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Abstract—This paper presents a HMM and Fuzzy controller based combine approach for cloud incoming job 

queue prediction and managing VM status and configuration of VMs inside of cloud environment. The approach 

is aimed to efficiently serve the task requests with minimal resource and power utilization. The proposed 

technique uses HMM based approach to predict the job queue and applies it alongside with information of 

currently running VM’s, VM’s configurations, resource availability in the cloud, future jobs resource 

requirements, current job execution status etc. to a fuzzy logic based controller which then after controls the 

VM’s status and configurations to serve the aimed purpose. The controlling in such way reduces the active 

physical resources which ultimately reduces the power requirements of the cloud. To validate the concept the 
proposed controller is tested against standard controlling algorithm for different load conditions. The test 

results obtained shows that the proposed fuzzy logic controller based technique outperforms standard 

techniques in terms of QoS, resource management, and power savings. 
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I. INTRODUCTION 

In a cloud, theuser services or applications runs over the Virtual Machines (VMs) formed inside the cloud 

system. The VMs as the name suggest, are formed by virtually allocating and configuringthe physical 

resources.The creation and management of these VMsare dome by virtualization platforms. Since cloud service 

provider who are bounded by the Service Level Agreement (SLA) has to maintain the minimum level Quality-

of-Service (QoS), which also known as Service Level Objective (SLO). 

The continuously growingadaption ofcloud systems, emerging new challenges for the cloud operators as they 
now have to handle larger loads of different operational and requirement characteristics with the limited 

resources. To handle such situations the cloud provider needed an efficient cloud managing algorithm that 

utilize its available resources in such a manner that it fulfills the user's requirements with guaranteed SLOwhile 

maintaining power requirements to lowest possible level. 

This paper presents an adaptive task prediction with VM status and configuration management technique. The 

proposed technique uses HMM based prediction model for task prediction then this information is used by a 

fuzzy logic based decision making system to manage the status and configuration of the VMs. 

The proposed technique is able to manage the balance among conditions such as task requirements, SLO bounds, 

available resources, power saving etc. by dynamically configuring the VMs. The organization of rest of the 

paper is as follows. The Section II providesa brief literature review. The Section III gives an overview of fuzzy 

logic controller. The Section IV explains the system architecture with simulation configurations,The Section 
Vexplains the proposed system. The simulation results are presented in Section VI andfinally, the Section VII, 

presents the conclusion and discussesthe possibilities of future works. 
 

II. LITERATURE REVIEW 

This section reviews the literature most related to our work. John J. Prevost et al. [19] introduce  a  novel  

framework integrating the  load  demand  prediction  and  stochastic  state transition  models for optimal  cloud  

resource  allocation. The tradeoff is achieved between   energy consumed and performance levels. The neural 

network and autoregressive linear prediction algorithms are used to predictthe loads in cloud 

datacenter.Zhenhuan Gong et al. [18] presented PredictiveElastic reSource Scaling (PRESS) scheme for cloud 

management.PRESS findsthe minute dynamic patterns from application resource demands and then use it for 

their resource allocations adjustment. The approach containslight weight signal processing and statistical 

learning algorithms to predict the dynamic application resource requirements.Sadeka Islam et al. [20] 
developeda prediction-basedresource estimation and provisioning methods using Neural Network and Linear 
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Regression to fulfillupcoming on-demand resource allocation in the cloud. In a cloud environment the task 

distribution is a process used to assigns the execution of tasks on distributedresources [6]. The most common 

way of doing that is using the optimization techniques which finds the optimal task to VM pair for given 

objective function and constrains. A number of techniques with different optimization techniques, objective 

functions and constrains have been proposed in [3, 4, 5, 8, 15, 16, and 17].  However all the techniques having 

optimization algorithm in common a number of difference in their utilization can be seen. For instance in [3] the 
Honey-Bee behavior (HBB) based optimization technique is used to achieve balancing of tasks over available 

VMs, the proposed algorithm manages the task execution priorities. The [5] and [15] both uses the particle 

swarm optimization (PSO), although the [5] adopted for deadline constrained task scheduling using self-

adaptive learning, while [15] constrained task execution time and data transfer cost. In [8] a multi-objective 

genetic algorithm used. The multi-objective optimization provides extra facilities to achieve more than one 

objective simultaneously, hence it is able to achieve four different objectives, namely minimizing task transfer 

time, task execution cost, power consumption, and task queue length. In [16] the ant colony optimization is used 

to balance the entire system load at minimummakespan of a given tasksset. The improved differential evolution 

algorithm (IDEA) for the purpose in presented in [17], which combines the Taguchi method and a differential 

evolution algorithm(DEA).Their multi-objectiveoptimization approach uses thethe processing and receiving cost 

as the first objective and receiving, processing, and waiting time as second objective. Another approach for the 

task scheduling is using the fuzzy logic. The fuzzy logic is a method for solving complex decision making 
problem where the variables show some degree of overlapping. The fuzzy logic system has been successfully 

implemented for many control and decision making systems some of its application can be seen on washing 

machines, refrigerators and other household goods. In [12] the fuzzy logic is used for predictionof the virtual 

machine to assign the upcoming job, considering that the requirements of memory, bandwidth and disk space 

are imprecise. In [9] the taskscheduling model for virtual data centerswith uncertain workload and uncertain 

nodes availability is presented. The presented solution deals the problem as a two-objective optimizationas a 

trade-off betweenavailability and the average response time of VDC (virtual data center). Since the optimization 

requires the availability of VDC and workload values in advance the type-I and type-II fuzzy based predictor for 

VDC availability and Load-Balance is proposed. The hybrid job scheduling algorithm which involves genetic 

algorithm and fuzzy logic is presented in [1, 14]. The fuzzy logic is used here to reduce the number of iterations 

required by genetic algorithm to converse. 
 

