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Abstract: In this paper, a model on prey-predator fishery is proposed and analyzed in which the predator 

density is low compared to the prey density. It is assumed that prey species obeys the logistic law of growth [1] 

and both the species are allowed to be harvested by the fishermen. In order to control over exploitation the 

regulatory agencies impose suitable taxes per unit of harvested biomass of landed fish. It is also assumed that 

the agencies impose a higher tax for harvesting predator fish species compared to the tax for harvesting prey 

fish species. Different efforts are given by the fishermen to harvest prey and predator species and the efforts are 

considered as dynamic variables. Different suitable ranges of taxes are determined for existence of all possible 

steady states. The local and global stability of the steady states are discussed. An optimal harvest policy has 

been discussed considering taxes as the control variables. All the results are illustrated with the help of a 
numerical example. 
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I. INTRODUCTION: 

 
Now-a-days overfishing is a common problem in commercial fisheries. Several fish species like Antractic blue 

whales, Antractic fin whales, Japanese Sardine, California sardine, etc. are now almost extinct in this century 

due to overfishing. These incidents had serious economic and social implications also besides causing damage 

to the marine ecosystem of the concerned regions. To arrest further aggravation of the situation, several 

countries entered into multilateral agreements which led to the establishment of some international regulatory 

agencies like International Whaling Commission, Pacific Halibut Commission, Inter-America Tropical Tuna 

Commission, etc. These agencies are expected to monitor and regulate exploitation of various marine fisheries. 

In the year 1954, the federal fisheries authorities of Canada asked an economist, H.S. Gordon, to provide an 

economic analysis of the persistent problem of low income among maritime fishermen of Canada. Gordon [2] 

developed a static model of the common property (open access) fisheries which not only explained the low 

income of fishermen, but also provided an economic interpretation of the overfishing problem. This model 

explained how economic overfishing would be expected to occur in an open access fishery while biological 

overfishing would take place when the price or cost ratio was considerably high. The fisheries biologist M.B. 

Schaefer [3] developed a dynamic bioeconomic model for a single species fishery and it is applied to the tuna 

fisheries of the tropical Pacific. Gordon’s model [2] is the equilibrium solution of the Schaefer model [3]. 

Various methods of counteracting the common property externality in commercial fisheries have been suggested 

from time to time. These include allocation of fishermen’s quotas ([4],[5]), imposition of taxes on landed fish 

([6],[7]), license limitation [8], restricting fishing seasons [9],etc. Some of the issues associated with the choice 

and enforcement of optimal governing instruments in regulating fisheries were discussed Anderson and Lee 

[10]. The economic implications of enforcing laws for regulating marine fisheries were discussed by Sutinen 

and Andersen [11]. Among these methods, taxation is superior to the other control policies because of its 

flexibility described by Clark [6]. 

A single species fishery model using taxation as a control measure was first discussed by Clark [6]. Chaudhuri 

and Johnson [12] extended that model using a catch-rate function which was more realistic than that in [6]. 

Ganguly and Chaudhuri [13] made a capital theoretic study of a single species fishery with taxation as control 
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policy. Pradhan and Chaudhuri [14] developed a mathematical model for growth and exploitation of a schooling 

fish species, using a realistic catch-rate function and imposing a tax per unit biomass of landed fish to control 

harvesting. Pradhan and Chaudhuri [15] also studied a fully dynamic reaction model of fishery consisting two 

competing fish species with taxation as a control instrument.  

Pradhan [16] developed a prey-predator fishery model with low predator density where taxation is the control 

instrument.  In that paper only the predator fish species is allowed for harvesting by the fishermen after 

imposing suitable tax by the regulatory agencies. But in reality it is very difficult to prevent harvesting of prey 

fish species because the low cost for harvesting of prey species and the high density of prey population may be 

attracted the fishermen to fish prey species. Moreover, if the fishing of prey species is totally stopped, then the 

revenue earned by the Government or the regulatory agencies from fishery will be decreased. Again, the market 

price of the predator fish species is always high compared to the market price of the prey fish species, so the 

fishermen will be more attracted to harvest the predator species. This may cause over exploitation of the 

predator species. So the regulatory agencies should impose a higher tax for harvesting the predator species 

compared to the tax for harvesting the prey species. 

In this paper, both populations are allowed to be harvested after imposing suitable taxes for harvesting prey and 

predator fish species.  Here two different efforts are considered to harvest prey and predator fish and all the 

efforts are dynamic variables i.e. time dependent variables depending on the net revenue earned by the society. 

Suitable rages of taxes are determined for existence of the steady states. The local and global stability of the 

steady states are discussed. An optimal harvest policy has been discussed considering taxes as the control 

variables. A numerical example is given to illustrate all the results. 

 

II. THE MATHEMATICAL MODEL: 

 

Let at any time 𝑡, 𝑥(𝑡) and 𝑦(𝑡) be the population densities of the prey and predator populations respectively. It 

is assumed that predator density is very low compared to the prey density and the prey species obeys the logistic 

law of growth. In such a situation the prey and predator populations obey the following differential equations. 

 
𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑟𝑥  1 −

𝑥

𝑘
 − 𝛼𝑥𝑦

𝑑𝑦 (𝑡)

𝑑𝑡
=

𝛽𝑥𝑦

𝑘
− 𝑠𝑦                

                                              (1) 

where 𝑟, 𝑘, 𝛼, 𝛽, 𝑠 are all positive constants. 

Here 𝑟 = natural growth rate of the prey population, 

        𝛼 = catchability rate (the rate at which the prey species is removed due to predation effect), 

       𝛽 = the reproductive rate of the predator population, 

       𝑠 = per capita death rate of the predator population and  

      𝑘 = environmental carrying capacity for both the prey and predator populations. 

Since the predator density is low, so due to intra-specific competition, the crowing effect term like 
𝑟𝑥2

𝑘  
 is absent 

in the growth equation of the predator species but present in the growth equation in the prey species. From the 

second equation of the system (1) it is clear that in absence of the prey species the predator species dies out 

exponentially. Pradhan [16] discussed such a model assuming that only the predator species is allowed to be 

harvested after imposing a suitable tax by the Government or the private agencies. 

In this model it is assumed that both the species are allowed to be harvested by the fishermen. In order to control 

over exploitation of both species, the Government or the private agencies should impose the tax per unit 

biomass of the landed fish. Since the market price of the predator fish species is always high compared to the 

market price of the prey fish species, so the fishermen will be more attracted to harvest the predator species. It 

may be a cause of over exploitation of the predator species. 

So the regulatory agencies should impose a higher tax for harvesting the predator species compared to the tax 

for harvesting the prey species. 

Let 𝐸1(𝑡) and 𝐸2(𝑡) be the efforts for harvesting of the prey and predator species respectively. The regulatory 

agencies impose the taxes 𝜏1 and 𝜏2 per unit biomass of the harvested fish of the prey and predator species 

respectively and 𝜏1 < 𝜏2. If 𝑝1 be the market price per unit biomass of the harvested prey fish species and 𝑐1 be 

the cost per unit effort for harvesting the prey species then the net economic revenue to the fishermen (perceived 
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rent) is  𝑞1 𝑝1 − 𝜏1 𝑥 − 𝑐1 𝐸1, where 𝑞1 is the catchability coefficient of the prey population. Similarly, if 𝑝2 be 

the market price per unit biomass of the harvested predator fish species and 𝑐2 be the cost per unit effort for 

harvesting the predator species then the net economic revenue to the fishermen is  𝑞2 𝑝2 − 𝜏2 𝑦 − 𝑐2 𝐸2 where 

𝑞2 is the catchability coefficient of the predator population. 

