Pre Generalized Regular Weakly-Closed (pgrw-closed) Sets in a Bitopological Space

R. S. Wali¹ and Vijaykumari T. Chilakwad²

¹Associate Professor Department of Mathematics, Bhandari and Rathi College, City : Guledagud-587 203, Rani Channamma University, Belagavi, Karnataka State, India

²Assistant Professor Department of Mathematics, Government First Grade College, City : Dharwad, Karnataka University, Dharwad, Karnataka State, India

Absract - In this paper pgrw-closed sets, pgrw-closure of a set in a bitopological space are studied and discussed some of their basic properties. A subset A of a bitopological space (X, τ_1, τ_2) is called a (τ_i, τ_j) -pgrw-closed set if τ_j -pcl(A) \subseteq G whenever A \subseteq G and G is a τ_i -rw-open set where $i, j \in \{1, 2\}$, $i \neq j$. The union and the intersection of two (τ_i, τ_j) -pgrw-closed sets need not be (τ_i, τ_j) -pgrw-closed.

Keywords - (τ_i, τ_j) -pgrw-closed set, (τ_i, τ_j) -pgrw-closure, τ_i -rw-open set

I. Introduction

In 1963 Kelly [1] initiated a systematic study of the concept of bitopological spaces. Later various researchers like Arya and Nour [2], Fukutake [3], Gnanambal [4] and Sheik Jhon [5] followed the concept of bitopological spaces. Fukutake extended the notion of generalised sets in a topological space to a bitopological space.

II. Preliminaries: A subset A of a topological space (X,τ) is called

- i) a semi-open set [6] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- ii) a pre-open set [7] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$.
- iii) an α -open set [8] if A \subseteq int(cl(int(A))) and an α -closed set if cl(int(cl(A))) \subseteq A.
- iv) a semi-pre open set (β -open) [9] if A \subseteq cl(int(cl(A))) and a semi-pre closed set (β -closed) if int(cl(int(A))) \subseteq A.
- v) a regular-open set [10] if A=int(cl(A)) and a regular closed set if A=cl(int(A)).
- vi) a δ -closed set [11] if $A=cl_{\delta}(A)$ where $cl_{\delta}(A=\{x \in X:int(cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}$.
- vii) a regular semi-open set (rs-open) [12] if there is a regular open set U such that $U\subseteq A\subseteq cl(U)$.
- viii) a generalized-closed set (g-closed) [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- ix) a strongly generalized closed set (g*-closed) [14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
- x) a regular w-closed set (rw-closed) [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open in X.
- xi) a #regular generalized-closed (#rg-closed) set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is rw-open.

xii) a Regular weakly generalized closed [17] (rwg - closed) if cl (int(A)) \subseteq U whenever A \subseteq U and U is regular open in X. xiii) A generalised α -closed set (g α -closed) [18] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in X.

Definiion: A subset A of a bitopological space (X, τ_1, τ_2) is called a

- i) (τ_i, τ_j) -g-closed [3] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is open in τ_i .
- ii) (τ_i, τ_j) -gp-closed [19] if τ_j -pcl(A) $\subseteq U$ whenever A $\subseteq U$ and U is open in τ_i .
- iii) (τ_i, τ_j) -rg-closed [2] if τ_j -cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is regular open in τ_i .
- iv) (τ_i, τ_j) -gpr-closed [21] if τ_j -pcl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i .
- v) (τ_i, τ_j) - α g-closed [22] if τ_j - α cl(A) \subseteq U whenever A \subseteq U and U is open in τ_i . Here $i, j \in \{1, 2\}$ and $i \neq j$.

III pgrw-closed sets in a bitopological space:

3.1 Definition: A subset A of a bitopological space (X, τ_1, τ_2) is called a (τ_i, τ_j) -pgrw-closed set if τ_j -pcl(A) \subseteq G whenever A \subseteq G and G is a τ_i -rw open set where $i, j \in \{1, 2\}, i \neq j$.

3.2 Example: $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a\}\}, \tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\}\}$

 τ_1 -rw-open sets are X, ϕ ,{a},{b},{c},{a,b},{b,c},{a,c}.

 $\tau_2\text{-pre-closed sets are } X, \varphi, \{b, c\}, \{a, c\}, \{c\}.$

 $\{c\}$ is a $(\tau_1,\tau_2)\text{-}pgrw$ closed set.