III. HIDDEN MARKOV MODEL (HMM) 

3.1. Markov Models 

In the Markov Model the prediction of the next state and its related observation onlydepends on the current state, 

or alternatively the state transition probabilities do not dependon the whole history of the past process [17]. This 

is called a first order Markov process the definition can be generalized for the 𝑖𝑡order Markov process as the 

probability of nextstate can be calculated by obtaining and taking account of the past 𝑖 states. For the sequence 

of random variables𝑋 = (𝑋𝐼 , . . . ,𝑋𝑟)  takingvalues in some finite set 𝑆 =  {𝑠𝑟 , .  . . , 𝑠𝑟 }, the state space. Then the 

MarkovProperties are [19]: 

𝑃 𝑋𝑡+1 = 𝑠𝑘  𝑋1 ,…… . .𝑋𝑡 = 𝑃 𝑋𝑡+1 = 𝑠𝑘  𝑋𝑡 ,  𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝑜𝑧𝑟𝑖𝑧𝑜𝑛  3.1  
= 𝑃 𝑋2 = 𝑠𝑘  𝑋1 ,  𝑇𝑖𝑚𝑒 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 (3.2) 

Because of the state transition is independent of time, we can have the following statetransition matrix 𝐴: 

𝑎𝑖𝑗 = 𝑃 𝑋𝑡+1 = 𝑠𝑗  𝑋𝑡 = 𝑠𝑖 ,…………… . . (3.3) 

𝑎𝑖𝑗 is a probability, hence: 

𝑎𝑖𝑗 ≥ 0,∀𝑖, 𝑗 𝑎𝑖𝑗 = 1,………… . . (3.4)
𝑁

𝑗=1
 

Also we need to know the probability to start from a certain state, the initial statedistribution: 

𝜋𝑖 = 𝑃 𝑋1 = 𝑠𝑖 ,𝑤𝑒𝑟𝑒, 𝜋𝑖 = 1,
𝑁

𝑖=1
. (3.5) 

In a visible Markov model, the states from which the observations are produced and theprobabilistic functions 

are known so we can regard the state sequence as the output. 

3.2. Hidden Markov Models 

The Hidden Markov Model (HMM) extends the Markov Model for the cases where state knowledge is 
unavailable or in HMM, one does not know anything about what (system states) generates the 

observationsequence. The number of states, the transition probabilities, and from which state anobservation is 

generated are all unknown. Hence each state of the system is liked with observation with a probabilistic function 

instead of deterministic function as in case of Markov Model. At time 𝑡,an observation 𝑜𝑡  is generated by a 

probabilistic function𝑏𝑗 (𝑜𝑡), which is associated withstate 𝑗, with the probability: 

𝑏𝑗  𝑜𝑡 = 𝑃 𝑜𝑡 𝑋𝑡 = 𝑗 ,……………… (3.6) 
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3.3. Mathematical Terms in HMM 

An HMM is composed of a five-tuple: (𝑆,𝐾,𝛱,𝐴,𝐵). 
1. 𝑆 =  { 1, . . . ,𝑁 }is the set of states. The state at time 𝑡 is denoted𝑠𝑡 . 
2. 𝐾 =  { 𝑘1 , . . . ,𝑘𝑀  } is the output observation and 𝑀is the number of observation choices. 

3. Initial state distribution Π =  {𝜋𝑖}, 𝑖 ∈ 𝑆.𝜋𝑖  is defined as 

𝜋𝑖  =  𝑃  𝑠1 = 𝑖 ,…………… (3.7) 

4. State transition probability distribution 𝐴 =  {𝑎𝑖𝑗 } , 𝑖, 𝑗 ∈ 𝑆. 

𝑎𝑖𝑗 = 𝑃 𝑠𝑡 + 1 𝑠𝑡), 1 ≤ 𝑖, 𝑗 ≤ 𝑁,………  (3.8) 

5. Observation symbol probability distribution 𝐵 =  𝑏𝑗 (𝑜𝑡). The probabilistic functionfor each state 𝑗 is: 

𝑏𝑗  𝑜𝑡 =  𝑃  𝑜𝑡 𝑠𝑡 = 𝑗 ,…………… . (3.9) 

After modeling a problem as an HMM, and assuming that some set of data was generatedby the HMM, we are 

able to calculate the probabilities of the observation sequence and theprobable underlying state sequences. Also 

we can train the model parameters based on theobserved data and get a more accurate model. Then use the 

trained model to predict unseendata. 

To generate the HMM model for any system we need to compute three parameters  

1. Observation Sequence Computing:The probability of the observation sequences. 

2. The statesequence (1, . . . ,𝑁) that best ―explains‖ the observations. 

3.The tuning of the parameters to find the best model for given observation sequence 𝑂, and a space of 

possible models. 

Since in this work we only used the probability of the observation sequences hence the second and third terms 
are not explained here. 

 

3.3.1 Finding the probability of an observation 

Given an observation sequence 𝑂 = (𝑜1 , . . . , 𝑜𝑇) and an HMM µ = (𝐴,𝐵,𝛱), we want tofind out the probability 

of the sequence 𝑃(𝑂|µ). This process is also known as decoding.Since the observations are independent of each 

other, the probability of a statesequence 𝑆 = (𝑠1  , . . . , 𝑠𝑇) generating the observation sequence can be calculated 

as: 

𝑃 𝑂 µ =  P O S, µ P S µ ,………… 3.10 

𝑆

 

=  𝜋𝑠1

𝑠1 ,…….𝑠𝑇+1

 𝑎𝑠𝑡𝑠𝑡+1
𝑏𝑠𝑡𝑠𝑡+1𝑜𝑡

………… . (3.11) 

𝑇

𝑡=1

 

The computation is quite straightforward by summing the observation probabilities foreach of the possible state 

sequence.  

 

IV. FUZZY LOGIC SYSTEM 
Fuzzy logic is an approach where a variable simultaneously belongs to more than one class with certain degree 

and the degree of membership is defined by membership function. The fuzzy logic approximate decision 

making using natural language terms. It is especially useful in modeling of systems where information cannot be 

defined precisely, but some broad definitions can be formed. Because of its simplicity and effectiveness, Fuzzy-

logic technology has gained many applications in scientific and industrial applications. 