 

In this model it is considered that 𝐸𝑖 𝑡   𝑖 = 1,2  as the dynamic variables i.e. time dependent variables 

governed by the differential equations 
𝑑𝐸1(𝑡)

𝑑𝑡
= 𝜆1 𝑞1 𝑝1 − 𝜏1 𝑥 − 𝑐1 𝐸1, and  

𝑑𝐸2(𝑡)

𝑑𝑡
= 𝜆2 𝑞2 𝑝2 − 𝜏2 𝑦 − 𝑐2 𝐸2,  

where 𝜆𝑖 𝑖 = 1,2  are the stiffness parameters measuring the effort and the perceived rent for the prey and 

predator populations respectively. 

Therefore, we have the following system of differential equations: 

 

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑟𝑥  1 −

𝑥

𝑘
 − 𝛼𝑥𝑦 − 𝑞1𝐸1𝑥           

𝑑𝑦 (𝑡)

𝑑𝑡
=

𝛽𝑥𝑦

𝑘
− 𝑠𝑦 − 𝑞2𝐸2𝑦                          

𝑑𝐸1(𝑡)

𝑑𝑡
= 𝜆1 𝑞1 𝑝1 − 𝜏1 𝑥 − 𝑐1 𝐸1               

𝑑𝐸2(𝑡)

𝑑𝑡
= 𝜆2 𝑞2 𝑝2 − 𝜏2 𝑦 − 𝑐2 𝐸2,               

  
 

  
 

                  (2) 

 

III. STEADY STATE ANALYSIS: 

 

The steady states of the system of equations (2) are given by 

 
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

𝑑𝐸1

𝑑𝑡
=

𝑑𝐸2

𝑑𝑡
= 0                                               (3) 

We have the following steady states 𝑃𝑖 𝑥
 𝑖 , 𝑦(𝑖), 𝐸1

(𝑖)
, 𝐸2

(𝑖)   𝑖 = 0,1,2,3,4  of the system: 

i) 𝑃0 0,0,0,0  is the trivial steady state of the system of equations (2). In absence of the prey species only the 

trivial solution is the solution of the system. 

ii) 𝑃1 𝑘, 0,0,0  is the axial steady state of the system (2). In absence of the predator, the environmental carrying 

capacity is the steady state of the prey species for the unexploited  𝐸1 = 𝐸2 = 0  system. 

iii) 𝑃2 𝑥 2 , 𝑦(2), 0,0  is the non-trivial steady state for the unexploited system where 

     𝑥(2) =
𝑘𝑠

𝛽
> 0                                                             (4) 

    and 𝑦(2) =
𝑟 𝛽−𝑠 

𝛼𝛽
                                                        (5) 

    Now, 𝑦(2) > 0 iff 𝛽 > 𝑠 i.e. the reproductive rate of the predator species is greater than the natural mortality 

rate of the predator species and this is always true in the ideal living conditions for the fish species. 

iv) 𝑃3 𝑥 3 , 0, 𝐸1
(3)

, 0  is the non-trivial steady state for the exploited prey population in absence of predator. 

     Here 𝑥(3) =
𝑐1

𝑞1 𝑝1−𝜏1 
                                                 (6) 

     and 𝐸1
(3)

=
𝑟

𝑞1
 1 −

𝑐1

𝑘𝑞1 𝑝1−𝜏1 
                                   (7) 

     𝐸1
(3)

> 0 iff 0 < 𝜏1 < 𝑝1 −
𝑐1

𝑘𝑞1
                                 (8) 

     Condition (8) is the necessary and sufficient condition for the existence of the non-trivial steady state of the 

exploited prey population when predation effect is not considered. 

v)  𝑃4 𝑥 4 , 𝑦(4), 0, 𝐸2
(4)

  is the non-trivial steady state of the selective harvesting prey-predator system when the 

predator species is harvested and the prey species is not allowed to be harvested. In this case 

      𝑥(4) = 𝑘  1 −
𝛼𝑐2

𝑟𝑞2 𝑝2−𝜏2 
                                           (9) 

     𝑦(4) =
𝑐2

𝑞2 𝑝2−𝜏2 
                                                         (10) 

     𝐸2
(4)

=
1

𝑞2
 𝛽 − 𝑠 −

𝛼𝛽 𝑐2

𝑟𝑞2 𝑝2−𝜏2 
                                   (11) 

     Now, 𝑥(4) > 0 iff 0 < 𝜏2 < 𝑝2 −
𝛼𝑐2

𝑟𝑞2
                       (12) 
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             𝑦(4) > 0 iff  0 < 𝜏2 < 𝑝2 

           𝐸2
(4)

> 0  iff 0 < 𝜏2 < 𝑝2 −
𝛼𝛽 𝑐2

𝑟𝑞2 𝛽−𝑠 
, 𝛽 > 𝑠      (13) 

     So the non-trivial steady state 𝑃4 𝑥 4 , 𝑦(4), 0, 𝐸2
(4)  exists if and only if 

     0 < 𝜏2 < 𝑚𝑖𝑛  𝑝2 , 𝑝2 −
𝛼𝑐2

𝑟𝑞2
, 𝑝2 −

𝛼𝛽 𝑐2

𝑟𝑞2 𝛽−𝑠 
 = 𝑝2 −

𝛼𝛽 𝑐2

𝑟𝑞2 𝛽−𝑠 
 since 

𝛽

𝛽−𝑠
> 1. 

     This case is discussed in details by Pradhan [16]. 

vi)  𝑃5 𝑥
 5 , 𝑦(5),𝐸1

(5)
, 𝐸2

(5)  is the non-trivial interior steady state of the system (2) where 

       𝑥(5) =
𝑐1

𝑞1 𝑝1−𝜏1 
 .                                                                           (14) 

       𝑦(5) =
𝑐2

𝑞2 𝑝2−𝜏2 
 .                                                                           (15) 

      𝐸1
(5)

=
1

𝑞1
 𝑟  1 −

𝑐1

𝑘𝑞1 𝑝1−𝜏1 
 −

𝛼𝑐2

𝑞2 𝑝2−𝜏2 
 .                                     (16) 

      𝐸2
(5)

=
1

𝑞2
 

𝛽𝑐1

𝑘𝑞1 𝑝1−𝜏1 
− 𝑠 .                                                             (17) 

      Here 𝑥(5) > 0 since 0 < 𝜏1 < 𝑝1 and 𝑦(5) > 0 since 0 < 𝜏2 < 𝑝2 . 

