Identification of Patterns of Continued Fractions of $\sqrt{s}-[\sqrt{s}]$ Where s is a Square Free Positive Number

A. Gnanam ${ }^{\# 1}$, and S. Krithika* ${ }^{2}$
\#Assistant professor, Department of Mathematics, Government Arts College, Trichy-22.
*Assistant professor, PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Trichy-2.

Abstract:

It is observed in [3] any periodic continued fraction represents a quadratic irrational and vice versa. In this paper we try to identify the patterns of continued fractions of $\sqrt{S}-\lfloor\sqrt{S}\rfloor$ where S is a square free positive number.
Keywords: Continued fractions, Simple continued fraction, Periodic continued fraction, Quadratic irrational, Euclidean algorithm, Bisection method, False Position method, Iteration method and Newton -Raphson method.
Subject Classification: MSC 11A05, 11A55, 30B70, 40A15, 65L99.
Notations:

1. $\left\langle a_{0}, a_{1}, a_{2}, a_{3}, \cdots a_{n}\right\rangle \quad$ Continued fraction expansion.
2. $\left[x_{1}\right] \quad$ Integral part of the rational number x_{1}.

I. INTRODUCTION

Continued fractions provide much insight into mathematical problems, particularly into the nature of numbers [6]. A reference to continued fractions is found in the works of the Indian mathematician Aryabhatta. John wallis used for the first time the name "continued fraction" in his book Artihmetica Infinitorium, published in 1655. Christian Huygens used continued fractions for the purpose of approximating the correct design or the toothed wheels of a planetarium. Euler, Lambert and Lagrange were prominent amongst those who developed the theory of continued fractions $[9,10]$.

Any eventually periodic continued fraction represents a quadratic irrational [3,4]. Conversely, Lagrange's theorem asserts that the continued fraction expansion of every quadratic irrational is eventually periodic. A purely periodic continued fraction represents a quadratic irrational of a special kind called a reduced quadratic irrational. A quadratic irrational is said to be reduced if it is greater than 1 and the other root of the quadratic equation that it satisfies, lies between -1 and 0 [3,4]. Conversely, the continued fraction expansion of a reduced quadratic irrational is purely periodic.

An expression of the form

$$
a_{1}+\frac{b_{2}}{a_{2}+\frac{b_{3}}{a_{3}+\frac{b_{4}}{a_{4}+\frac{b_{5}}{\ddots}}}}
$$

where $a_{1}, a_{2}, \ldots, a_{n}, \ldots, b_{2}, b_{3}, \ldots, b_{n}, \ldots$ be a series of numbers positive or negative is called a continued fraction.
The continued fraction is usually written as $a_{1}+\frac{b_{2}}{a_{2}+}+\frac{b_{3}}{a_{3}+} \frac{b_{4}}{a_{4}+} \ldots$. The quantities $a_{1}, \frac{b_{2}}{a_{2}}, \frac{b_{3}}{a_{3}}, \frac{b_{4}}{a_{4}}, \cdots$ are called the elements of the continued fraction. The fraction obtained by stopping at any particular stage is called a convergent. Thus the successive convergence in the continued fraction are $a_{1} ; a_{1}+\frac{b_{2}}{a_{2}} ; a_{1}+\frac{b_{2}}{a_{2}+} \frac{b_{3}}{a_{3}} ; a_{1}+\frac{b_{2}}{a_{2}+} \frac{b_{3}}{a_{3}+} \frac{b_{4}}{a_{4}+} \ldots$ and so on and they are denoted by $\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \frac{p_{3}}{q_{3}}, \ldots, \frac{p_{n}}{q_{n}}, \ldots$. When the number of quotients $a_{1}, a_{2}, a_{3}, \ldots$ is finite the continued fraction is said to be terminating. If the number of quotients is unlimited, the fraction is called an infinite continued fraction $[5,8]$.

In the case of infinite continued fraction, if the sequence $\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \frac{p_{3}}{q_{3}}, \ldots, \frac{p_{n}}{q_{n}}, \ldots$ converges, the value of the fraction F is defined as $\lim _{n \rightarrow \infty} \frac{p_{n}}{q_{n}}$ and we write $F=a_{1}+\frac{b_{2}}{a_{2}+} \frac{b_{3}}{a_{3}+} \frac{b_{4}}{a_{4}+} \cdots=\lim _{n \rightarrow \infty} \frac{p_{n}}{q_{n}}$.
An expression of the form $a_{1}+\frac{1}{a_{2}+} \frac{1}{a_{3}+} \frac{1}{a_{4}+} \cdots \frac{1}{a_{n}} \ldots$ where $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ are positive integers and a_{1} may be zero, is called a simple continued fraction. Here $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ are called the partial quotients [5, 8].