 

 
 

Figure 1: Typical architecture of Fuzzy Logic Controller (FLC) system. 

 
A typical architecture of FLC is shown in fig. 1, which comprises of four principal comprises: a Fuzzifier, a 

Fuzzy rule base, inference engine, and a de-Fuzzifier.  

Fuzzification: The Fuzzification is the process of converting crisp values in terms of degree of membership with 

different classes. The degree of membership is calculating using membership functions. The Fuzzification 

enables variable association with linguistic term. 
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Figure 2: Showing Fuzzification process with triangular membership function.  

 
 

The fig. 2, shows the mapping the crisp value of temperature with L, M and H categories, the figure shows that 

for 0.3 task priority (black dashed line) it has the membership of 0.4 (red dashed line), 0.6 (blue dashed line) and 

0 for categories L, M and H respectively. In fig. 2 the membership function is of triangular however it can be, 

trapezoidal, Gaussian, bell-shaped, sigmoidal etc. The exact type depends on the actual application.  

 

Fuzzy Rule Base: this contains the rule which relates the fuzzy inputs and outputs in linguistic terms. It 

contains a sequence of the form IF-THEN. For example in a heating system it can be defined as 

 

IF temperature is L THEN set heater power to H 

IF temperature is M THEN set heater power to M 
IF temperature is H THEN set heater power to L 

 

Defining these rules are requires expertize in related field of application.  

 

Inference Engine: It executes all the fuzzy rules available in the fuzzy rule base for the available inputs. This 

produces a number of fuzzy outputs one for each rule.   

 

De-Fuzzification: The output from inference engine is still fuzzy which must be converted into crisp value 

before it can be used with any non-fuzzy system. This conversion of fuzzy outputs to crisp value is done by De-

Fuzzification. The De-Fuzzification can be performed by many ways such as using Centroid, Max-Membership, 

Weighted Average and Mean-Max Membership etc. 
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Figure 3: The proposed system architecture showing the different functional blocks and their interconnections. 

 

V. PROPOSED ALGORITHM 

5.1. System Architecture 

The architecture of the proposed system is presented in fig.3 the system contains four fuzzy logic decision 

making blocks, two VM controlling blocks and five information extraction blocks. The working details of each 

block is as follows: 

 Information extraction blocks:these blocks are used to extract useful information from task queue and VMs. 

 Task Length: the length of current task in MIPS. 

 Task Priority: Execution priority of current task. 

 Task Predictor: Estimates the probability of arriving of different tasks.   

 VM Access Rate: how many times the particular VM has accessed during predefined time interval. 

 VM Resources: the resources used by VM. 

 VM Load: current load on VM. 

 

Task Predictor:this block predicts the upcoming tasks in the cloud. This prediction is done using dual HMM 

model where one HMM is used to calculate the probability of generating request by any user in the upcoming 

sampling window and the second HMM for calculating the request pattern that may be generated by any user in 

the upcoming sampling window. After that these two results are combined to estimate the exact request pattern 
in the upcoming sampling window.  

For the modeling we divided the tasks into 𝑆 different task categories and the task request arriving in the cloud 

is replaced by the category symbol closely related to it. This limits the total number of observations to 𝑆. The 

length of the sampling window 𝑊 is the length of sequences of symbols used to predict the upcoming symbols 

sequences. 

Let the task requests in the cloud for some sampling window length be 𝑅 =  𝑟1
𝑎 , 𝑟2

𝑏 , 𝑟3
𝑐 ,𝑟4

𝑏 ……… . . 𝑟𝑊
𝑠  , where 

𝑎, 𝑏, 𝑐,…𝑠 ∈ 𝑁, 𝑟 ∈ 𝑆 and 𝑟1
𝑎 is representing the 1𝑠𝑡  entry of request in the sampling window generated by 𝑎𝑡  

user.  

The 𝑁 number of different users given as 𝑈 =  𝑢1 ,𝑢2 ,…………… . 𝑢𝑁 . 

Let the last 𝐿task requests generated by user 𝑢𝑖  is defined as 𝑠𝑖 =  𝑟−1
𝑖 , 𝑟−2

𝑖 ,……… . . 𝑟−𝐿
𝑖  , and the task requested 

by 𝑖𝑡  user appeared in 𝑀 previous sampling windows is defined as𝑔𝑖 =  𝑏−1
𝑖 ,𝑏−2

𝑖 ,𝑏−3
𝑖 ,… . . , 𝑏−𝑀

𝑖  ,𝑏 ∈ {0,1}, 

the 𝑏 is a binary variable and 𝑏𝑚
𝑖  states that there was at least one request in the 𝑚𝑡  previous sampling window 

generated by 𝑖𝑡  user.   

Now using the equation described in section 3.10the probability of requesting a specific symbol by a specific 

user at the next 𝑊 events and the probability of generating the request by each user in upcoming sampling 

windows can be calculated. 

Let the calculated probability of arriving of each task request (symbol) in upcoming sampling window by 𝑖𝑡  

user be𝑃𝑟𝑖 = {𝑝𝑟1
𝑖 ,𝑝𝑟2

𝑖 , 𝑝𝑟3
𝑖 ,…… . . ,𝑝𝑟𝑁

𝑖 }, and the probability of generating any task request (symbol) in the next 

sampling window by 𝑖𝑡  user be𝑡𝑖 .  
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The total probability of appearing a task request 𝑟𝑗  in the upcoming sampling windows is calculated as 

 

𝑃𝑟𝑖
𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑖 ∙ 𝑝𝑟𝑗

𝑖

𝑁

𝑖=1

 

 

Hence the total probability of arriving of each task request in upcoming sampling window can be given as 

 