Let $A=\{a\}$. τ_2 -pcl(A)= $\{a,c\}$. Here $\{a\}\subseteq\{a\}$, a τ_1 -rw-open set.

 τ_2 -pcl(A) ={a,c} $\not\subset$ {a}. Hence A is not a (τ_1, τ_2)-pgrw-closed set.

The family of all (τ_i, τ_j) -pgrw-closed sets in a bitopological space (X, τ_1, τ_2) is denoted by $D_{pgrw}(X, \tau_i, \tau_j)$.

3.3 Remark: By setting $\tau_1 = \tau_2 = \tau$ in definition 3.1 a (τ_i, τ_j) -pgrw-closed set reduces to a pgrw-closed set in (X, τ) .

3.4 Remark : The family $D_{pgrw}(X,\tau_1,\tau_2)$ is generally not equal to the family $D_{pgrw}(X,\tau_2,\tau_1)$ as seen from the following example.

3.5 Example: $X = \{a,b,c,d\}, \tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}, \tau_2 = \{X,\phi,\{a\},\{c,d\},\{a,c,d\}\}$

 $\tau_1\text{-rw-open sets}: X, \phi, \{a, b, c\}, \{c, d\}, \{a, b\}, \{a\}, \{b\}, \{c\}, \{d\}$

 $\tau_2\text{-pre-closed sets}: X, \phi, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, \{a, b, d\}$

 $D_{pgrw}(X,\tau_1,\tau_2) = \{X, \phi, \{b\}, \{c\}, \{d\}, \{a,b\}, \{b,c\}, \{a,d\}, \{b,d\}, \{a,c\}, \{a,b,c\}, \{b,c,d\}, \{a,c,d\}, \{a,b,d\}\}$

 $\tau_2\text{-rw-open sets}: \ X, \varphi, \{a\}, \{b\}, \{c\}, \{d\}, \{c,d\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,c\}, \{a,c,d\};$

 τ_1 -pre-closed sets : X, ϕ , {b,c,d}, {a,c,d}, {c,d}, {d}, {c};

 $D_{pgrw}(X,\tau_2,\tau_1) = \{X, \phi, \{c\}, \{d\}, \{c,d\}, \{a,b,c\}, \{b,c,d\}, \{a,c,d\}, \{a,b,d\}\}$

 $\therefore \quad D_{pgrw}(X,\tau_1,\tau_2) \neq D_{pgrw}(X,\tau_2,\tau_1).$

3.6 Remark: The union and the intersection of two (τ_i, τ_j) -pgrw-closed sets need not be (τ_i, τ_j) -pgrw-closed.

3.7 Example: Consider the space in 3.5.

1) The sets $\{c\}$ and $\{d\}$ are (τ_1, τ_2) -pgrw-closed sets.

But $\{c\} \cup \{d\} = \{c,d\}$ is not (τ_1, τ_2) -pgrw-closed.

2) The sets $\{a,b\}$ and $\{a,c\}$ are (τ_1,τ_2) -pgrw-closed sets.

But $\{a,b\} \cap \{a,c\} = \{a\}$ is not (τ_1,τ_2) -pgrw-closed.

3.8 Theorem: In a bitopological space (X, τ_1, τ_2) if $\tau_1 \subseteq \tau_2$ and $\text{RWO}(X, \tau_1) \subseteq \text{RWO}(X, \tau_2)$, then $D_{\text{pgrw}}(X, \tau_2, \tau_1) \subseteq D_{\text{pgrw}}(X, \tau_1, \tau_2)$.

Proof: (X,τ_1,τ_2) is a bitopological space in which $\tau_1 \subseteq \tau_2$ and RWO $(X,\tau_1) \subseteq$ RWO (X,τ_2) . A $\epsilon D_{pgrw}(X,\tau_2,\tau_1)$. Let $G \in$ RWO (X,τ_1) and A \subseteq G. Then $G \in$ RWO (X,τ_2) and A \subseteq G. As A is a (τ_2,τ_1) -pgrw-closed set, τ_1 -pcl $(A) \subseteq G$. Since $\tau_1 \subseteq \tau_2$, τ_2 -pcl $(A) \subseteq \tau_1$ -pcl $(A) \subseteq G$. Thus τ_2 -pcl $(A) \subseteq G$ whenever A \subseteq G and G is τ_1 -rw-open. Hence A is (τ_1,τ_2) -pgrw-closed. That is $A \in D_{pgrw}(X,\tau_1,\tau_2)$. $\therefore D_{pgrw}(X,\tau_2,\tau_1) \subseteq D_{pgrw}(X,\tau_1,\tau_2)$.