      𝐸2
(5)

> 0 iff  𝑚𝑎𝑥  0, 𝑝1 −
𝛽𝑐1

𝑘𝑞1𝑠
 < 𝜏1 < 𝑝1 .                                (18) 

      𝐸1
(5)

> 0 iff 
𝑟𝑐1

𝑘𝑞1 𝑝1−𝜏1 
+

𝛼𝑐2

𝑞2 𝑝2−𝜏2 
< 𝑟.                                          (19) 

      (18) and (19) are the necessary and sufficient conditions for existence of the non-trivial  interior equilibrium 

point 𝑃5 𝑥
 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)  of the system of equations (2). 

       𝐸2
(5)

> 0 implies  
𝑐1

𝑘𝑞1 𝑝1−𝜏1 
>

𝑠

𝛽
, by (17).  

       If 𝐸1
(5)

> 0, then 
𝛼𝑐2

𝑞2 𝑝2−𝜏2 
< 𝑟 −

𝑟𝑠

𝛽
 ⇒ 𝜏2 < 𝑝2 −

𝛼𝛽 𝑐2

𝑞2𝑟 𝛽−𝑠 
 .          (20)    

        Therefore, (18) and (19) are the necessary conditions for existence of the non-trivial  interior equilibrium 

point 𝑃5 𝑥
 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)  of the system of equations (2). 

        Again 
𝑐1

𝑘𝑞1 𝑝1−𝜏1 
<

1

2
 and 

𝛼𝑐2

𝑞2 𝑝2−𝜏2 
<

𝑟

2
 imply 

𝑟𝑐1

𝑘𝑞1 𝑝1−𝜏1 
+

𝛼𝑐2

𝑞2 𝑝2−𝜏2 
< 𝑟. 

       Now, 
𝑐1

𝑘𝑞1 𝑝1−𝜏1 
<

1

2
 ⇒  𝜏1 < 𝑝1 −

2𝑐1

𝑘𝑞1
  and 

𝛼𝑐2

𝑞2 𝑝2−𝜏2 
<

𝑟

2
 ⇒  𝜏2 < 𝑝2 −

2𝛼𝑐2

𝑟𝑞2
. 

       So 𝑚𝑎𝑥  0, 𝑝1 −
𝛽𝑐1

𝑘𝑞1𝑠
 < 𝜏1 < 𝑝1 −

2𝑐1

𝑘𝑞1
                                       (21) 

       and  0 < 𝜏2 < 𝑝2 −
2𝛼𝑐2

𝑟𝑞2
                                                                (22) 

       are the sufficient conditions for existence of the non-trivial  interior equilibrium point 

𝑃5 𝑥
 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)  of the system of equations (2). 

       Let  
1

𝑝1−𝜏1
= 𝑇1 and 

1

𝑝2−𝜏2
= 𝑇2 . 

       Therefore, 𝐸2
(5)

> 0 iff  𝑇1 >
𝑘𝑞1𝑠

𝛽𝑐1
  and 𝐸1

(5)
> 0 iff  

𝑟𝑐1

𝑘𝑞1
𝑇1 +

𝛼𝑐2

𝑞2
𝑇2 < 𝑟. 

       Thus we have the following system of linear inequalities: 

           

𝑟𝑐1

𝑘𝑞1
𝑇1 +

𝛼𝑐2

𝑞2
𝑇2 < 𝑟

                   𝑇1 >
𝑘𝑞1𝑠

𝛽𝑐1
 

             𝑇2 > 0  
 

 
                                                                (23) 

 

        The region bounded by the system of inequalities (23) is the feasible region or the solution space of the 

system of inequalities (23). Since this region is bounded, so the solutions  𝑇1 , 𝑇2  of the system of 

inequalities (23) are also bounded. Due to boundedness of 𝑇1  and 𝑇2 , 𝜏1 and 𝜏2 are also bounded. Hence 

for existence of the non-trivial interior equilibrium point 𝑃5 𝑥
 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)
  of the dynamical system 

(2) there exist the bounded solutions  𝜏1 , 𝜏2  satisfying the inequalities (18) and (19). 

 

IV. LOCAL STABILITY ANALYSIS OF STEADY STATES: 

 

The variational matrix of the unexploited  𝐸1 = 𝐸2 = 0  system corresponding to the system of equations (2) is 
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 𝑉 𝑥, 𝑦 =  
𝑟 −

2𝑟𝑥

𝑘
− 𝛼𝑥 −𝛼𝑥

𝛽𝑦

𝑘

𝛽𝑥

𝑘
− 𝑠

 .                                                  (24) 

Therefore, 𝑉 0,0 =  
𝑟 0
0 −𝑠

 . 

The eigen values of 𝑉 0,0  are 𝑟  > 0  and – 𝑠  < 0 . So the trivial steady state 𝑃0 0,0,0,0  is an unstable 

steady state of the system of equations (2). 

𝑉 𝑘, 0 =  
−𝑟 0
0 𝛽 − 𝑠

  by (24). 

Eigen values of 𝑉 𝑘, 0  are – 𝑟  < 0  and 𝛽 − 𝑠. So the axial or boundary steady state 𝑃1 𝑘, 0,0,0  of the system 

(2) is stable or unstable according as 𝛽 < 𝑠 or 𝛽 > 𝑠.  

If the reproductive rate of the predator is less than its natural mortality rate, then the axial equilibrium point is 

asymptotically stable. If the reproductive rate of the predator is greater than its natural mortality rate, then the 

axial equilibrium point is unstable. Biological interpretation of this result is that when the reproductive rate of 

the predator species is less than its mortality rate then the predator species exponentially dies out and after some 

time there will be no predation effect. Since the system is unexploited and there is no predation effect, so the 

steady state of the prey species is equal to the environmental carrying capacity. 

 𝑉 𝑥(2), 𝑦(2) =  
−

𝑟𝑥 (2)

𝑘
−𝛼𝑥(2)

𝛽𝑦 (2)

𝑘
0

  by (24). 

Characteristic equation of the matrix 𝑉 𝑥(2), 𝑦(2)  is  
−

𝑟𝑥 (2)

𝑘
− 𝜆 −𝛼𝑥(2)

𝛽𝑦 (2)

𝑘
−𝜆

 = 0. 

or, 𝜆2 +
𝑟𝑥 (2)

𝑘
𝜆 +

𝛼𝛽 𝑥 (2)𝑦 (2)

𝑘
= 0. 

Sum of the eigen values is  −
𝑟𝑥 (2)

𝑘
< 0 and product of the eigen values is 

𝛼𝛽 𝑥 (2)𝑦 (2)

𝑘
> 0. 

So the eigen values of 𝑉 𝑥(2), 𝑦(2)  are both negative or complex conjugate with negative real parts. Therefore, 

the non-trivial steady state 𝑃2 𝑥
(2), 𝑦(2), 0,0  of the unexploited  𝐸1 = 𝐸2 = 0  system is either a stable node or 

stable focus. 

The variational matrix of the system for the exploited prey population in absence of predator is 

 𝑉 𝑥, 𝐸1 =  
𝑟 −

2𝑟𝑥

𝑘
− 𝛼𝑥 −𝑞1𝑥

𝜆1𝑞1 𝑝1 − 𝜏1 𝐸1 𝜆1 𝑞1 𝑝1 − 𝜏1 𝑥 − 𝑐1 
 .Therefore, 

𝑉 𝑥(3), 𝐸1
(3) =  

−
𝑟𝑥 (3)

𝑘
−𝑞1𝑥

(3)

𝜆1𝑞1 𝑝1 − 𝜏1 𝐸1
(3)

0
 . 

