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Abstract: 

                   The prime objective of present exploration is to study effects of velocity slip and 

convective heating on an incompressible two dimensional axisymmetric flow of the Carreau 

fluid over a radially stretching sheet. The Carreau constructive model is used to discuss the 

characteristics of both Shear-thinning and Shear- thickening fluids. The momentum equations 

for the two-dimensional field are first modeled for Carreau fluid with the aid of the boundary 

layer approximations obtained system of boundary layer equations is converted into ordinary 

differential equations with high linearity using appropriate transformations. Numerical 

solutions via fourth order Runge-Kutta method along with shooting technique are obtained 

and deliberated accordingly. Discussions of graphs pertaining different prominent 

parameters is also added. Numerical values of skin friction coefficient and local Nusselt 

number are also given and well deliberated. It is noted that higher values of the slip 

parameters, the velocity field and skin friction coefficient are reduced. Moreover, 

temperature field is as increasing function of Biot number. 

Key words: Axisymmetric flow, Carreau fluid, radially stretching sheet, velocity slip, 

convective condition. 
 

Nomenclature  

p
c – Specific heat at constant pressure (J/kg 

K) 

f – Dimensionless stream function 

u - Velocity component in x-direction (m/s) 

v - Velocity component in y-direction (m/s) 

T - Temperature of the fluid (
0
C) 

f
T - Temperature at the stretching surface 


T - Ambient fluid temperature 

w
u - Stretching velocity along x – direction 

Re - Local Reynolds number  

w
q - Surface heat flux 

1
L - Slip length 

f
h  - convective heat transfer coefficient 

Bi – convective heat transfer parameter 

m – stretching parameter 

f
C - Skin friction coefficient along xdirection 

 

 

Nu - Local Nusselt number   

w
q - Surface heat flux 

Pr – Prandtl number 

Re - Local Reynolds number  

Greek symbols  

k - Thermal conductivity (W/m K) 

 - Thermal viscosity (N s/m) 

   -Fluid density (kg/m
3
) 

 / - Kinematic viscosity of the fluid 

 – Similarity variable 

 - momentum slip parameter 

 - Non-dimensional temperature 

Subscript 
w – Condition at the surface 

 - Condition at infinity 

Super script 

′ - Differentiation with respect to 𝜂  
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1. Introduction: 
 

It is a well-known fact that stretching flows have received considerable attention in recent 

times due to their demand in practical applications (aerodynamic extrusion of plastic sheets, 

cooling of metallic sheets or electronic chips, crystallization of liquid films during 

condensation, hot rolling of metals, etc.). Extensive investigations of the boundary layer flow 

over a plane stretching sheet have been already performed. However, the literature survey 

reveals that rare studies regarding an axisymmetric flow over a radially stretching sheet are 

available. The classical problem of an axisymmetric flow induced by a stretching sheet was 

discussed by Ariel [1] who found exact, perturbed, asymptotic, and numerical solutions for 

the problem. Exact and differential numerical solutions for an axisymmetric flow over a 

radially stretching sheet with partial slip effects were also reported by Ariel [2]. Sahoo [3] 

studied the slip effects on an axisymmetric flow of an electrically conducting viscoelastic 

fluid over a surface stretched with a linear velocity in the radial direction. Shahzad et al. [4] 

showed the existence of an exact solution for a steady axisymmetric flow due to a nonlinearly 

stretching sheet (the velocity of the stretching sheet is proportional to x
3
). Analytical and 

numerical solutions were recently computed by Ali et al. [5] for an axisymmetric flow of an 

electrically conducting viscous fluid in the presence of slip effects over a nonlinearly 

stretching sheet in the radial direction. 