II.BASIC CONCEPTS

2.1 The Continued Fraction Algorithm:[3, 4]

Suppose we wish to find continued fraction expansion of $x \in R$.
Let

$$
x_{1}=x \text { and set } a_{1}=\left[x_{1}\right] .
$$

Define $\quad x_{2}=\frac{1}{x_{1}-\left[x_{1}\right]}$ and set $a_{2}=\left[x_{2}\right]$. and $x_{3}=\frac{1}{x_{2}-\left[x_{2}\right]} \Rightarrow a_{3}=\left[x_{3}\right], \ldots, \quad x_{k}=\frac{1}{x_{k-1}-\left[x_{k-1}\right]} \Rightarrow a_{k}=\left[x_{k}\right] \ldots \ldots$
This process is continued infinitely or to some finite stage till an $x_{i} \in N$ exists such that $a_{i}=\left[x_{i}\right]$

Examples:

1. Continued fraction expansion of $674 / 313=2.15335$ is $[2 ; 6,1,1,11,2]$
2. Continued fraction expansion of $\sqrt{2}$ and $\sqrt{24}$ are $[1 ; 2,2,2,2,2,2, \ldots]$ and $[4 ; 1,8,1,8,1,8,1,8, \ldots]$. Which is known as periodic continued fraction. The above periodic continued fractions are also denoted by $[1 ;, \overline{2}]$ and $[4 ; \overline{1,8]}$.

2.2 Convergence of a continued fraction:[3, 4, 5]

Let $x=\left[a_{1}, a_{2}, a_{3}, \ldots a_{n}\right]$. The reduced fractions given below are called the convergence of x and are defined by

$$
C_{1}=\frac{p_{1}}{q_{1}}=a_{1}, \quad C_{2}=\frac{p_{2}}{q_{2}}=a_{1}+\frac{1}{a_{2}}, C_{3}=\frac{p_{3}}{q_{3}}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}}}, \ldots, \quad C_{n}=\frac{p_{n}}{q_{n}}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\cdots+\frac{1}{a_{n}}}}}
$$

Where $\frac{p_{n}}{q_{n}}$ denote the nth convergent of x.

2.3 Periodic Continued fraction:[1, 3, 4]

An infinite simple continued fraction is said to be periodic continued fraction if there is an integer n such that $a_{r}=a_{n+r}$ for sufficiently large r. Thus the periodic continued fraction can be written in the form $\left\langle a_{0}, a_{1}, \ldots, a_{j}, \overline{a_{j+1}, a_{j+2}, \ldots, a_{n}}\right\rangle$. Where the bar over $a_{j+1}, a_{j+2}, \ldots, a_{n}$ indicates that the partial quotients are repeated indefinitely.

Examples:

$\langle\overline{2,4}\rangle$ and $\langle 4,1, \overline{2,4}\rangle$. If x denote $\langle\overline{2,4}\rangle$, then $x=2+\frac{1}{4+\frac{1}{x}}=2+\frac{x}{4 x+1}=\frac{9 x+2}{4 x+1} \Rightarrow 2 x^{2}-4 x-1=0$. Thus the periodic
continued fraction $\langle\overline{2,4}\rangle$ represents the quadratic equation $2 x^{2}-4 x-1=0$.
If we discard the negative root we get $x=\frac{2+\sqrt{6}}{2}$.

In the second example consider $\langle 4,1, \overline{2,4}\rangle$ as ξ.
Then $\xi=\langle 4,1, \overline{2,4}\rangle=4+\frac{1}{1+\frac{1}{x}}=4+\frac{x}{1+x}=4+\frac{\frac{2+\sqrt{6}}{2}}{1+\frac{2+\sqrt{6}}{2}}$. On simplifying, $\xi=\frac{18+3 \sqrt{6}}{5}$.

Theorem [3, 4]: 2.1

Any periodic simple continued fraction represents a quadratic irrational and vice versa.
Theorem [3]: 2.2
If S is any positive integer and not a perfect square, then the continued fraction of $\sqrt{S}-\lfloor\sqrt{S}\rfloor$ is of the form $\left.\left\langle a_{0}, \overline{a_{1}, a_{2}, \ldots, 2[\sqrt{S}}\right]\right\rangle$, where $a_{0}=0$.
Based on theorem 2.2, we identify the patterns of continued fraction of square root of integers which are not perfect square.