3.9 Theorem: In a bitopological space (X, τ_1, τ_2) if A is a (τ_i, τ_j) -pgrw-closed set, then τ_j -pcl(A)–A contains no non-empty τ_i -rw-closed set.

Proof: In a bitopological space (X, τ_1, τ_2) A is a (τ_i, τ_j) -pgrw-closed set, F is a τ_i -rw-closed set and $F \subseteq \tau_j$ -pcl(A)–A.

- $\Rightarrow \quad A \text{ is a } (\tau_i,\tau_j)\text{-pgrw-closed set, } F^c \text{ is } \tau_i\text{-rw-open, } A \subseteq F^c \text{ and } F \subseteq \tau_j\text{-pcl}(A).$
- $\Rightarrow \quad \tau_j\text{-pcl}(A){\subseteq} F^c \text{ and } F{\subseteq}\tau_j\text{-pcl}(A)$
- $\Rightarrow \quad F \subseteq (\tau_j \operatorname{-pcl}(A))^c \text{ and } F \subseteq \tau_j \operatorname{-pcl}(A).$
- $\Rightarrow \quad F \subseteq (\tau_j \text{-pcl}(A))^c \cap \tau_j \text{-pcl}(A) = \phi$
- \Rightarrow F= ϕ .

Hence $\tau_j\text{-pcl}(A)\text{-}A$ does not contain any non-empty $\tau_i\text{-}rw\text{-}closed$ set.

The converse is not true.

3.10 Example: w.r.t. the example 3.5 if A={b,d}, τ_1 -pcl(A)-A = τ_1 -pcl({b,d})-{b,d} = {b,c,d}-{b,d}={c} c contains no non-empty τ_2 -rw-closed set, but {b,d} is not (τ_2,τ_1)-pgrw-closed.

3.11 Corollary: If A is a (τ_i, τ_j) -pgrw-closed set in (X, τ_1, τ_2) and τ_j -pcl(A)–A is a τ_i -rw-closed set, then A is τ_j -pre-closed.

Proof: A is a (τ_i, τ_j) -pgrw-closed set and τ_j -pcl(A)–A is τ_i -rw-closed in (X, τ_1, τ_2) .

- $\Rightarrow A \text{ is a } (\tau_i, \tau_j) \text{-pgrw-closed set and a } \tau_i \text{-rw-closed set } \tau_j \text{-pcl}(A) \text{-} A \subseteq \tau_j \text{-pcl}(A) \text{-} A$
- $\Rightarrow \tau_j \text{-pcl}(A) \text{-} A = \phi$
- $\Rightarrow \tau_j$ -pcl(A)=A
- \Rightarrow A is τ_j -pre-closed.

3.12 Theorem: In any bitopological space $(X, \tau_1, \tau_2) \forall x \in X \{x\}^c$ is either τ_i -rw-open or (τ_i, τ_j) -pgrw-closed.

Proof: (X, τ_1, τ_2) is a bitopological space.

 $\forall x \in X, \{x\}^c$ and X are the only two sets containing $\{x\}^c$.

So if $\{x\}^c$ is not τ_i -rw-open, then X is the only τ_i -rw-open set containing $\{x\}^c$ and so whenever $\{x\}^c \subseteq X$, a τ_i -open set

 τ_j -pcl({x}^c) \subseteq X. That is every τ_i -rw-open set containing {x}^c contains τ_j -pcl({x}^c). Hence {x}^c is (τ_i, τ_j)-pgrw-closed.

3.13 Theorem: In a bitopological space (X, τ_1, τ_2) if RWO $(X, \tau_i) = \{X, \phi\}$, then every subset of X is (τ_i, τ_j) -pgrw-closed.

Proof: Let RWO(X, τ_i)={X, ϕ } in (X, τ_1 , τ_2) and A be any subset of X.

If A= ϕ , then A is a (τ_i, τ_j) -pgrw-closed set.

If $A \neq \phi$, then X is the only τ_i -rw-open set containing A and τ_j -pcl(A) \subseteq X.

