (X, 1, 2) is called pairwise semi star generalized closed if 

2-- cl (A)  U whenever A U and U is 1- semi open in X. 

Definition 2.5 A subset A of a bitopological space (X, 1, 2) is called pairwise semi star generalized open if X-
A is pairwise semi star generalized closed in X. 

Definition 2.6 A function f :(X, 1, 2) → (Y, µ1, µ2) is said to be a pairwise continuous bijective and pairwise 

pre semi closed function if the inverse image of each µi-s*g closed set in Y is i -s*g closed set in X. 

 

3. PAIRWISE S**G - CONNECTED SPACES 

Definition 3.1. Let (X, 1, 2) be a bitopological space. Then (X, 1, 2) is said to be pairwise s**g - connected if 

X cannot be expressed as the union of 2 non empty disjoint sets A and B such that  (A  τ1 - s**g cl (B))  (τ2 - 

s**g cl (A)  B) =   … (1).  If (1) is satisfied, we call A and B as pairwise s**g - separated sets. If X = A  B, 
where A, B satisfy (1), then X is called a pairwise s**g - disconnected space. In this case, we write X = A \ B  a 

pairwise s**g - separation of X. 

 

Example 3.1. Let X = {a, b, c}, τ1  = {, X, {a}}  and τ2  = {, X, {b,c}}.Then (X, 1, 2) is pairwise s**g - 
disconnected space. 
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Example 3.2. Let X = {a, b, c, d}, τ1  = {, X, {a}}  and τ2  = {, X, {a,b}, {a, b, c}}. Then (X, 1, 2) is pairwise 
s**g - connected. 

Theorem 3.1 The following conditions are equivalent for any bitopological space X. 

(i) X is pairwise s**g – connected. 

(ii) X cannot be expressed as the union of 2 non empty disjoint sets A and B such that  A is τ1 - s**g open 

and B is τ2 - s**g open.   

(iii) X contains no nonempty proper subset which is both τ1 - s**g open and τ2 - s**g closed  

Proof. (i) (ii): Let X be pairwise s**g – connected…(1).Assume that X can be expressed as the union of two 

non empty disjoint sets A and B such that A is τ1-s**g open and B is τ2-s**g open. Then A  B = . A Bc 

τ2-s**gcl(A)  τ2-s**gcl( Bc ) = Bc τ2-s**gcl(A) B)=. ..(2). Similarly, B Ac τ1-s**gcl(B)  τ1 - s**gcl( 

Ac ) = Ac . τ1-s**gcl(B)  A = …(3). From (2) and (3) we have (τ1-s**gcl(B)  A) ( τ2-s**gcl(A)  B)= . 
This is contradiction to (1). Hence X can not be expressed as the union of two nonempty disjoint sets A and B 

such that A is τ1-s**g open and B is τ2-s**g open. 

(ii) (iii): Let X can not be expressed as the union of two nonempty disjoint sets A and B such that A is τ1-s**g 
open and B is τ2-s**g open…(1).Assume that X contains a nonempty proper subset A which is both τ1-s**g 

open and τ2-s**g closed.  X = AAc  where A, Ac  are disjoint, A is τ1-s**g open and  Ac  τ2-s**g open. This is 
contradiction to (1).Hence X contains no nonempty proper subset which is both τ1-s**g open and τ2-s**g 

closed. 

(iii)  (i) Let X contains no nonempty proper subset which is both τ1-s**g open and τ2-s**g closed. 

Assume that X is pairwise s**g – disconnected.  X can be expressed as the union of two nonempty disjoint 

sets A and B such that (τ1-s**gcl(B)  A) ( τ2-s**gcl(A)  B) = . Since A  B = , we have A = Bc…(1) 

and B = Ac…(2). Since τ2-s**gcl(A)  B = , we have τ2-s**gcl(A) Bc . τ2-s**gcl(A)  A. .A is τ2-s**g 

closed. Similarly, we have τ1-s**gcl(B)  A = .  τ1-s**gcl(B) Ac τ1-s**gcl(B)  B [by (2)]  B is τ1-

s**g closed. Bc is τ1-s**g open.   A is τ1-s**g open [by (1)]. Therefore, there exists a nonempty proper 

subset A which is both τ1-s**g open and τ2-s**g closed. This is contradiction to (1). Hence X is pairwise s**g –

connected. 

Theorem 3.2. If C is a pairwise s**g - connected subset of a bitopological space (X, 1, 2) which has the  

pairwises**g - separation X = A \ B then C  A or C  B. 

Proof. Suppose that (X, 1, 2) has the pairwise s**g - separation X = A \ B. Then X = A  B, where A and B 

are nonempty disjoint sets such that A  (τ1 - s**g cl(B))  (τ2 - s**g cl(A)  B) =  … (1). Since A  B = , 

we have A = Bc  and B = Ac… (2). Now, ((C  A)  τ1 - s**g cl(C  B))  (τ2 - s**g cl(C  A)  (C  B))  

A  τ1 - s**g cl(B))  (τ2 - s**g cl(A)  B) =  [by (1)].  C  A =  or C  B = .  C AC (or) C BC . C 

 B (or) C  A [by (2)]. 

Theorem 3.3. If A is a pairwise s**g - connected and A  B  τ1 - s**g cl(A)  τ2 - s**g cl(A) then B is 

pairwise s**g - connected. 

Proof .Suppose that B is not pairwise s**g - connected . Then B = C  D, where C and D are 2 non empty 

disjoint sets such that (C  τ1 - s**g cl(D))   (τ2 - s**g cl(C)  D) = . Since A is pairwise s**g - connected, 

we have A  C or A  D. Suppose A  C. Then D D B  D  τ2 - s**g cl(A)  D  τ2 - s**g cl(C) = . 

Therefore,  D . Consequently, D = . Similarly, we can prove C = if A  D {by theorem 3.2}. This is the 
contradiction to the fact that C and D are nonempty. Therefore, B is pairwise s**g - connected. 

Theorem 3.4. Let (X, 1, 2) be a bitopological space. If every 2 points of X are contained in some pairwise 
s**g - connected space of X then X is pairwise s**g - connected. 

Proof. Assume that X is not pairwise s**g - connected. Then X = A\B.  X = A  B, where A is τ1 - s**g - 

open and τ2 - s**g - open set with A  B = . Let x A and y B. By hypothesis, there exists a pairwise s**g - 

connected subset C of X such that x  C and y  C, by the above theorem 3.2 , C  A or C  B.  x, y  A or  

x, y  B, a contradiction. Hence X is pairwise s**g - connected.   

Theorem 3.5 Let f : (X, 1, 2) → (Y, µ1, µ2) be a pairwise continuous bijective and pairwise pre semi closed 
function then the image of a pairwise s**g connected space is pairwise s**g  connected under f.. 

Proof: Let f : X → Y be a pairwise continuous surjection and pairwise pre semi closed. Let X be pairwise s**g 

connected…(1). Assume that Y is pairwise s**g -disconnected.Then Y = C  D where C is  µ1 – s**g open and 

D is µ2- s**g open in Y. Since f is pairwise continuous and pairwise pre semi closed, then we have f−1(C) is τ1 – 

s**g open and  f−1(D) is τ2 –s**g open in X.  X = f−1(A) f−1(B), f−1(A) and  f−1(B) aretwo non empty 
disjoint sets. Hence X is pairwise s**g- disconnected, and this leads to a contradiction which proves that Y is 

pairwise s**g connected. 
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