𝑃𝑟𝑡𝑜𝑡𝑎𝑙 = {𝑃𝑟1
𝑡𝑜𝑡𝑎𝑙 ,𝑃𝑟2

𝑡𝑜𝑡𝑎𝑙 ,𝑃𝑟3
𝑡𝑜𝑡𝑎𝑙 ,… . ,𝑃𝑟𝑆

𝑡𝑜𝑡𝑎𝑙 } 

 

Since 𝑃𝑟𝑡𝑜𝑡𝑎𝑙  is normalized we need to convert it into normalized probability by calculating 𝑃𝑟𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙  and diving 

𝑃𝑟𝑡𝑜𝑡𝑎𝑙  by it as follows 

𝑃𝑟𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙 =  𝑃𝑟𝑖

𝑡𝑜𝑡𝑎𝑙

𝑆

𝑖=1

 

𝑃𝑛𝑜𝑟𝑚
𝑡𝑜𝑡𝑎𝑙 = {

𝑃𝑟1
𝑡𝑜𝑡𝑎𝑙

𝑃𝑟𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙 ,

𝑃𝑟2
𝑡𝑜𝑡𝑎𝑙

𝑃𝑟𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙 ,

𝑃𝑟3
𝑡𝑜𝑡𝑎𝑙

𝑃𝑟𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙 ,… . ,

𝑃𝑟𝑆
𝑡𝑜𝑡𝑎𝑙

𝑃𝑟𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙 } 

𝑃𝑛𝑜𝑟𝑚
𝑡𝑜𝑡𝑎𝑙 = {𝑃1 ,𝑃2 ,𝑃3 ,………………… . ,𝑃𝑆} 

 

The 𝑃𝑛𝑜𝑟𝑚
𝑡𝑜𝑡𝑎𝑙  is an array that contains the normalized probability of all the tasks in the upcoming sampling window.  

 

 VM Task Compatibility Estimator Block: this block tests capability of VMs for executing the predicted tasks 

within given time bound. The higher value of this estimator for given task-VM pair indicates the faster 

execution of task by that VM. However higher values pair are not the most preferable because it may cause 

poor resource utilization. The estimation is done as follows: 

 

𝑆𝑇𝐶
𝑖 ,𝑗

=

 
 
 

 
 0,            𝑖𝑓  

 𝑇𝐿𝑗  
𝑃  +  𝐿𝐶

𝑖  

 𝐶𝑉𝑀
𝑖  ≤

1

𝑇𝑃𝑗
𝑃 

 (𝑇𝐿𝑗  
𝑃  +  𝐿𝐶

𝑖 ) 

 𝐶𝑉𝑀
𝑖  𝑃𝑗 ,   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒      

  

 

Where 𝑆𝑇𝐶
𝑖 ,𝑗

 presents the VM Task Compatibility Score of the 𝑖𝑡  available VM for the 𝑗𝑡  predicted task. 

Other terms used are defined as follows: 

 

VM’s Execution Capacity of the 𝑖𝑡  available VM = 𝐶𝑉𝑀
𝑖  

VM’s Current Load on the 𝑖𝑡  available VM = 𝐿𝐶
𝑖  

Predicted Task’s Priority for the 𝑗𝑡  task = 𝑇𝑃𝑗  
𝑃 

Predicted Task’s Length for the 𝑗𝑡 task = 𝑇𝐿𝑗  
𝑃 

Task Arriving Probability for the 𝑗𝑡  task = 𝑃𝑗  

 

 

 Fuzzy Logic Decision Making Blocks: these blocks are used to make specific decisions based on provided 

inputs using fuzzy logic. 

 Fuzzy Task Score Estimator: this block estimates the task requirements on the basis of task length and 

priority. 

 Fuzzy VM Score Estimator: this block estimates the VM capability to handle tasks on the basic of VM 

configuration and load.  

 Fuzzy VM Relative Score Estimator: this block estimates fitness between VM capability and task 

requirements. 
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 Fuzzy VM Status Score Estimator: this block is used to decide the operational status of VM on the 

basis of resource utilized by VM and access rate of VM. 

 

 VM Task Selector: this block is used to select the best VM for the current task, it takes the input from Fuzzy 

Relative Score Estimator for all the VMs and selects the VM having the highest relative score. 

 

 VM status Controller: it maintains the states of all VM on the basis of VM status score (𝑉𝑀𝑠𝑐𝑜𝑟𝑒 ). This blocks 

uses two different thresholds𝑡𝑠𝑙𝑒𝑒𝑝  and 𝑡𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒  where 0 < 𝑡𝑠𝑙𝑒𝑒𝑝 < 𝑡𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒 < 1 which are compared against 

VM status score to decide the VM status as follows: 

𝑉𝑀𝑠𝑡𝑎𝑡𝑢𝑠 = 

 

𝐾𝑒𝑒𝑝 𝑅𝑢𝑛𝑛𝑖𝑛𝑔, 𝑖𝑓 𝑉𝑀𝑠𝑐𝑜𝑟𝑒 < 𝑡𝑠𝑙𝑒𝑒𝑝
𝑆𝑙𝑒𝑒𝑝, 𝑒𝑙𝑠𝑒𝑖𝑓 𝑡𝑠𝑙𝑒𝑒𝑝 ≥ 𝑉𝑀𝑠𝑐𝑜𝑟𝑒 > 𝑡𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒
𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒, 𝑒𝑙𝑠𝑒 𝑉𝑀𝑠𝑐𝑜𝑟𝑒 ≥ 𝑡𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒

  

 

Fuzzy Membership Function Selection: the selection of member function in most difficult and important task 
for any fuzzy system. Because these membership function defines the fuzziness and the way variable changes 

their memberships to different classes, the improper selection of these function can drastically degrade the 

performance of fuzzy system. In the proposed work the triangular member 

-ship function (as shown in fig. 4(a)) is used for the variables  Task Length, VM Load, VM resources and VM 

task compatibility score, the triangular membership function is selected for these variable because these 

parameters are consider to have the linear transition in degree of membership from one to another class. The two 

sided Gaussian membership function (as shown in fig. 4(b)) is used for the Access Rate, because we want to 

increase its importance much quickly then linear rate. The two sided Gaussian membership function is designed 

as its transition from present class to higher class is much fasterand it also leaves it present class much sharply. 