Hence A is a (τ_i, τ_j) -pgrw-closed set.

3.14 Theorem: Every τ_j -pre-closed subset of a bitopological space (X, τ_1, τ_2) is a (τ_i, τ_j) -pgrw-closed set.

Proof: If A is a τ_j -pre-closed subset of a bitopological space (X, τ_1, τ_2) , then $A = \tau_j$ -pcl(A). Therefore if $A \subseteq G$ and G is τ_i -rwopen, then τ_j -pcl(A) $\subseteq G$.

So A is (τ_i, τ_j) -pgrw-closed.

The converse is not true.

3.15 Example: $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{X,\phi,\{a\}\}.$

 τ_1 -rw-open sets are X, ϕ ,{a},{b}, {a,b}. τ_2 -pre-closed sets are X, ϕ ,{b,c},{c},{b}. The set {a,c} is a (τ_1, τ_2)-pgrw-closed set, but not τ_2 -pre-closed.

3.16 Theorem: Every (τ_i, τ_j) -pgrw-closed and τ_i -rw-open set in a bitopological space (X, τ_1, τ_2) is τ_j -pre-closed.

Proof: In (X, τ_1, τ_2) , A is a (τ_i, τ_j) -pgrw closed and τ_i -rw-open set.

- \Rightarrow A is (τ_i, τ_j) -pgrw-closed and A \subseteq A, a τ_i -rw-open set.
- $\Rightarrow \tau_j$ -pcl(A) \subseteq A
- $\Rightarrow \tau_j$ -pcl(A)=A.
- \Rightarrow A is τ_j -pre-closed.

3.17 Corollary: Every (τ_i, τ_j) -pgrw-closed and τ_i -regular-open set in a bitopological space (X, τ_1, τ_2) is τ_j -pre-closed.

Proof: A is a (τ_i, τ_j) -pgrw-closed and τ_i -regular-open set in (X, τ_1, τ_2) .

 \Rightarrow A is a (τ_i, τ_j) -pgrw-closed and τ_i -rw-open set.

 \Rightarrow A is τ_j -pre-closed.

3.18 Theorem: In a bitopological space (X, τ_1, τ_2) every τ_i -rw-open set is τ_j -pre-closed if and only if every subset of (X, τ_1, τ_2) is a (τ_i, τ_j) -pgrw-closed set.

Proof: (X, τ_1, τ_2) is a bitopological space and every τ_i -rw-open set is τ_j -pre-closed.

A is a subset of X.

Now $A \subseteq G$ and G is τ_i -rw-open.

- $\Rightarrow \tau_j$ -pcl(A) $\subseteq \tau_j$ -pcl(G) and G is τ_j -pre-closed.
- $\Rightarrow \ \tau_j\text{-pcl}(A) {\subseteq} \tau_j\text{-pcl}(G) \text{ and } \tau_j\text{-pcl}(G) {=} G.$
- $\Rightarrow \tau_j$ -pcl(A) \subseteq G

Thus τ_j -pcl(A) \subseteq G whenever A \subseteq G and G is τ_i -rw-open.

 \therefore A is (τ_i, τ_j) -pgrw-closed.

Conversely

Suppose that every subset of (X, τ_1, τ_2) is a (τ_i, τ_j) -pgrw-closed set. Let G be a τ_i -rw-open set in X. By the hypotheses G is (τ_i, τ_j) -pgrw-closed.

By 3.16 G is τ_j -pre-closed.

3.19 Theorem: In a bitopological space (X, τ_1, τ_2)

- i) every τ_j -closed set is (τ_i, τ_j) -pgrw-closed.
- ii) every τ_j - δ -closed set is (τ_i, τ_j) -pgrw-closed.
- iii) every τ_j -regular closed set is (τ_i, τ_j) -pgrw-closed.
- iv) every τ_j - α -closed set is (τ_i, τ_j) -pgrw-closed.

v) every τ_j -#rg-closed set is (τ_i, τ_j) -pgrw-closed.

Proof: i) A is a τ_j -closed set in (X, τ_1, τ_2) .

- \Rightarrow A is τ_j -pre-closed.
- \Rightarrow A is (τ_i, τ_j) -pgrw-closed (3.14).

Other statements may be proved similarly.

The converse statements are not true.