Sum of the eigen values of 𝑉 𝑥(3), 𝐸1
(3)

  is 𝑡𝑟𝑎𝑐𝑒𝑉 𝑥(3), 𝐸1
(3)

 = −
𝑟𝑥 (3)

𝑘
< 0 and the product of the eigen values 

is 𝑑𝑒𝑡𝑉 𝑥(3), 𝐸1
(3) = 𝜆1𝑞1

2 𝑝1 − 𝜏1 𝑥
(3)𝐸1

(3)
> 0. So the eigen values of 𝑉 𝑥(3), 𝐸1

(3)  are both negative or 

complex conjugate with negative real parts. Therefore, the non-trivial steady state 𝑃3 𝑥
 3 , 0, 𝐸1

(3)
, 0  for the 

exploited prey species in absence of predator species is always a stable node or stable focus if it exists i.e. if the 

regulatory agencies impose a tax 𝜏1 such that 0 < 𝜏1 < 𝑝1 −
𝑐1

𝑘𝑞1
, by (8). Biologically it is true that if the 

regulatory agencies control the over exploitation by imposing a suitable tax, then in absence of predator the 

steady state level of the prey species and the effort level will be stable. 

The variational matrix of the unexploited prey (𝐸1 = 0) and exploited predator (𝐸2 ≠ 0) system is 

  𝑉 𝑥, 𝑦, 𝐸2 =  

𝑟 −
2𝑟𝑥

𝑘
− 𝛼𝑦 −𝛼𝑥 0

𝛽𝑦

𝑘

𝛽𝑥

𝑘
− 𝑠 − 𝑞2𝐸2 −𝑞2𝑦

0 𝜆2𝑞2 𝑝2 − 𝜏2 𝐸2 𝜆2 𝑞2 𝑝2 − 𝜏2 𝑦 − 𝑐2 

 . 
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Therefore, 𝑉 𝑥(4), 𝑦(4), 𝐸2
(4)

 =

 

 
 

−
𝑟𝑥 (4)

𝑘
−𝛼𝑥(4) 0

𝛽𝑦(4)

𝑘
0 −𝑞2𝑦

(4)

0 𝜆2𝑞2 𝑝2 − 𝜏2 𝐸2
(4)

0  

 
 

. 

The characteristic equation of 𝑉 𝑥(4), 𝑦(4),𝐸2
(4)

  is 

 
 

−
𝑟𝑥 (4)

𝑘
− 𝜆 −𝛼𝑥(4) 0

𝛽𝑦(4)

𝑘
−𝜆 −𝑞2𝑦

(4)

0 𝜆2𝑞2 𝑝2 − 𝜏2 𝐸2
(4)

−𝜆

 
 = 0. 

or, 𝜆3 +
𝑟𝑥  4 

𝑘
𝜆2 +  𝜆2𝑞2

2 𝑝2 − 𝜏2 𝑦
 4 𝐸2

 4 
+

𝛼𝛽 𝑥  4 𝑦 4 

𝑘
 𝜆 +

1

𝑘
𝜆2𝑟𝑞2

2 𝑝2 − 𝜏2 𝑥
(4)𝑦(4)𝐸2

(4)
= 0  

or, 𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0, where 𝑎1 =

𝑟𝑥  4 

𝑘
> 0,  

𝑎2 = 𝜆2𝑞2
2 𝑝2 − 𝜏2 𝑦

 4 𝐸2
 4 

+
𝛼𝛽 𝑥  4 𝑦  4 

𝑘
> 0 and 𝑎3 =

1

𝑘
𝜆2𝑟𝑞2

2 𝑝2 − 𝜏2 𝑥
(4)𝑦(4)𝐸2

(4)
> 0. 

Now, 𝑎1𝑎2 − 𝑎3 =
𝑟

𝑘 2 𝛼𝛽 𝑥(4) 
2
𝑦(4) > 0. 

Therefore, by Routh-Hurwitz criterion [17] the non-trivial steady state 𝑃4 𝑥 4 , 𝑦(4), 0, 𝐸2
(4)  of the unexploited 

prey and exploited predator system is locally asymptotically stable, if it exists. 

Now we discuss the stability of the non-trivial interior equilibrium 𝑃5 𝑥
 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)  of the exploited 

 𝐸1 ≠ 0, 𝐸2 ≠ 0  system (2). The variational matrix of the system of equations (2) is 

 𝑉 𝑥, 𝑦, 𝐸1 ,𝐸2 =  𝐽𝑖𝑗  4×4
,  𝑖, 𝑗 = 1,2,3,4  where 

𝐽11 =
𝜕

𝜕𝑥
 

𝑑𝑥

𝑑𝑡
 = 𝑟 −

2𝑟𝑥

𝑘
− 𝛼𝑦 − 𝑞1𝐸1,    𝐽12 =

𝜕

𝜕𝑦
 

𝑑𝑥

𝑑𝑡
 = −𝛼𝑥 ,  𝐽13 =

𝜕

𝜕𝐸1
 

𝑑𝑥

𝑑𝑡
 = −𝑞1𝑥,  𝐽14 =

𝜕

𝜕𝐸2
 

𝑑𝑥

𝑑𝑡
 = 0,  

𝐽21 =
𝜕

𝜕𝑥
 

𝑑𝑦

𝑑𝑡
 =

𝛽𝑦

𝑘
, 𝐽22 =

𝜕

𝜕𝑦
 

𝑑𝑦

𝑑𝑡
 =

𝛽𝑥

𝑘
− 𝑠 − 𝑞2𝐸2 , 𝐽23 =

𝜕

𝜕𝐸1
 

𝑑𝑦

𝑑𝑡
 = 0,  

𝐽24 =
𝜕

𝜕𝐸2
 

𝑑𝑦

𝑑𝑡
 = −𝑞2𝑦,  𝐽31 =

𝜕

𝜕𝑥
 

𝑑𝐸1

𝑑𝑡
 = 𝜆1𝑞1 𝑝1 − 𝜏1 𝐸1,  𝐽32 =

𝜕

𝜕𝑦
 

𝑑𝐸1

𝑑𝑡
 = 0, 

𝐽33 =
𝜕

𝜕𝐸1
 

𝑑𝐸1

𝑑𝑡
 = 𝜆1 𝑞1 𝑝1 − 𝜏1 𝑥 − 𝑐1 , 𝐽34 =

𝜕

𝜕𝐸2
 

𝑑𝐸1

𝑑𝑡
 = 0, 𝐽41 =

𝜕

𝜕𝑥
 

𝑑𝐸2

𝑑𝑡
 = 0, 

𝐽42 =
𝜕

𝜕𝑦
 

𝑑𝐸2

𝑑𝑡
 = 𝜆2𝑞2 𝑝2 − 𝜏2 𝐸2 , 𝐽43 =

𝜕

𝜕𝐸1
 

𝑑𝐸2

𝑑𝑡
 = 0,  

𝐽44 =
𝜕

𝜕𝐸2
 

𝑑𝐸2

𝑑𝑡
 = 𝜆2 𝑞2 𝑝2 − 𝜏2 𝑦 − 𝑐2 .  