The interest in flows of non-Newtonian fluids with heat transfer has grown substantially 

in recent years because such flows are extensively used in engineering and industrial 

applications (nuclear fuel slurries, oil recovery, food processing, paper production, glass 

blowing, plastic sheet formation, and extrusion of polymeric fluids and melts). Specifically, 

the boundary layer flows of non-Newtonian fluids are of special importance. A few studies in 

this direction can be found in [6] for relevant issues related to the behavior and modeling of 

non-Newtonian fluids. There are many non-Newtonian fluid models, e.g., the power-law 

model, Ellis model, Carreau model, and Bingham model [6]. Being used to describe a shear-

thickening fluid, the power-law viscosity model yields a zero effective value of the “apparent 

viscosity” for small shear rates. Almost all fluids possess a finite, though very small, 

viscosity even if the velocity shear is very small in the outer region of the flow (i.e., the 

region outside the boundary layer). Hence, a viscosity model that gives a constant, albeit 

small, value for the apparent viscosity for the shear rate tending toward zero would better 

conform to the behavior of a real fluid. However, little interest has been paid to such models 

for the fluid viscosity with these properties, though they are widely used in chemical 

engineering. The constitutive model proposed by Carreau [7] involves four additional 

parameters in comparison to the Newtonian case and, thus, can describe the rheology of a 

wide range of non-Newtonian fluids. This model fits reasonably well in many flow situations, 

in particular, for some dilute, aqueous, and polymer solutions and also melts. The first 

theoretical study of a creeping flow of the Carreau model fluid around a sphere was 

performed by Chhabra and Uhlherr [8]. Using the velocity variational principle, they obtained 

an estimation of the upper bound of the drag coefficient of a sphere. Their theoretical results 

are in good agreement with their experimental ones and also with the numerical results of 

Bush and Phan-Thien [9]. Khan and Hashim [10] have been numerically investigated the 

axisymmetric flow and heat transfer analysis of the Carreau fluid over a radially stretching 

sheet. 

In numerous engineering and chemical procedures like paper production, thinning and 

annealing of copper wires, glass fiber and hot rolling, significance of heat and mass transfer 

is evident. That is why researchers are motivated to explore new avenues in this hot area [11–

15]. In continuation, Ibrahim and Haq [16] examined MHD stagnation point of a viscous 
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nanofluid flow with convective boundary condition. Rahman et al. [17] discussed flow of a 

nanofluid over an exponential stretching sheet with convective boundary condition on surface 

using Buongiorno’s model. Ramzan et al. [18] analytically studied micropolar fluid flow 

through a porous sheet with effects of thermal radiation, Joule heating and magneto 

hydrodynamic (MHD) in attendance of partial slip and convective boundary condition. 

Waqas et al. [19] explored micropolar fluid flow past a nonlinear stretching sheet with 

magnetohydrodynamics (MHD), viscous dissipation, mixed convection and Joule heating in 

the presence of convective boundary condition. Ramzan et at. [20] studied the MHD flow of 

a radioactive Jeffery nanofluid flow with the effects of convective heat and mass boundary 

conditions. 

 

The main focus of the present study is a numerical investigation of an axisymmetric 

boundary layer flow of the Carreau fluid induced by a radially stretching sheet under the 

influence of velocity slip and convective condition. The mathematical model is based on a 

system of non-linear differential equations under the boundary layer assumptions; obtained 

system of boundary layer equations is converted into ordinary differential equations with high 

linearity using appropriate transformations, which are then solved numerically by the fourth 

order Runge – Kutta method along with shooting technique. Finally, several interesting 

effects of the power law index n , weissenberg number We  slip parameter  , Biot number Bi

and prandtl number Pr  on the velocity and temperature profiles are discussed. To the best of 

our information such a problem has not been solved yet. 

 

2.1 Governing equations: 

 

The mass conservation and linear momentum equations governing a steady flow of an 

incompressible fluid can be written as 

div V = 0, 

  divS p-  VV  , 

Where V is the velocity vector,  is the density of the fluid, p is the pressure, and S is the 

extra stress tensor. The extra stress tensor S for an incompressible Carreau fluid is 

S = 
1


1

A  ,  







.

1
  ,   

Where 
1

A =   V + ( V)
T   

is the strain rate tensor, 







.