III PREPOSITION

If the square free positive number is of the form $\sqrt{(k n+1)^{2}+(2 n+1)}-\left[\sqrt{(k n+1)^{2}+(2 n+1)}\right]$ where $k \leq 3$ and n is any positive integer then

$$
\sqrt{(k n+1)^{2}+(2 n+1)}-\left[\sqrt{(k n+1)^{2}+(2 n+1)}\right]= \begin{cases}\langle 0 ; \overline{1, n, 1,2(k n+1)}\rangle & \text { if } k=1 \\ \langle 0 ; \overline{2,2(k n+1)}\rangle & \text { if } k=2 \\ \langle 0 ; \overline{2,1,3 n, 1,2,2(k n+1)}\rangle & \text { if } k=3\end{cases}
$$

Since all the above continued fractions are periodic we try to find the quadratic irrationals

$$
\theta_{1}=\langle\overline{1, n, 1,2(k n+1)}\rangle \quad, \quad \theta_{2}=\langle\overline{2,2(k n+1)}\rangle \quad, \quad \theta_{3}=\langle\overline{2,1,3 n, 1,2,2(k n+1)}\rangle
$$

where $k=1,2,3$ respectively. Also the corresponding irrationals are denoted by $\xi_{i}, i=1,2,3$ and $\xi_{i}=\theta_{i}^{-1}, i=1,2,3$.
Also the solution of the corresponding quadratic equations are obtained by continued fractions method. and compare this convergence with numerical methods such as Bisection method, False position method, Iteration method and Newton - Raphson method [7].

IV. THEOREMS ON THE PATTERNS OF CONTINUED FRACTIONS OF $\sqrt{S}-\lfloor\sqrt{S}\rfloor$ WHERE S IS A SQUARE FREE POSITIVE NUMBER.

Theorem 4.1

For $k=3$ and if n is any positive integer then the periodic continued fraction of the form $\langle 0 ; 2,1,3 n, 1,2,2(k n+1)\rangle$ represents the quadratic irrational $x^{-2}-2(k n+1) x^{-1}-(2 n+1)=0$ and vice versa.
Lemma 4.1
Let n be any positive integer then the quadratic irrational $x^{-2}-2(3 n+1) x^{-1}-(2 n+1)=0$ represent the periodic continued fraction $\langle 0 ; \overline{2,1,3 n, 1,2,2(3 n+1)}\rangle$.

Proof:

Take $x^{-1}=y$. Then the above quadratic irrational becomes $y^{2}-2(3 n+1) y-(2 n+1)=0$.

Solving the above quadratic, $\quad y=\frac{-(6 n+2) \pm \sqrt{(6 n+2)^{2}+4(2 n+1)}}{2}$.

Take

$$
\xi_{0}=\frac{m_{0}+\sqrt{d}}{q_{0}} \text { and } q_{0} \mid d-m_{0}^{2}, \text { where } m_{0}=-(6 n+2), \quad d=(6 n+2)^{2}+4(2 n+1), q_{0}=2 .
$$

Then choose

$$
a_{0}=\left\lfloor\xi_{0}\right\rfloor . \quad \text { So that } a_{0}=0 .
$$

Now

$$
\xi_{1}=\frac{m_{1}+\sqrt{d}}{q_{1}} \text {, where } m_{1}=a_{0} q_{0}-m_{0} \text {, and } q_{1}=\frac{d-m_{1}^{2}}{q_{0}} \text {. }
$$

Therefore

$$
\xi_{1}=\frac{(6 n+2) \pm \sqrt{(6 n+2)^{2}+4(2 n+1)}}{2(2 n+1)} \text {, where } m_{1}=6 n+2 \quad \text { and } q_{1}=2(2 n+1)
$$

Hence

$$
a_{1}=\left[\xi_{1}\right] \quad \Rightarrow a_{1}=2
$$

Again set

Therefore

$$
\xi_{2}=\frac{(2 n+2) \pm \sqrt{(6 n+2)^{2}+4(2 n+1)}}{8 n+2} \text {, where } m_{2}=2 n+2 \text { and } \quad q_{2}=8 n+2
$$