The Gaussian membership function (as shown in fig. 4(c)) is used for variable Task Priority, as the priority is 

considered to have a continuous symmetric transition. 
 

5.2. Model Terminology 

 

Before going to description this section explains the terminology used in the algorithm. 

Task Length(𝑇𝐿𝑖) = the length of the 𝑖𝑡  task. 

Execution Capacity of VM(𝐶𝑉𝑀
𝑖 ) = rate of task execution for 𝑖𝑡  VM. 

Current Load on VM(𝐿𝑐
𝑖 ) = the remaining task length of currently executing task on 𝑖𝑡  VM. 

Access Rate of VM(𝑅𝑖) = number of different tasks assigned to 𝑖𝑡  VM per unit time. 

Predicted Task’s Priority for the 𝑗𝑡  task =𝑇𝑃𝑗  
𝑃. 

Predicted Task’s Length for the 𝑗𝑡 task =𝑇𝐿𝑗  
𝑃. 

Task Arriving Probability for the 𝑗𝑡  task =𝑃𝑗 . 

Task Waiting Time(𝑇𝑤
𝑖 ) = describes the time only after that the 𝑖𝑡  VM can start execution of the requested task. 

It can also be described as the time required to finish the currently executing tasks on the 𝑖𝑡  VM. 

𝑇𝑤
𝑖 = 𝐿𝑐

𝑖 /𝐶𝑉𝑀
𝑖  

Task Execution Time(𝑇𝑒 ,𝑗
𝑖 ) = the time required by the 𝑖𝑡  VM to execute the 𝑗𝑡  task. 

𝑇𝑒 ,𝑗
𝑖 = 𝑇𝐿𝑗 /𝐶𝑉𝑀

𝑖  

Total Task Completion Time(𝑇𝑡 ,𝑗
𝑖 ) = it is the sum of Task Waiting Time and Task Execution Time. 

𝑇𝑡 ,𝑗
𝑖 = 𝑇𝑤

𝑖 + 𝑇𝑒 ,𝑗
𝑖  

Task Priority (𝑇𝑃𝑖) = is the inverse of required maximum Total Task Completion Timefor the 𝑖𝑡  task. 

VM Task Compatibility Score 𝑆𝑇𝐶
𝑖 ,𝑗

 = Presents the VM Task Compatibility of the 𝑖𝑡  available VM for the 𝑗𝑡  

predicted task. 
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𝑆𝑇𝐶
𝑖 ,𝑗

=

 
 
 

 
 0,            𝑖𝑓  

 𝑇𝐿𝑗  
𝑃  +  𝐿𝐶

𝑖  

 𝐶𝑉𝑀
𝑖  ≤

1

𝑇𝑃𝑗
𝑃 

 (𝑇𝐿𝑗  
𝑃  + 𝐿𝐶

𝑖 ) 

 𝐶𝑉𝑀
𝑖  𝑃𝑗 ,   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒      

  

𝑆𝑇𝐶
𝑖 ,𝐴𝑙𝑙 =  𝑆𝑇𝐶

𝑖 ,𝑗

𝑀

𝑗=1

 

𝑆𝑇𝐶
𝑖 ,𝐴𝑙𝑙

= is the Total VM Task Compatibility Score of 𝑖𝑡  VM for all the predicted tasks. 

Fuzzy Task Score Estimator =𝐹𝑇𝑆(𝑇𝐿𝑖 ,𝑇𝑃𝑖). 

Fuzzy Task Score(𝑆𝑇𝑆
𝑖 ) = task score of 𝑖𝑡  task calculated by Fuzzy Task Score Estimator𝐹𝑇𝑆  . 

Fuzzy VM Score Estimator =𝐹𝑉𝑀 (𝐿𝑐
𝑖 ,𝐶𝑉𝑀

𝑖 ,𝑆𝑇𝐶
𝑖 ,𝐴𝑙𝑙 ). 

Fuzzy VM Score(𝑆𝑉𝑀
𝑖 ) = VM score of 𝑖𝑡  VM calculated by Fuzzy VM Score Estimator𝐹𝑉𝑀   . 

Fuzzy VM Relative Score Estimator =𝐹𝑉𝑀𝑅 (𝑆𝑇𝑆
𝑖 ,𝑆𝑉𝑀

𝑖 ). 

Fuzzy VM Relative Score(𝑆𝑗
𝑖) = relativeVM score of 𝑖𝑡  VM for𝑗𝑡  task calculated by Fuzzy VM Relative 

Score Estimator𝐹𝑉𝑀𝑅   . 

Fuzzy VM Status Score Estimator =𝐹𝑆𝑆(𝑅𝑐
𝑖 ,𝐶𝑉𝑀

𝑖 ,𝑆𝑇𝐶
𝑖 ,𝐴𝑙𝑙 ). 

Fuzzy VM Status Score (𝑆𝑆𝑆
𝑖 )  = VM status score of 𝑖𝑡  VM calculated by Fuzzy VM Status Score 

Estimator𝐹𝑉𝑀   . 

5.3. Proposed Algorithm  

Let the task length and priority of newly arrived task be 𝑇𝐿𝑛𝑒𝑤  and 𝑇𝑃𝑛𝑒𝑤  respectively. 

𝑁 =  𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑉𝑀𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑖𝑛 𝑉𝑀. 

𝑀 =  𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠. 

𝑊 =  𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑊𝑖𝑛𝑑𝑜𝑤 𝐿𝑒𝑛𝑔𝑡. 

𝑈 = 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑈𝑠𝑒𝑟𝑠. 