1
  is the generalized Newtonian 

viscosity, and
  

.

  =   2
2

1
Atr   ,                                                 (1) 

 

Where tr stands for the trace. 

The generalized viscosity for the Carreau model is described by the following formula [7]: 

 = 

  2/1
2

.

0
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




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




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







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




n

 . 

Here n is the power –law index (the fluid is said to be shear-thinning for 0< n <1, shear-

thinning for n >1, and Newtonian for n =1); 


 and 
0

  are the infinite-shear-rate and zero-

shear-rate viscosities, and   is the material time constant often referred to as the “relaxation 

time.” In what follows, we use the equation of state at 0


 :  
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 = 

  2/1
2
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For mathematical modeling, we take a cylindrical polar coordinate system  zr ,, . For an 

axisymmetric flow, we have 0  . For a two-dimensional axisymmetric flow, the 

velocity vector is presented as  

V =     zrwzru ,,0,,                                        (2) 

Where u  and w  are the velocity components along the radial directions, respectively. 

In view of Eq. (2), Eq. (1) becomes 
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Under the above-mentioned assumptions, the system of the differential equations of the 

problem is written as 
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At 1n and 0 , Eqs.  (5)  transform to those of the Newtonian fluid. 

We introduced the dimensionless variables 
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(L and U are the characteristic length and stretching velocity, respectively). 

 

In view of   the above-introduced dimensionless variables, Eqs. (5) becomes
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Where 
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  are the dimensionless parameters:
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In the dimensional form, Eqs. (7) becomes 
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Where  /
0

v  is the kinematic viscosity. 

2.2 Formulation of the problem: 

We consider an axisymmetric two-dimensional flow of an incompressible Carreau fluid 

induced by a radially stretching sheet. The sheet is located in the plane 0z , and the fluid 

resides in the half-space z > 0. The sheet is stretched in its own plane with a power-law 

velocity m
brU   in the radial direction. The sheet surface is maintained at a constant 

convective temperature 
f

T  and the ambient fluid temperature )(


 TTT
f

 .  
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            In this problem, the flow is preferably generated by the stretching sheet and the 

pressure gradient does not affect a flow filed. 

             Under these assumptions, the governing problem for a forced convective boundary 

layer flow is return as  
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:z             0u ,     

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Where )(
p

ck   , 
p

c is the specific heat, k  is the thermal conductivity, L is the slip length, 

m > 0 is the stretching parameter, 
f

h  is the wall heat transfer coefficient and T is the fluid 

temperature. 

             Let us introduce the local similarity transformations  
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In which ),( zr  is the Stokes stream function and vUrRe  is the local Reynolds number. 

In view of Eqs.  (8), 
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and the governing equations of the problem are written as 
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 Here  
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  is the local Weissenberg number, 2/1
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 is the velocity slip 

parameter, 
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The local wall shear stress and local surface heat flux are described by the following 

expression: 
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Using 
w

 and 
w

q , we can write the local skin friction coefficient 
f

C and the local number as 
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3. Solution of the Problem: 

 

      The reduced set of coupled ordinary differential equations (20)  - (21) subject to the 

boundary conditions (22)  - (23) are highly nonlinear in nature. Hence, it is very difficult 

possess a closed form analytical solution. Therefore, it has been solved numerically by fourth 

order Runge-Kutta-Fehlberg integration scheme with the help of algebraic software Mat lab. 

The algorithm in Mat lab has been well tested for its accuracy and robustness. Thus, this has 

been used to solve a wide range of non-linear problems. In this method, we choose a finite 

value of  as 
10

  in such a way that the boundary conditions are satisfied 

asymptotically. Table 1 depicts the validation of the present results by comparison with the 

existed results for some restricted cases (Khan and Hashim [10]). We noticed that the 

comparison shows smart agreement for every value of , which conform that the present 

results are accurate. For numerical results, we considered the non dimensional parameter 

values as 1Pr,3,2.0  mWeBi . These values are kept as common in the entire 

study except the variations in respective figures. 