Therefore, 𝑉 𝑥 5 , 𝑦(5), 𝐸1
(5)

, 𝐸2
(5) =  𝐽𝑖𝑗  𝑥

 5 , 𝑦(5), 𝐸1
(5)

, 𝐸2
(5)  

4×4
 such that  

𝐽11 𝑥 5 , 𝑦(5),𝐸1
(5)

, 𝐸2
(5) = −

𝑟𝑥 (5)

𝑘
, 𝐽12 𝑥 5 , 𝑦(5),𝐸1

(5)
, 𝐸2

(5) = −𝛼𝑥(5),  

𝐽13 𝑥 5 , 𝑦(5),𝐸1
(5)

, 𝐸2
(5)

 = −𝑞1𝑥
(5), 𝐽14 𝑥 5 , 𝑦(5),𝐸1

(5)
, 𝐸2

(5)
 = 0,  

𝐽21 𝑥 5 ,𝑦(5), 𝐸1
(5)

, 𝐸2
(5)

 =
𝛽𝑦 (5)

𝑘
, 𝐽22 𝑥 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)
 = 0 = 𝐽23 𝑥 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)
 , 

𝐽24 𝑥 5 ,𝑦(5), 𝐸1
(5)

, 𝐸2
(5)

 = −𝑞2𝑦
(5), 𝐽31 𝑥 5 ,𝑦(5), 𝐸1

(5)
, 𝐸2

(5)
 = 𝜆1𝑞1 𝑝1 − 𝜏1 𝐸1

(5)
, 

𝐽32 𝑥 5 ,𝑦(5), 𝐸1
(5)

, 𝐸2
(5) = 0 = 𝐽33 𝑥 5 ,𝑦(5), 𝐸1

(5)
, 𝐸2

(5) = 𝐽34 𝑥 5 , 𝑦(5),𝐸1
(5)

, 𝐸2
(5) , 

𝐽41 𝑥 5 ,𝑦(5), 𝐸1
(5)

, 𝐸2
(5) = 0, 𝐽42 𝑥

 5 , 𝑦(5), 𝐸1
(5)

, 𝐸2
(5) = 𝜆2𝑞2 𝑝2 − 𝜏2 𝐸2

(5)
, 

𝐽43 𝑥 5 ,𝑦(5), 𝐸1
(5)

, 𝐸2
(5) = 0 = 𝐽44 𝑥 5 ,𝑦(5), 𝐸1

(5)
, 𝐸2

(5) .  

 

The characteristic equation of the matrix 𝑉 𝑥 5 , 𝑦(5), 𝐸1
(5)

, 𝐸2
(5)  is 

 𝑑𝑒𝑡 𝑉 𝑥 5 , 𝑦(5), 𝐸1
(5)

, 𝐸2
(5)

 − 𝜆𝐼4 = 0. 

 ⇒ 𝜆4 +
𝑟𝑥  5 

𝑘
𝜆3 +  

𝛼𝛽 𝑥  5 𝑦  5 

𝑘
+ 𝑞1

2𝜆1 𝑝1 − 𝜏1 𝑥
 5 𝐸1

 5 
+ 𝑞2

2𝜆2 𝑝2 − 𝜏2 𝑦
 5 𝐸2

 5 
 𝜆2 + 

𝑟𝑥 (5)

𝑘
𝑞2

2𝜆2 𝑝2 − 𝜏2 𝑦
 5 𝐸2

 5 
𝜆 + 𝑞1

2𝑞2
2𝜆1𝜆2 𝑝1 − 𝜏1  𝑝2 − 𝜏2 𝑥

(5)𝑦(5)𝐸1
(5)

𝐸2
(5)

= 0. 

⇒ 𝜆4 + 𝑚3𝜆
3 + 𝑚2𝜆

2 + 𝑚1𝜆 + 𝑚0 = 0, where 

𝑚3 =
𝑟𝑥  5 

𝑘
> 0,  
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𝑚2 =
𝛼𝛽 𝑥  5 𝑦 5 

𝑘
+ 𝑞1

2𝜆1 𝑝1 − 𝜏1 𝑥
 5 𝐸1

 5 
+ 𝑞2

2𝜆2 𝑝2 − 𝜏2 𝑦
 5 𝐸2

 5 
> 0,  

𝑚1 =
𝑟𝑥 (5)

𝑘
𝑞2

2𝜆2 𝑝2 − 𝜏2 𝑦
 5 𝐸2

 5 
> 0,  

𝑚0 = 𝑞1
2𝑞2

2𝜆1𝜆2 𝑝1 − 𝜏1  𝑝2 − 𝜏2 𝑥
(5)𝑦(5)𝐸1

(5)
𝐸2

(5)
> 0.  

Now, 𝑚3𝑚2 − 𝑚1 =
𝛼𝛽𝑟  𝑥  5  

2
𝑦  5 

𝑘
+

𝑟𝑥  5 

𝑘
𝑞1

2𝜆1 𝑝1 − 𝜏1 𝑥
 5 𝐸1

 5 
> 0. 

𝑚3𝑚2𝑚1 − 𝑚1
2 − 𝑚3

2𝑚0 =
𝛼𝛽 𝑟2𝑞2

2𝜆2 𝑝2−𝜏2  𝑥  5  
3
 𝑦(5) 

2
𝐸2

 5 

𝑘 3 > 0.  

Therefore, by Routh-Hurwitz criterion [17] the non-trivial interior steady state 𝑃5 𝑥
 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)
  of the 

exploited system (2) is always locally asymptotically stable, if it exists. 

 

V. GLOBAL STABILITY ANALYSIS OF THE STEADY STATES: 

 

We now prove whether the non-trivial interior steady state 𝑃5 𝑥
 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)
  of the system of equations 

(2) is globally asymptotically stable or not. For the fixed environmental carrying capacity for the populations, 

the prey and predator densities are bounded. Since the regulatory agencies control the over exploitation of fish 

populations by imposing suitable taxes, the effort levels 𝐸1 and 𝐸2 are also bounded. Thus the solutions of the 

dynamical system (2) are uniformly bounded in the finite region 

 𝑅4
+ =   𝑥, 𝑦, 𝐸1 , 𝐸2 : 𝑥, 𝑦, 𝐸1 , 𝐸2 ∈ 𝑅, 𝑥 > 0, 𝑦 > 0, 𝐸1 > 0, 𝐸2 > 0 . 

 

Let us consider the following Lypunov function [18]: 

𝐿 𝑥, 𝑦, 𝐸1 , 𝐸2 = 𝑥 − 𝑥 5 − 𝑥 5 𝑙𝑛  
𝑥

𝑥  5  + 𝐿1  𝑦 − 𝑦 5 − 𝑦 5 𝑙𝑛  
𝑦

𝑦 5     

+𝐿2  𝐸1 − 𝐸1
(5)

− 𝐸1
(5)

𝑙𝑛  
𝐸1

𝐸1
(5)  + 𝐿3  𝐸2 − 𝐸2

(5)
− 𝐸2

(5)
𝑙𝑛  

𝐸2

𝐸2
(5)    

where 𝐿1 , 𝐿2 , 𝐿3 are positive constants to be determined in the subsequent steps. 