𝑺𝒕𝒂𝒓𝒕 𝑴𝒂𝒊𝒏 𝑹𝒐𝒖𝒕𝒊𝒏𝒆   

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑇𝑎𝑠𝑘𝑠   ; 

𝒇𝒐𝒓 𝑖 =  1 𝑡𝑜 𝑁  

𝑇𝑤
𝑖 =

𝑇𝐿𝑛𝑒𝑤

𝐶𝑉𝑀
𝑖  

𝑇𝑒 ,𝑗
𝑖 =

𝑇𝐿𝑗

𝐶𝑉𝑀
𝑖  

𝑇𝑡 ,𝑗
𝑖 = 𝑇𝑤

𝑖 + 𝑇𝑒 ,𝑗
𝑖  

𝒆𝒏𝒅𝒇𝒐𝒓 

𝑉𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 0 

𝒇𝒐𝒓 𝑖 =  1 𝑡𝑜 𝑁 

𝑖𝑓 (𝑇𝑡,𝑗
𝑖 >

1

𝑇𝑃𝑛𝑒𝑤
) 

𝑉𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 1 

 𝑏𝑟𝑒𝑎𝑘  ; 

𝑒𝑛𝑑𝑖𝑓  

𝒆𝒏𝒅𝒇𝒐𝒓 

𝑖𝑓 (𝑉𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 == 0)  

𝐶𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑉𝑀   ; 

𝒆𝒍𝒔𝒆 

𝐴𝑠𝑠𝑖𝑔𝑛𝑇𝑎𝑠𝑘   ; 

𝒆𝒏𝒅𝒊𝒇 

𝑬𝒏𝒅 𝑴𝒂𝒊𝒏 𝑹𝒐𝒖𝒕𝒊𝒏𝒆   

𝑺𝒕𝒂𝒓𝒕 𝑺𝒖𝒃 − 𝑹𝒐𝒖𝒕𝒊𝒏𝒆  𝑪𝒓𝒆𝒂𝒕𝒆𝑵𝒆𝒘𝑽𝑴  

𝐶𝑉𝑀
𝑛𝑒𝑤 = 𝑇𝐿𝑛𝑒𝑤 × 𝑇𝑃𝑛𝑒𝑤 ; 

𝑐𝑟𝑒𝑎𝑡𝑒  𝑛𝑒𝑤 𝑉𝑀𝑛𝑒𝑤  𝑤𝑖𝑡 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛  𝐶𝑉𝑀
𝑛𝑒𝑤 ; 

𝑎𝑠𝑠𝑖𝑔𝑛  𝑇𝑎𝑠𝑘  𝑡𝑜 𝑉𝑀𝑛𝑒𝑤 . 

𝑬𝒏𝒅 𝑺𝒖𝒃 − 𝑹𝒐𝒖𝒕𝒊𝒏𝒆  𝑪𝒓𝒆𝒂𝒕𝒆𝑵𝒆𝒘𝑽𝑴 

𝑺𝒕𝒂𝒓𝒕 𝑺𝒖𝒃 − 𝑹𝒐𝒖𝒕𝒊𝒏𝒆  𝑨𝒔𝒔𝒊𝒈𝒏𝑻𝒂𝒔𝒌 

𝑆𝑝 = 0; 

𝑉𝑀𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 0; 

𝒇𝒐𝒓 𝑖 =  1 𝑡𝑜 𝑁 

𝑆𝑇𝐶
𝑖 ,𝐴𝑙𝑙 = 0; 

𝒇𝒐𝒓 𝑗 = 1:𝑀 

𝑆𝑇𝐶
𝑖 ,𝐴𝑙𝑙 = 𝑆𝑇𝐶

𝑖 ,𝐴𝑙𝑙 + 𝑆𝑇𝐶
𝑖 ,𝑗  𝐿𝑐

𝑖 ,𝐶𝑉𝑀
𝑖 ,𝑇𝐿𝑗

𝑃 ,𝑇𝑃𝑗
𝑃 , 𝑃𝑗  ; 

𝒆𝒏𝒅 

𝑆𝑉𝑀
𝑖 = 𝐹𝑉𝑀  𝐿𝑐

𝑖 ,𝐶𝑉𝑀
𝑖 ,𝑆𝑇𝐶

𝑖 ,𝐴𝑙𝑙 ; 

𝑆𝑇𝑆
𝑖 = 𝐹𝑇𝑆 𝑇𝐿𝑖 ,𝑇𝑃𝑖 ; 

𝑆𝑐
𝑖 = 𝐹𝑉𝑀𝑅  𝑆𝑇𝑆

𝑖 ,𝑆𝑉𝑀
𝑖  ; 

𝒊𝒇(𝑆𝑐
𝑖 > 𝑆𝑝) 

𝑆𝑝 = 𝑆𝑐
𝑖 ; 

𝑉𝑀𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑖; 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒇𝒐𝒓 
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𝑎𝑠𝑠𝑖𝑔𝑛  𝑇𝑎𝑠𝑘  𝑡𝑜 𝑉𝑀𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . 

𝑬𝒏𝒅 𝑺𝒖𝒃 − 𝑹𝒐𝒖𝒕𝒊𝒏𝒆  𝑨𝒔𝒔𝒊𝒈𝒏𝑻𝒂𝒔𝒌  

𝑺𝒕𝒂𝒓𝒕 𝑺𝒖𝒃 − 𝑹𝒐𝒖𝒕𝒊𝒏𝒆  𝑽𝑴𝑺𝒕𝒂𝒕𝒖𝒔𝑪𝒐𝒏𝒕𝒓𝒐𝒍  

𝒇𝒐𝒓 𝑖 =  1 𝑡𝑜 𝑁 

𝒊𝒇(𝑖𝑠𝐼𝑑𝑙𝑒(𝑉𝑀𝑖)) 

𝑆𝑇𝐶
𝑖 ,𝐴𝑙𝑙 = 0; 

𝒇𝒐𝒓 𝑗 = 1:𝑀 

𝑆𝑇𝐶
𝑖 ,𝐴𝑙𝑙 = 𝑆𝑇𝐶

𝑖 ,𝑗  𝐿𝑐
𝑖 ,𝐶𝑉𝑀

𝑖 ,𝑇𝐿𝑗
𝑃 ,𝑇𝑃𝑗

𝑃 ,𝑃𝑗  ; 