Table 1 Comparison of Nusselt number 
xx

Nu
2/1

Re
  with the available results in literature for 

different values of n  for m=1, We = 3, Pr = 1 and Bi . 

xx
Nu

2/1
Re

  

n Present results Khan and Hashim [10] 

0.5 

1.0 

1.5 

2.0 

0.752804 

0.851992 

0.910006 

0.946571 

0.752 802 

0.851 995 

0.910 010 

0.946 575 

 

4 Results and Discussion: 

 

 The main aim of the present section is to characterize the effects of various physical 

parameters like Biot number, power law index parameter, local Weissenberg number, Prandtl 

number, slip parameter. Hence, figs 2, 3, 4, 5, and 6 have been plotted for such objective.  
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Figure 2a: Velocity profiles for various values of n for We = 3, Pr = 1,   = Bi = 0.2: m = 1 

(Solid curve) and m = 5 (Dashed curve). 

 
Figure 2b: Temperature profiles for various values of n for We = 3, Pr = 1,   = Bi = 0.2: m = 

1 (Solid curve) and m = 5 (Dashed curve). 

 

Figure 2 is plotted to visualize the effects of power law index parameter on velocity  'f  
and temperature    profiles for 1m  and 5m respectively. As m  increases, the fluid 

velocity and the momentum boundary layer thickness are seen to decrease for shear thinning

 5.0n , Newtonian  1n  and shear thickening  5.1n fluids. The momentum boundary 

layer thickness in the shear thinning fluid is smaller than that in the shear thickening fluid. 

From figure 2b, that fluid temperature and thermal boundary layer thickness are seen to be 

decreases with an increase in both stretching parameter m  and power law index parameter n  . 
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The thermal boundary layer thickness in the shear thickening fluids is lower than that in the 

shear thinning fluids.  

 

 

 
Figure 3a: Velocity profiles for various values of We for m = 1, Pr = 1,   = Bi = 0.2: n = 0.5 

(Solid curve) and n = 1.5 (Dashed curve). 

 
Figure 3b: Temperature profiles for various values of We for m = 1, Pr = 1,   = Bi = 0.2: n = 

0.5 (Solid curve) and n = 1.5 (Dashed curve). 

Figure 3 shows the dependences  'f  and    for the shear thinning  5.0n  and shear 

thickening  5.1n for different values of the Weissenberg numberWe . It is observed from 

the figure 3a that an increase in the Weissenberg number decreases the velocity of the shear 

thinning fluid and increases the velocity of the shear thickening fluid. It is seen in fig. 3b that 

the temperature distribution of the shear thinning fluid increases with increasing Weissenberg 

number, whereas the temperature of the shear thickening fluid decreases. Figure 4 shows the 
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dependence  'f  and    for the shear thinning  5.0n  and shear thickening  5.1n   

for different values of the slip parameter  . It follows from fig 4a that an increase in the slip 

parameter decreases the fluid velocity for both shear thinning and shear thickening fluid. It is 

seen in fig 4b that the temperature of the fluid increases with an increase in    for both shear 

thinning and shear thickening fluid.  

 
Figure 4a: Velocity profiles for various values of   for m = 1, We = 3, Pr = 1, Bi = 0.2: n = 

0.5 (Solid curve) and n = 1.5 (Dashed curve). 

 
Figure 4b: Temperature profiles for various values of   for m = 1, We = 3, Pr = 1, Bi = 0.2: n 

= 0.5 (Solid curve) and n = 1.5 (Dashed curve). 
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Figure 5 shows the dependence    for the shear thinning  5.0n  and shear thickening 

 5.1n   fluids for various values o the Prandtl number Pr .It is observed that the 

temperature decreases with increasing Prandtl number fluids with lower Prandtl numbers 

possess higher thermal conductivities. Therefore, the heat can diffuse from the wall faster in 

fluids with lower Prandtl numbers. Hence the Prandtl number can be used to increase the rate 

of cooling in conducting flows. In addition, an increase in the Prandtl number corresponds to 

reduction of the thermal boundary layer thickness. Furthermore, it is observed that the effect 

of the Prandtl number is more noticeable for the shear thinning fluid as compared to the shear 

thickening fluid.  