Here 𝐿 𝑥(5), 𝑦(5), 𝐸1
(5)

,𝐸2
(5) = 0 and  

lim 𝑥 ,𝑦 ,𝐸1 ,𝐸2 → 0,0,0,0 𝐿 𝑥, 𝑦, 𝐸1 , 𝐸2 = lim 𝑥,𝑦 ,𝐸1 ,𝐸2 → ∞ ,∞ ,∞ ,∞ 𝐿 𝑥, 𝑦, 𝐸1 , 𝐸2 = ∞.  

 

The time derivative of 𝐿 𝑥, 𝑦, 𝐸1 ,𝐸2  along the solution of (2) is 

 
𝑑

𝑑𝑡
 𝐿 𝑥, 𝑦, 𝐸1 ,𝐸2  =

𝑥−𝑥  5 

𝑥

𝑑𝑥

𝑑𝑡
+ 𝐿1

𝑦−𝑦 5 

𝑦

𝑑𝑦

𝑑𝑡
+ 𝐿2

𝐸1−𝐸1
(5)

𝐸1

𝑑𝐸1

𝑑𝑡
+ 𝐿3

𝐸2−𝐸2
(5)

𝐸2

𝑑𝐸2

𝑑𝑡
  

       =  𝑥 − 𝑥 5   𝑟  1 −
𝑥

𝑘
 − 𝛼𝑦 − 𝑞1𝐸1 + 𝐿1 𝑦 − 𝑦 5   

𝛽𝑥

𝑘
− 𝑠 − 𝑞2𝐸2  

+𝐿2𝜆1 𝐸1 − 𝐸1
(5)

  𝑞1 𝑝1 − 𝜏1 𝑥 − 𝑐1 + 𝐿3𝜆2 𝐸2 − 𝐸2
(5)

  𝑞2 𝑝2 − 𝜏2 𝑦 − 𝑐2  

      =  𝑥 − 𝑥 5    𝑟  1 −
𝑥

𝑘
 − 𝛼𝑦 − 𝑞1𝐸1 −  𝑟  1 −

𝑥 (5)

𝑘
 − 𝛼𝑦(5) − 𝑞1𝐸1

(5)   

            +𝐿1 𝑦 − 𝑦 5    
𝛽𝑥

𝑘
− 𝑠 − 𝑞2𝐸2 −  

𝛽𝑥 (5)

𝑘
− 𝑠 − 𝑞2𝐸2

(5)   

            +𝐿2𝜆1 𝐸1 − 𝐸1
(5)   𝑞1 𝑝1 − 𝜏1 𝑥 − 𝑐1 −  𝑞1 𝑝1 − 𝜏1 𝑥

(5) − 𝑐1   

            +𝐿3𝜆2 𝐸2 − 𝐸2
(5)

   𝑞2 𝑝2 − 𝜏2 𝑦 − 𝑐2 −  𝑞2 𝑝2 − 𝜏2 𝑦
(5) − 𝑐2   

        =  𝑥 − 𝑥 5   −
𝑟

𝑘
 𝑥 − 𝑥 5  − 𝛼 𝑦 − 𝑦 5  − 𝑞1 𝐸1 − 𝐸1

(5)
   

          +𝐿1 𝑦 − 𝑦 5   
𝛽

𝑘
 𝑥 − 𝑥 5  − 𝑞2 𝐸2 − 𝐸2

 5 
   

+𝐿2𝜆1𝑞1 𝑝1 − 𝜏1  𝑥 − 𝑥 5   𝐸1 − 𝐸1
(5) + 𝐿3𝜆2𝑞2 𝑝2 − 𝜏2  𝑦 − 𝑦 5   𝐸2 − 𝐸2

(5)  

       = −
𝑟

𝑘
 𝑥 − 𝑥(5) 

2
< 0 for 𝐿1 =

𝛼𝑘

𝛽
> 0, 𝐿2 =

1

𝜆1 𝑝1−𝜏1 
> 0  and 𝐿3 =

𝛼𝑘

𝜆2𝛽 𝑝2−𝜏2 
> 0. 

 

Therefore, 
𝑑

𝑑𝑡
 𝐿 𝑥, 𝑦, 𝐸1 , 𝐸2  < 0 ∀ 𝑥, 𝑦, 𝐸1 , 𝐸2 ∈ 𝑅4

+ and 
𝑑

𝑑𝑡
 𝐿 𝑥, 𝑦, 𝐸1 , 𝐸2  = 0 at 𝑃5 𝑥

 5 , 𝑦(5), 𝐸1
(5)

, 𝐸2
(5) . 

This shows that 
𝑑

𝑑𝑡
 𝐿 𝑥, 𝑦, 𝐸1 , 𝐸2   is negative definite in the region 𝑅4

+ and hence by Lassel’s invariance 

principle [19] the non-trivial interior steady state 𝑃5 𝑥
 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)
  of the exploited system of equations 
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(2) is globally asymptotically stable in the region 𝑅4
+ =   𝑥, 𝑦, 𝐸1 , 𝐸2 : 𝑥, 𝑦, 𝐸1 , 𝐸2 ∈ 𝑅, 𝑥 > 0, 𝑦 > 0, 𝐸1 >

0, 𝐸2 > 0 . 

 

VI. OPTIMAL HARVEST POLICY: 

 

In this section an optimal harvest policy is determined to maximize the total discounted net revenue from the 

harvesting biomass using taxes as control parameters.  

The objective of the regulatory agencies is to maximize 𝐽 =  𝛱 𝑥, 𝑦, 𝐸1 , 𝐸2 , 𝑡 𝑒−𝛿𝑡∞

0
𝑑𝑡 where 𝛿 denotes the 

instantaneous annual rate of discount and 𝛱 𝑥, 𝑦, 𝐸1 , 𝐸2 , 𝑡  is the net revenue of the society.  

Therefore, 𝛱 𝑥, 𝑦, 𝐸1 , 𝐸2 , 𝑡 = net revenue of the fishermen + net revenue of the regulatory agencies. 

            =  𝑝1 − 𝜏1 𝑞1𝐸1𝑥 − 𝑐1𝐸1 +  𝑝2 − 𝜏2 𝑞2𝐸2𝑦 − 𝑐2𝐸2 + 𝜏1𝑞1𝐸1𝑥 + 𝜏2𝑞2𝐸2𝑦 

            =  𝑝1𝑞1𝑥 − 𝑐1 𝐸1 +  𝑝2𝑞2𝑦 − 𝑐2 𝐸2. 

The objective of the regulatory agencies is to determine the optimal values of the taxes 𝜏1 and 𝜏2 in order 

maximize 𝐽 subject to the state equations (3) i.e. 
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

𝑑𝐸1

𝑑𝑡
=

𝑑𝐸2

𝑑𝑡
= 0 and the constraints 0 < 𝜏1 < 𝜏1(𝑚𝑎𝑥 ) 

and 0 < 𝜏2 < 𝜏2(𝑚𝑎𝑥 ). 