𝒆𝒏𝒅 

𝑆𝑆𝑆
𝑖 = 𝐹𝑆𝑆 𝑅𝑐

𝑖 , 𝐶𝑉𝑀
𝑖 ,𝑆𝑇𝐶

𝑖 ,𝐴𝑙𝑙 ; 

𝒊𝒇(𝑆𝑆𝑆
𝑖 > 𝑇𝐻𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒 ) 

𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒  𝑡𝑒 𝑉𝑀𝑖 ;  

𝒆𝒍𝒔𝒆𝒊𝒇(𝑆𝑆𝑆
𝑖 > 𝑇𝐻𝑠𝑙𝑒𝑒𝑝 ) 

𝑆𝑒𝑡  𝑉𝑀 𝑡𝑜 𝑆𝑙𝑒𝑒𝑝  

𝒆𝒍𝒔𝒆 

𝑑𝑜 𝑛𝑜𝑡𝑖𝑛𝑔 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒇𝒐𝒓 

𝑬𝒏𝒅 𝑺𝒖𝒃 − 𝑹𝒐𝒖𝒕𝒊𝒏𝒆  𝑽𝑴𝑺𝒕𝒂𝒕𝒖𝒔  𝑪𝒐𝒏𝒕𝒓𝒐𝒍 

𝑠𝑖 =  𝑟−1
𝑖 , 𝑟−2

𝑖 ,……… . . 𝑟−𝐿
𝑖  ; //(last 𝐿requests by 𝑖𝑡  user.)  

𝑔𝑖 =  𝑏−1
𝑖 ,𝑏−2

𝑖 ,𝑏−3
𝑖 ,… . . ,𝑏−𝑀

𝑖  ,𝑏 ∈ {0,1}  // requests by  𝑖𝑡  user 

in 𝑀          // previous 
sampling windows. 

𝑃𝑖 = {𝑝1
𝑖 ,𝑝2

𝑖 ,𝑝3
𝑖 ,…… . . ,𝑝𝑁

𝑖 } ; // the probability of request of all 

tasks by 

// 𝑖𝑡 user at the next 𝑊 

events. 

// using the equation 

described  

// in section 3.10 

𝑇𝑖 = {𝑡1, 𝑡2, 𝑡3 ,…… . 𝑡𝑈} ; // the probability of generating the 

request by 

// each user in upcoming 

// samplingwindows. 

// in section 3.10 

𝑃𝑖
𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑖 ∙ 𝑝𝑗

𝑖𝑁
𝑖=1 ;//The total probability of appearing a request 

𝑟𝑗 in 

// 

upcomingsamplingwindows. 

𝑃𝑡𝑜𝑡𝑎𝑙 = {𝑃1
𝑡𝑜𝑡𝑎𝑙 ,𝑃2

𝑡𝑜𝑡𝑎𝑙 ,𝑃3
𝑡𝑜𝑡𝑎𝑙 ,… . , 𝑃𝑆

𝑡𝑜𝑡𝑎𝑙 }; // the total probability 

of 

// arriving of each request 

in 

// upcoming sampling 

window. 

𝑃𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙 =  𝑃𝑖

𝑡𝑜𝑡𝑎𝑙

𝑆

𝑖=1

; 

𝑃𝑛𝑜𝑟𝑚
𝑡𝑜𝑡𝑎𝑙 =  

𝑃1
𝑡𝑜𝑡𝑎𝑙

𝑃𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙 ,

𝑃2
𝑡𝑜𝑡𝑎𝑙

𝑃𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙 ,

𝑃3
𝑡𝑜𝑡𝑎𝑙

𝑃𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙 ,… . ,

𝑃𝑆
𝑡𝑜𝑡𝑎𝑙

𝑃𝑎𝑙𝑙
𝑡𝑜𝑡𝑎𝑙  ; // normalized probability 

𝑃𝑛𝑜𝑟𝑚
𝑡𝑜𝑡𝑎𝑙 =  𝑃1,𝑛𝑜𝑟𝑚

𝑡𝑜𝑡𝑎𝑙 ,𝑃2,𝑛𝑜𝑟𝑚
𝑡𝑜𝑡𝑎𝑙 , 𝑃3,𝑛𝑜𝑟𝑚

𝑡𝑜𝑡𝑎𝑙 ,… . ,𝑃𝑆 ,𝑛𝑜𝑟𝑚
𝑡𝑜𝑡𝑎𝑙  ; 

 

5.4. Proposed Algorithm Explanations 

As shown in fig. 4 the cloud manager waits for the arrival of the new task and as soon as it receives the new task 

from the task queue it extracts the task related parameters like task length and task priority. On the other process 

it estimates the upcoming tasks length and priority, which are required to estimate the task VM compatibility 

score.  
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Figure 5.1: Flow chart of the proposed algorithm. 

The VM compatibility score is used as the possibility of VMs utilization in future. Once it founds these values it 

checks all the VMs for condition 𝑇𝑡 ,𝑗
𝑖 >

1

𝑇𝑃𝑛𝑒𝑤
(as shown in algorithm), if it did not find any VM then it move to 

create a new VM according to the task requirements (as shown in algorithm sub-routine AssignTask). Otherwise 

if it find then calculate the relative VM score for all such VMs using fuzzy rules defined in table 1(c). to 

estimate VM relative score it send task length and priority values to fuzzy task score estimator (as shown in fig. 

3). This fuzzy estimator calculates the score according to the values and the rules defined in table 1(a). The 

fuzzy task score works as one input for the fuzzy relative score estimator for the second input the cloud manager 

scans all the running VMs for their execution capacity and current load. The above two values in then applied to 

fuzzy VM score 

 

Figure 5.2: Flow chart of the proposed algorithm. 

Estimator block which estimates the VM score according to the rules defined in table 1(b). The VM score works 

as second input for the VM relative score estimator. The procedure is repeated for all the running VMs and the 

relative scores are stored. Now the VM with highest relative score is selected for assignment of input task. 