 
Figure 5: Temperature profiles for various values of Pr for m = 1, We = 3,   = Bi = 0.2: n = 

0.5 (Solid curve) and n = 1.5 (Dashed curve). 

 
Figure 6: Temperature profiles for various values of Bi for m = 1, We = 3, Pr = 1,   = 0.2: n 

= 0.5 (Solid curve) and n = 1.5 (Dashed curve). 
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Figure 6 elucidate that temperature with concomitant boundary layer thickness are increased 

with larger values of Biot number Bi . The Biot number  Bi  have high dependency on heat 

transfer coefficient
f

h . Larger heat transfer coefficient corresponds to higher values of 

temperature. This ruling lead to increasing values of temperature profile for larger values of 

Biot number. 

Table 2 skin friction coefficient 
fx

C
2/1

Re  for different values of the parameters n, m and 

We. 

 

n m We   
fx

C
2/1

Re  

0.5 

1 

1.5 

2 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

2 

3 

4 

5 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

3 

4 

5 

6 

2 

2 

2 

2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.3 

0.4 

0.5 

0.6 

0.701948 

0.878425 

1.028695 

1.161001 

0.786489 

0.842618 

0.883978 

0.916393 

0.618505 

0.558616 

0.513902 

0.479061 

0.637350 

0.586813 

0.545510 

0.510742 

 

Table 3 Nusselt number 
xx

Nu
2/1

Re
  for different values of the parameters n, m, We,   , Bi 

and Pr. 

 

n m We   Bi Pr 
xx

Nu
2/1

Re
  

0.5 

1 

1.5 

2 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

2 

3 

4 

5 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

3 

4 

5 

6 

2 

2 

2 

2 

2 

2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.3 

0.4 

0.5 

0.6 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.3 

0.4 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.156372 

0.158913 

0.160564 

0.161723 

0.158040 

0.159576 

0.160945 

0.162160 

0.154841 

0.153550 

0.152449 

0.151490 

0.155278 

0.154324 

0.153467 

0.152683 

0.211490 

0.256739 
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0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.5 

0.6 

0.2 

0.2 

0.2 

0.2 

1 

1 

2 

3 

4 

5 

0.294550 

0.326618 

0.169806 

0.175612 

0.179021 

0.181323 

 

 

          The variation of the local skin friction coefficient and the local Nusselt number for 

different problem parameters are displayed in tables 2 and 3 respectively. It is seen that the 

local skin friction coefficient increases with an increment in the power law index n  and 

stretching parameter m . Further, we can see from table 2 that the local skin friction 

coefficient decreases with an increase in the Weissenberg number We  and slip parameter  . 

For fixed vales of ,,Pr, mWe  and Bi the local Nusselt number increases with an increase in 

the power law index n  (see table 3). The local Nusselt number is an increasing function of 

the Prandtl number Pr , stretching parameter m  and Biot number Bi  on the other hand; it is 

also noticed from table 3 that the local Nusselt number decreases with an increase in the 

Weissenberg number we  and slip parameter  . 

 

5. Conclusions: 

 

     We have examined are incompressible two dimensional axisymmetric flow of the Carreau 

fluid under the influence of velocity slip and convective condition. The main points of this 

investigation can be summarized as follows. 

1) The fluid velocity and the momentum boundary layer thickness increases with an 

increase in power law index. The reverse trend is observed for the temperature field. 

2) An increase in slip parameter leads to decrease in both the fluid velocity and the 

momentum boundary layer thickness.  

3) The temperature field and rate of heat transfer increases with an increase in local Biot 

number. 

4) The local Nusselt number increased with an increase in Prandtl number. The local 

Nusselt number in the Shear thinning fluid decreases with an increase in the Weissenberg 

number. 
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