Hence

$$
\xi_{2}=\frac{m_{2}+\sqrt{d}}{q_{2}} \text {, where } m_{2}=a_{1} q_{1}-m_{1}, \text { and } q_{2}=\frac{d-m_{2}^{2}}{q_{1}} \text {. }
$$

$$
a_{2}=\left[\xi_{2}\right] \quad \Rightarrow a_{2}=1
$$

Now

Therefore

$$
\xi_{3}=\frac{m_{3}+\sqrt{d}}{q_{3}} \text {, where } m_{3}=a_{2} q_{2}-m_{2} \text {, and } q_{3}=\frac{d-m_{3}^{2}}{q_{2}} .
$$

Hence

$$
\xi_{3}=\frac{6 n \pm \sqrt{(6 n+2)^{2}+4(2 n+1)}}{4} \text {, where } m_{3}=6 n \text { and } q_{3}=4
$$

Now

$$
a_{3}=\left[\xi_{3}\right] \Rightarrow a_{3}=3 n
$$

Therefore
Hence
Now

Therefore
Hence

Now
$\xi_{4}=\frac{6 n \pm \sqrt{(6 n+2)^{2}+4(2 n+1)}}{8 n+2}$,where $m_{4}=6 n$ and $q_{4}=8 n+2$
$a_{4}=\left[\xi_{4}\right] \Rightarrow a_{4}=1$
$\xi_{5}=\frac{m_{5}+\sqrt{d}}{q_{5}}$, where $m_{5}=a_{4} q_{4}-m_{4}$, and $q_{5}=\frac{d-m_{5}^{2}}{q_{4}}$.
$\xi_{5}=\frac{(2 n+2) \pm \sqrt{(6 n+2)^{2}+4(2 n+1)}}{4 n+2}$, where $m_{5}=(2 n+2)$ and $q_{5}=4 n+2$
$a_{5}=\left[\xi_{5}\right] \Rightarrow a_{5}=2$
$\xi_{6}=\frac{m_{6}+\sqrt{d}}{q_{6}}$, where $m_{6}=a_{5} q_{5}-m_{5}$, and $q_{6}=\frac{d-m_{6}^{2}}{q_{5}}$.

Therefore

$$
\xi_{6}=\frac{(6 n+2) \pm \sqrt{(6 n+2)^{2}+4(2 n+1)}}{2}, \text { where } m_{6}=(6 n+2) \text { and } q_{6}=2
$$

Hence

$$
a_{6}=\left[\xi_{6}\right] \Rightarrow a_{6}=6 n+2 \Rightarrow a_{6}=2(3 n+1)
$$

Now

$$
\xi_{7}=\frac{m_{7}+\sqrt{d}}{q_{7}}, \text { where } m_{7}=a_{6} q_{6}-m_{6}, \text { and } q_{7}=\frac{d-m_{7}^{2}}{q_{6}} \text {. }
$$

Therefore

$$
\xi_{7}=\frac{(6 n+2) \pm \sqrt{(6 n+2)^{2}+4(2 n+1)}}{2(2 n+1)}, \text { where } \quad m_{7}=(6 n+2) \quad \text { and } \quad q_{7}=2(2 n+1)
$$

Hence

$$
a_{7}=\left[\xi_{7}\right] \Rightarrow a_{7}=2=a_{1}
$$

Proceeding in this way we get,

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=a_{7}=a_{13}=\ldots=2 \\
& a_{2}=a_{8}=a_{14}=\ldots=1 \\
& a_{3}=a_{9}=a_{15}=\ldots=3 n \\
& a_{4}=a_{10}=a_{16}=\ldots=1 \\
& a_{5}=a_{11}=a_{17}=\ldots=2 \\
& a_{6}=a_{12}=a_{18}=\ldots=6 n+2=2(3 n+1)
\end{aligned}
$$

Hence we get the periodic continued fraction of the form $\langle 0 ; \overline{2,1,3 n, 1,2,2(3 n+1)}\rangle$
Also if l is the length of the periodic continued fraction, then $\xi_{0}=\xi_{l}=\xi_{2 l}=\xi_{3 l} \ldots$
Lemma: 4.2
Let n be any positive integer then the periodic continued fraction $\langle 0 ; \overline{2,1,3 n, 1,2,2(3 n+1)}\rangle$ represents the quadratic irrationals $x^{-2}-2(3 n+1) x^{-1}-(2 n+1)=0$.
Proof:

$$
\begin{aligned}
& \langle 0 ; \overline{2,1,3 n, 1,2,2(3 n+1)}\rangle=0+x^{-1} \text { where } x=\langle\overline{2,1,3 n, 1,2,2(3 n+1)}\rangle \\
x & =\left[2,1,3 n, 1,2,(6 n+2)+\frac{1}{x}\right] \\
\Rightarrow & x=\left[2,1,3 n, 1,2, \frac{6 n x+2 x+1}{x}\right] \Rightarrow x=\left[2,1,3 n, 1,2+\frac{x}{6 n x+2 x+1}\right] \Rightarrow x=\left[2,1,3 n, 1, \frac{12 n x+5 x+2}{6 n x+2 x+1}\right] \\
\Rightarrow & x=\left[2,1,3 n, 1+\frac{6 n x+2 x+1}{12 n x+5 x+2}\right] \Rightarrow x=\left[2,1,3 n, \frac{18 n x+7 x+3}{12 n x+5 x+2}\right] \Rightarrow x=\left[2,1,3 n+\frac{12 n x+5 x+2}{18 n x+7 x+3}\right] \\
\Rightarrow & x=\left[2,1, \frac{54 n^{2} x+33 n x+5 x+9 n+2}{18 n x+7 x+3}\right] \Rightarrow x=\left[2,1+\frac{18 n x+7 x+3}{54 n^{2} x+33 n x+5 x+9 n+2}\right] \\
\Rightarrow & x=\left[2, \frac{54 n^{2} x+51 n x+12 x+9 n+5}{54 n^{2} x+33 n x+5 x+9 n+2}\right] \Rightarrow x=\left[2+\frac{54 n^{2} x+33 n x+5 x+9 n+2}{54 n^{2} x+51 n x+12 x+9 n+5}\right] \\
\Rightarrow & \left(54 n^{2}+51 n+12\right) x^{2}-\left(162 n^{2}+126 n+24\right) x-(27 n+12)=0
\end{aligned}
$$

Divided by $x^{2}(27 n+12)$ we get,

$$
(2 n+1)-(6 n+2) x^{-1}-x^{-2}=0 \Rightarrow x^{-2}+(6 n+2) x^{-1}-(2 n+1)=0 \Rightarrow x^{-2}+2(3 n+1) x^{-1}-(2 n+1)=0
$$

Hence if n is any positive integer then the periodic continued fraction $\langle 0 ; \overline{2,1,3 n, 1,2,2(3 n+1)}\rangle$ represents the quadratic irrationals $x^{-2}-2(3 n+1) x^{-1}-(2 n+1)=0$.
Lemma 4.1 and 4.2 completes the proof of theorem 4.1.
Theorem: 4.2
For $k=2$ and if n is any positive integer then the periodic continued fraction of the form $\langle 0 ; \overline{2,2(k n+1)}\rangle$ represents the quadratic irrational $x^{-2}+2(k n+1) x^{-1}-(2 n+1)=0$ and vice versa.
Proof: Similar to the proof of theorem 4.1

Theorem: 4.3

For $k=1$ and if n is any positive integer then the periodic continued fraction of the form $\langle 0 ; \overline{1, n, 1,2,2(k n+1)}\rangle$ represents the quadratic irrational $x^{-2}+2(k n+1) x^{-1}-(2 n+1)=0$ and vice versa.
Proof: Similar to the proof of theorem 4.1
TABLE 4.1
Illustrations based on theorems 4.1, 4.2 And 4.3

K	N	Irrational number	Continued fraction of irrational number	Quadratic irrational
1	1	$\sqrt{7}-2$	$\langle 0 ; \overline{1,1,1,4,}\rangle$	$x^{-2}+4 x^{-1}-3=0$
	2	$\sqrt{14}-3$	$\langle 0 ; \overline{1,2,1,6}$,	$x^{-2}+6 x^{-1}-5=0$
	3	$\sqrt{23}-4$	$\langle 0 ; \overline{1,3,1,8}$,	$x^{-2}+8 x^{-1}-7=0$
2	1	$\sqrt{12}-3$	$\langle 0 ; \overline{2,6,}\rangle$	$x^{-2}+6 x^{-1}-3=0$
	2	$\sqrt{30}-5$	$\langle 0 ; \overline{2,10}$,	$x^{-2}+10 x^{-1}-5=0$
	3	$\sqrt{56}-7$	$\langle 0 ; \overline{2,14}$,	$x^{-2}+14 x^{-1}-7=0$
3	1	$\sqrt{19}-4$	$\langle 0 ; \overline{2,1,3,1,2,8}\rangle$	$x^{-2}+8 x^{-1}-3=0$
	2	$\sqrt{54}-7$	$\langle 0 ; 2,1,6,1,2,14\rangle$	$x^{-2}+14 x^{-1}-5=0$
	3	$\sqrt{107}-10$	$\langle 0 ; \overline{2,1,9,1,2,20}\rangle$	$x^{-2}+20 x^{-1}-7=0$