The Pontryagin Maximum Principle [20] is applied to obtained the optimal equilibrium solution of the system of 

equations (2). 

The Hamiltonian of this control problem is 

𝐻 = 𝑒−𝛿𝑡   𝑝1𝑞1𝑥 − 𝑐1 𝐸1 +  𝑝2𝑞2𝑦 − 𝑐2 𝐸2 + 𝜇1 𝑡  𝑟𝑥  1 −
𝑥

𝑘
 − 𝛼𝑥𝑦 − 𝑞1𝐸1𝑥 

+ 𝜇2 𝑡  
𝛽𝑥𝑦

𝑘
− 𝑠𝑦 − 𝑞2𝐸2𝑦  

              +𝜇3 𝑡 𝜆1 𝑞1 𝑝1 − 𝜏1 𝑥 − 𝑐1 𝐸1 +𝜇4 𝑡 𝜆2 𝑞2 𝑝2 − 𝜏2 𝑦 − 𝑐2 𝐸2 .           (25)                                                              

where 𝜇𝑖 𝑡  𝑖 = 1,2,3,4  are adjoints variables. 

Since 𝐻 is the linear function of 𝜏1 and 𝜏2, the conditions that the Hamiltonian 𝐻 be maximum for 𝜏1 and 𝜏2 

satisfying the conditions (3) are  
𝜕𝐻

𝜕𝜏1
=

𝜕𝐻

𝜕𝜏2
= 0 ⇒ 𝜇3 𝑡 = 𝜇4 𝑡 = 0.                                                                          (26)  

The adjoint equations are 
𝑑𝜇1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥
,
𝑑𝜇2

𝑑𝑡
= −

𝜕𝐻

𝜕𝑦
,
𝑑𝜇3

𝑑𝑡
= −

𝜕𝐻

𝜕𝐸1
,
𝑑𝜇4

𝑑𝑡
= −

𝜕𝐻

𝜕𝐸2
           (27) 

Therefore, 
𝑑𝜇1

𝑑𝑡
= − 𝑒−𝛿𝑡𝑝1𝑞1𝐸1 + 𝜇1 𝑡  𝑟 −

2𝑟𝑥

𝑘
− 𝛼𝑦 − 𝑞1𝐸1 + 𝜇2(𝑡)

𝛽𝑦

𝑘
 .        (28) 

𝑑𝜇2

𝑑𝑡
= − 𝑒−𝛿𝑡𝑝2𝑞2𝐸2 − 𝜇1 𝑡 𝛼𝑥 + 𝜇2(𝑡)  

𝛽𝑥

𝑘
− 𝑠 − 𝑞2𝐸2  .                                    (29) 

𝑑𝜇3

𝑑𝑡
= −𝑒−𝛿𝑡  𝑝1𝑞1𝑥 − 𝑐1 + 𝜇1 𝑡 𝑞1𝑥 ⇒ 𝜇1 𝑡 = 𝑒−𝛿𝑡  𝑝1 −

𝑐1

𝑞1𝑥
  by (26).             (30) 

𝑑𝜇4

𝑑𝑡
= −𝑒−𝛿𝑡  𝑝2𝑞2𝑦 − 𝑐2 + 𝜇2 𝑡 𝑞2𝑦 ⇒ 𝜇2 𝑡 = 𝑒−𝛿𝑡  𝑝2 −

𝑐2

𝑞2𝑦
  by (26)             (31) 

From (28), (30) and (31), we have 

−𝛿𝑒−𝛿𝑡  𝑝1 −
𝑐1

𝑞1𝑥
 = −  𝑒−𝛿𝑡𝑝1𝑞1𝐸1 + 𝑒−𝛿𝑡  𝑝1 −

𝑐1

𝑞1𝑥
  𝑟 −

2𝑟𝑥

𝑘
− 𝛼𝑦 − 𝑞1𝐸1 + 𝑒−𝛿𝑡  𝑝2 −

𝑐2

𝑞2𝑦
 

𝛽𝑦

𝑘
   

using the state equation  
𝑑𝑥

𝑑𝑡
= 0. 

⇒ 𝛿 𝑝1𝑞1𝑥 − 𝑐1 = 𝑝1𝑞1𝑟𝑥 −
2𝑟𝑝1𝑞1𝑥2

𝑘
− 𝑝1𝑞1𝛼𝑥𝑦 +

𝑐1𝑟𝑥

𝑘
+

𝑝2𝑞1𝛽𝑥𝑦

𝑘
−

𝑐2𝛽𝑞1𝑥

𝑞2𝑘
  

⇒ 𝐴𝑥2 + 𝐵𝑥 + 𝐶𝑥𝑦 − 𝛿𝑐1 = 0                                                                                   (32) 

where 𝐴 =
2𝑟𝑝1𝑞1

𝑘
, 𝐵 =  𝛿𝑝1𝑞1 − 𝑝1𝑞1𝑟 −

𝑐1𝑟

𝑘
+

𝑐2𝛽𝑞1

𝑞2
  and 𝐶 = 𝑝1𝑞1𝛼 −

𝑝1𝑞1𝛽

𝑘
 . 

From (29), (30) and (31), we have 

−𝛿𝑒−𝛿𝑡  𝑝2 −
𝑐2

𝑞2𝑦
 = −{𝑒−𝛿𝑡𝑝2𝑞2𝐸2 − 𝑒−𝛿𝑡  𝑝1 −

𝑐1

𝑞1𝑥
 𝛼𝑥 +  𝑒−𝛿𝑡  𝑝2 −

𝑐2

𝑞2𝑦
  

𝛽𝑥

𝑘
− 𝑠 − 𝑞2𝐸2 }  

using the state equation 
𝑑𝑦

𝑑𝑡
= 0. 

⇒ 𝛿𝑝2𝑞2𝑦 − 𝛿𝑐2 = −𝑝1𝑞2𝛼𝑥𝑦 +
𝑐1𝑞2𝛼𝑦

𝑞1
+

𝑝2𝑞2𝛽𝑥𝑦

𝑘
− 𝑝2𝑞2𝑠𝑦  

⇒ 𝑦 =
𝛿𝑐2

𝐷+𝐸𝑥
                                                                                                                  (33) 

where 𝐷 = 𝛿𝑝2𝑞2 + 𝑝2𝑞2𝑠 −
𝑐1𝑞2𝛼

𝑞1
 and 𝐸 = 𝑝1𝑞2𝛼 −

𝑝2𝑞2𝛽

𝑘
. 
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From (32) and (33), we have  

𝐴𝑥2 + 𝐵𝑥 + 𝐶𝑥  
𝛿𝑐2

𝐷+𝐸𝑥
 − 𝛿𝑐1 = 0  

⇒ 𝑥3 +  
𝐷

𝐸
+

𝐵

𝐴
 𝑥2 +  

𝐵𝐷

𝐴𝐸
+

𝛿𝑐2𝐶

𝐴𝐸
−

𝛿𝑐1

𝐴
 𝑥 −

𝛿𝑐1𝐷

𝐴𝐸
= 0                                               (34) 

The cubic polynomial equation (34) with real coefficients has at least one real root and the product of the root is 
𝛿𝑐1𝐷

𝐴𝐸
. 