To manage the status of VMs the cloud manager scans each VM for their execution capacity, accessing rate and 

VM compatibility score then these values are used to estimate their status score by applying fuzzy rules defined 

in table 1(d). The calculated status score is compared against 𝑇𝐻𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒  and if it finds VM score greater then it 

dissolves the VM and reclaim its resources. Otherwise it check the score against 𝑇𝐻𝑠𝑙𝑒𝑒𝑝  to check if it can be set 

into sleep state or should keep running. 

Table 1: The Fuzzy Rules and Surf plots for all fuzzy controllers. 
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VI. SIMULATION RESULTS 
 

6.1. Numerical Model Considerations for Cloud System 
1. It is assumed that the load balancer knows the configuration (like processing capacity, memory etc.) of 

each virtual machine (VM) in the cloud. 

2. The load balancer can get the operational state of each VM with zero time delay. 

3. The load balancer takes no time in selecting and assigning the tasks to VM’s. 

4. The load balancer selects the VM for the input tasks on the basis of selected algorithm. 

5. Each VM has zero booting time hence start executing assigned task immediately.  

6. The incoming tasks size is considered in MI (million instructions) units. 

7. The VM’s capacities are also considered in MIPS (million instructions per second) units. 

 

The evaluation of the proposed algorithm is performed using OCTAVE/ MATLAB numerical computing 

software. During the simulation the tasks arrive as a Poisson process at a rate of λ. The random length tasks 

within the provided minimum and maximum task lengthlimits aregenerated using a uniform discrete distribution. 

The similar way is used for the generation of task priorities and defining the VM execution capacities. 

6.2. Definition of Evaluation Terms 

 

The following measures are used to evaluate the performance of the algorithm.  

SLAFailure: is defined as failure of the cloud in serving the task within given time bound (inverse of priority).  

 

SLA Failure Task Length: defines the length of the SLAFailuretask. 

VM Reboots: is the booting of VMs from sleep mode, this operation is required when the already running VMs 

cannot serve the current task. 

VM Reforms: is the formation of new VM form the available unused resources when the current task cannot be 

handled by the already formed (running or sleeping) VMs. 

Resource Utilization Efficiency: is presents that how efficiently the cloud resources are utilized to serve the 

tasks, and it is calculated as follows: 
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In rows of table (c) and (d) represents the Low (L), Medium (M) and High (H) values of variable Task VM 

Compatibility Score. 
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𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
 𝑇𝐿𝑖
𝑁
𝑖=1

   𝐶𝑉𝑀
𝑗𝐴𝑖

𝑗=1
 𝑁

𝑖=1

× 100 

Where 𝑇𝐿𝑖 : is the load in cloud at time 𝑖. 

𝐴𝑖 : is the number of VMs active and running at time 𝑖. 

𝐶𝑉𝑀
𝑗

: Execution capacity of the 𝑗𝑡  VM. 

𝑁: is the total simulation time (discrete events of task arrival). 

5.3Simulation Environment Configurations 

To simulate the algorithm properly some important parameters are required to configure these parameters and 

their values are listed in table 2. 

Table 2: The simulation parameters and their values.  

Configuration Parameter Parameter Value 

Total Execution Capacity Available 100 MIPS 

Sampling Window Length 10 

Minimum Task Length 100 MI 

Minimum Task Execution Time 1 Seconds 

Maximum Task Execution Time 10 Seconds 

Threshold Sleep 0.5 

Threshold Dissolve 0.7 

Total Simulation Time 100 Seconds 

 

6.3. Simulation Outcomes 

The outcomes of the simulation is presented in graphical forms. The outcomes of the proposed algorithm is also 

compared with the two standard task scheduling algorithm names Round Robin and Random Selection.     

  

Figure 6: Plot for number of tasks failed to receive 

the requested SLA by cloud due shortage of resources 

with respect to simulation time.  

Figure 7: Plot for total length of the tasks which 

failed to receive the requested SLA by cloud due 

shortage of resources with respect to simulation time. 
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Figure 8: Plot for number of time the VM is rebooted 

from the sleep mode for assignment of task with 

respect to simulation time.  

Figure 9: Plot for number of time the VM is reformed 

from the available resources for assignment of task 

with respect to simulation time.  

 

 

 

 

 

Figure 10: Plot showing the variation of the cloud resource utilization efficiency with respect to maximum task 

length. 

VII. CONCLUSION 

 

In this paper, we presented the HMM andfuzzy logic based task scheduling and resource management scheme 
for Cloud systems. The simulation results shows that the proposed algorithm reduces the number of tasks and 

total tasks length, cloud failed to deliver the guaranteed SLA by 35% and 50% respectively when compared to 

fuzzy based algorithm while compare to the conventional algorithms reduce by a factor of 4.0 (fig. 6) and 8.0 

(fig. 7). This shows the algorithm rejects tasks with lowest length when it failed to deliver guaranteed SLA.  

The proposed algorithm show greater number of VM reboots (fig. 8) although this causes delay but the 

algorithm compensate this delay by reducing the number of new VM formation (fig. 9). Since the formation of 

new VM take many time larger time than rebooting the overall delay remain lower than the fuzzy based 

algorithm.  

Finally the comparison of efficiency (fig. 10) shows that the proposed algorithm gives the maximum efficiency 

when operated at moderate load conditions, which is appreciable as mostly cloud operates at such conditions. It 

also shows that the efficiency falls much slowly than the other algorithm, hence it can be said that the algorithm 
provides much uniform and stable performance for a wide range of loading conditions. 
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These results depicts that the proposed algorithm adequately handles the task scheduling and resource 

management of a cloud system having limited resources and SLA bounds.   

Although the presented algorithm provide better results than the conventional algorithms compared in this paper. 

The proposed algorithm can be further improved by fine tuning the membership functions and rule base 

however these modifications are leaved for the future work. 
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