TABLE 4.2
Comparison of the solution of the quadratic equation $x^{-2}+4 x^{-1}-3=0$ with the convergence of the continued fractions

Iterations	Bisection Method	False position Method	Iteration Method	Newton- Raphson Method	ContinuedFraction Method
1	0.5	0.6	0.5	0.5	0
2	0.75	0.64286	0.66667	0.65	1
3	0.675	0.64557	0.64286	0.64575	0.5
4	0.6875	0.64574	0.64615	0.64575	0.66667
5	0.65625	0.64575	0.64570		0.64286
6	0.64063	0.64575	0.64575		0.64706
7	0.64844		0.64575	0.64516	
8	0.6463	0.64551			0.64583
9	0.64600				0.64574
10	0.64600				0.64576
11	0.64575			0.64575	
12	0.64575				
13					
14					

TABLE 4.3
Comparison of the solution of the quadratic equation $x^{-2}+6 x^{-1}-3=0$ with the convergence of the continued fractions

Iterations	Bisection Method	False position Method	Iteration Method	Newton- Raphson Method	Continued Fraction Method
1	0.5	0.42857	0.5	0.5	0
2	0.25	0.46154	0.46154	0.46429	0.5
3	0.375	0.46392	0.46429	0.46410	0.46154
4	0.4375	0.46409	0.46409	0.46410	0.46429
5	0.46875	0.46410	0.46410		0.46409
6	0.45313	0.46410	0.46410		0.46410
7	0.46094				
8	0.46484				
9	0.46289				
10	0.46387				
11	0.46484				
12	0.46435				
13	0.46411				
14	0.46411				
15	0.46411				
16	0.46411				
17	0.46410				
18					
19					

TABLE 4.4
Comparison of the solution of the quadratic equation $x^{-2}+8 x^{-1}-3=0$ with the convergence of the continued fractions

Iterations	Bisection Method	False position Method	Iteration Method	Newton- Raphson Method	Continued Method
1	0.5	0.33333	0.5	0.5	0
2	0.25	0.35714	0.35294	0.36111	0.5
3	0.625	0.35878	0.35915	0.35890	0.33333
4	0.4375	0.35889	0.35889	0.35890	0.36364
5	0.34375	0.35890	0.35890		0.35714
6	0.39063	0.35890	0.35890		0.35897
7	0.36719				0.35890
8	0.35547				
9	0.35840	0.35986			
10	0.35913				
11	0.35876	0.35895			
12	0.35885	0.35890			
13	0.35888				
14	0.35889				
15	0.35890				
16	0.35890				
17					
18					
19					
20					

V. CONCLUSION

In this paper the patterns of continued fraction of square root of the square free number of the form $\sqrt{(k n+1)^{2}+(2 n+1)}-\left[\sqrt{(k n+1)^{2}+(2 n+1)}\right]$ where $k \leq 3$ and n is any positive integer are identified. From the comparison table we find that the values of convergence of continued fractions and number of iterations are nearer to all the methods given in the above tables except the Bisection method.

REFERENCES

[3] Ivan Niven Herbert S. Zuckerman, Hugh L. Montgomery "An
van Niven, Herbert S. Zuckerman, Hugh L. Montgomery, "An introduction to theory of numbers", Fifth edition, Wiley Student Edition
Jonathan Browein, Alfvander Poorten, Jeffrey Shallit, Wadim Zudilin, "Neverending Fractions An Introduction to continued fractions", Cambridge University Press.
[5] Neville Robbins, "Beginning Number Theory", Second edition, Naros, Publishing House.
[6] Olds, C.D., "Continued Fractions", Random House: New York, 1963.
[7] S.S.Sastry, Introductory methods of Numerical Analysis, Fifth edition, PHI Private ltd. New Delhi, 2012.
[8] T.K. Manicavachagom Pillai, T. Natarajan, K. S. Ganapathy "Algebra" Vol.II, S. Viswanathan Pvt., Ltd., Chennai
[9] Continued fractions on web: http://archives.math.utk.edu/ \sim atuyl/confrac/history.html.
[10] Continued fractions on web: http://archives.maths.survey.ac.uk./hosted sites/R.Knott/Fibonacci/cfINTRO.htm\#section 1.