Equation (34) has at least one positive real root if 𝐷 and 𝐸 have same sign since 𝐴 > 0. 

Let 𝑥𝛿  be one of the positive real root of (34). 

Therefore, 𝑦𝛿 =
𝛿𝑐2

𝐷+𝐸𝑥𝛿
 by (33).                                                                                    (35) 

𝐸1𝛿 =
1

𝑞1
 𝑟 −

𝑟𝑥𝛿

𝑘
− 𝛼𝑦𝛿                                                                                             (36) 

𝐸2𝛿 =
1

𝑞2
 

𝛽𝑥𝛿

𝑘
− 𝑠                                                                                                        (37) 

𝜏1𝛿 = 𝑝1 −
𝑐1

𝑞1𝑥𝛿
                                                                                                            (38) 

𝜏2𝛿 = 𝑝2 −
𝑐2

𝑞2𝑦𝛿
                                                                                                            (39) 

Therefore,  𝑥𝛿 , 𝑦𝛿 ,𝐸1𝛿 , 𝐸2𝛿  be the optimal equilibrium solution of the system of equations (2) and the 

corresponding optimal taxes are 𝜏1𝛿  and 𝜏2𝛿  given by (38) and (39) respectively. 

 

VII. NUMERICAL EXAMPLE: 

 

Let us consider the hypothetical parameter values as follows: 

𝑟 = 10, 𝑘 = 100, 𝛼 = 10%, 𝛽 = 5, 𝑠 = 30%, 𝑞1 = 2%, 𝑞2 = 1%, 𝜆1 = 𝜆2 = 1, 𝑝1 = 20, 𝑝2 = 50, 𝑐1 = 15,        

𝑐2 = 20, 𝛿 = 10 in appropriate units. 

 

Here the reproductive rate of the predator species  𝛽 = 5  is greater than its natural mortality rate  𝑠 = 0.3 . So 

the non-trivial steady state 𝑃2 𝑥
(2), 𝑦(2), 0,0  of the unexploited system exists where  𝑥(2) = 6 and 𝑦(2) = 94 by 

(4) and (5) respectively. 

Now, 𝑝1 −
𝑐1

𝑘𝑞1
= 12.5. 

Therefore, the necessary and sufficient condition for existence of the non-trivial steady state 𝑃3 𝑥 3 , 0, 𝐸1
 3 

, 0  

of the exploited prey population when the predation effect is not considered is that 0 < 𝜏1 < 12.5. 

Again, 𝑝2 −
𝛼𝛽 𝑐2

𝑟𝑞2 𝛽−𝑠 
= 28.723.  If the regulatory agency imposes the tax 𝜏2 such that 0 < 𝜏2 < 28.723, then 

the non-trivial steady state 𝑃4 𝑥 4 , 𝑦(4), 0, 𝐸2
(4)

  of the unexploited prey and exploited predator system exists. 

Now, 𝑚𝑎𝑥  0, 𝑝1 −
𝛽𝑐1

𝑘𝑞1𝑠
 < 𝜏1 < 𝑝1 ⇒ 𝑚𝑎𝑥 0, −105 < 𝜏1 < 20 ⇒ 0 < 𝜏1 < 20 by (18) and 

 
𝑟𝑐1

𝑘𝑞1 𝑝1−𝜏1 
+

𝛼𝑐2

𝑞2 𝑝2−𝑐2 
< 𝑟 ⇒

75

20−𝜏1
+

200

50−𝜏2
< 10 by (19). 

 

Therefore, the necessary and sufficient conditions for existence of the non-trivial interior equilibrium point 

𝑃5 𝑥
 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)  of the system of equations (2) are 0 < 𝜏1 < 20 and 
75

20−𝜏1
+

200

50−𝜏2
< 10. 

From (21) and (22), we have 0 < 𝜏1 < 5 and 0 < 𝜏2 < 10, these are the sufficient conditions for existence of 

the non-trivial interior equilibrium point 𝑃5 𝑥
 5 , 𝑦(5), 𝐸1

(5)
, 𝐸2

(5)
  of the system of equations (2). 

If the regulatory agencies impose the taxes 𝜏1 and 𝜏2 such that 0 < 𝜏1 < 5 and 0 < 𝜏2 < 10, then all the steady 

states of the system of equations (2) exist. 

 

Let the regulatory agency imposes the taxes 𝜏1 = 4 and 𝜏2 = 8 units. Then 

(i) 𝑃1 100,0,0,0  is the axial equilibrium of the system (2). 

(ii) 𝑃2 6,94,0,0  is the non-trivial steady state for the unexploited system. This result shows that if both the 

species are not harvested then the prey steady state will be very low due to predation. So harvesting of 

predator species is necessary for existence of both species. 
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(iii) 𝑃3 46.875, 0, 265.625, 0  is the non-trivial steady state for the exploited prey population in absence of 

predator. 

(iv) 𝑃4 52.381,47.619,0,231.905  is the steady state of the exploited predator and unexploited prey system. 

(v) 𝑃5 46.875,47.619,27.525,205.375 is the non-trivial interior equilibrium point of the exploited prey-

predator system (2). 

All the above steady states are locally and also globally asymptotically stable. 

For the above parameter values the equation (34) becomes 

𝑥3 − 873.75𝑥2 − 2375𝑥 + 1650000 = 0. 

43.164 is one of the positive real roots of the above equation and let 𝑥𝛿 = 43.164. 

Therefore, 𝑦𝛿 = 47.80 by (35), 𝐸1𝛿 = 45.18 by (36) and 𝐸2𝛿 = 185.82 by (37). 

So  43.164,47.80,45.18,185.82  is the optimal equilibrium solution of the system and the optimal taxes are 

𝜏1𝛿 = 2.624 by (38) and 𝜏2𝛿 = 8.159 by (39). 

Comparing the non-trivial interior steady state with the optimal steady state for the exploited prey-predator 

fishery we see that the prey steady state decreases and the predator steady state slightly increases and the 

corresponding steady state levels of efforts are increases and decreases respectively in the optimal level. The 

optimal tax for harvesting prey species is less and the optimal tax for harvesting predator species is high 

compared to the taxes imposed by the regulatory agencies for existence of the biological equilibrium point of the 

dynamical system. The optimal values of taxes depend on 𝛿, the instantaneous annual rate of discount, when the 

other parameters remain fixed. Thus the regulatory agencies choose the taxes in order to reach the optimal 

revenue for the society considering all parameters. 

 

VIII. CONCLUSION: 

 

This model is very important for the fishery having a prey-predator community in which prey density is high 

and the predator density is low. Since the predator density is low so it is very sensitive to harvest the predator 

species. The regulatory agencies should always monitor on harvesting of predator species very carefully.  Krill-

whale fishery is an example of such model. The important feature of this model is that, in spite of low predator 

density and low market price of the prey fish species both species are harvested and if the regulatory agencies 

impose suitable taxes for which the steady states exist then all the non-trivial steady states are locally and 

globally asymptotically sable.  
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