3.20 Example: In 3.5 the set $\{c\}$ is (τ_2, τ_1) -pgrw-closed, but not τ_2 -closed.

3.21 Example: In 3.5 the set { c} is (τ_2, τ_1) -pgrw-closed, but not τ_2 - δ -closed.

3.22 Example: X={a,b,c}, τ_1 ={X, ϕ ,{a}}, τ_2 ={X, ϕ ,{a},{b}}. Here the set {c} is (τ_1 , τ_2)-pgrw-closed, but not τ_2 -regular-closed.

3.23 Example: Consider 3.5, {c} is (τ_2, τ_1) -pgrw-closed, but not τ_2 -#rg-closed.

3.24 Theorem: Every (τ_i, τ_j) -pgrw-closed set in a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) -gp-closed.

Proof: In a bitopological space (X, τ_1, τ_2) , A is a (τ_i, τ_j) -pgrw-closed set and G is a τ_i -open set containing A.

 \Rightarrow A is a (τ_i, τ_j) -pgrw-closed set and G is a τ_i -rw-open set containing A.

 $\Rightarrow \tau_i$ -pcl(A) \subseteq G

Thus every τ_i -open set containing A contains τ_j -pcl(A).

Hence A is (τ_i, τ_j) -gp-closed.

The converse is not true.

3.25 Example: Refer 3.5. (τ_2,τ_1) -gp-closed sets are X, ϕ , {b}, {c}, {d}, {a,b}, {b,c}, {a,d}, {b,d}, {a,c}, {c,d}, {a,b,c}, {b,c,d}, {b,c,d

{a,c,d},{a,b,d}. The set {b} is (τ_2,τ_1) -gp-closed, but not (τ_2,τ_1) -pgrw-closed.

3.26 Theorem: Every τ_i -open and (τ_i, τ_j) -gp-closed set in a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) -pgrw-closed.

Proof: A is a τ_i -open and (τ_i, τ_j) -gp-closed set in (X, τ_1, τ_2) . Let G be a τ_i -rw-open set containing A.

Now A \subseteq A, τ_i -open and A is (τ_i , τ_j)-gp-closed.

 $\therefore \ \tau_j \text{-pcl}(A) \subseteq A \subseteq G. \ \text{Thus} \ \tau_j \text{-pcl}(A) \subseteq G \ \text{whenever} \ A \text{ is subset of } G \text{ and } G \text{ is } \tau_i \text{-rw-open}.$

 \therefore A is (τ_i, τ_j) -pgrw-closed.

3.27 Theorem: Every (τ_i, τ_j) -pgrw-closed set in a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) -gpr-closed.

Proof: In a bitopological space (X, τ_1, τ_2) A is a (τ_i, τ_j) -pgrw-closed set and G is a τ_i -regular open set containing A.

 $\Rightarrow \quad A \text{ is a } (\tau_i,\tau_j)\text{-}pgrw\text{-}closed \text{ set and } G \text{ is a } \tau_i\text{-}rw\text{-}open \text{ set containg } A.$

 $\Rightarrow \quad \tau_j\text{-pcl}(A) {\subseteq} G.$

Thus every τ_i -regular open set containing A contains τ_j -pcl(A).

 $\therefore \quad A \text{ is } (\tau_i,\tau_j)\text{-}gpr\text{-}closed.$

The converse is not true.

3.28 Example: $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{X,\phi,\{a\}\}$

 $\tau_1\text{-}\text{regular}$ open sets are X, $\phi,\{a\},\{b\}$ and $\tau_2\text{-}\text{pre}$ closed sets: X, $\phi,\{b,c\},\{c\},\{b\}$.

 τ_1 -rw-open sets are X, ϕ ,{a},{b},{c},{a,b}. The set {a,b} is (τ_1,τ_2)-gpr-closed, but not (τ_1,τ_2)-pgrw-closed.

3.29 Theorem: Every τ_i -regular open and (τ_i, τ_j) -gpr-closed set in a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) -pgrw-closed.

Proof: A is a τ_i -regular open and (τ_i, τ_j) -gpr-closed set in a bitopological space (X, τ_1, τ_2) .

Let G be a τ_i -rw-open set such that A \subseteq G.

Now A⊆A, τ_i -regular open and A is (τ_i, τ_j) -gpr-closed.

- $\div \ \tau_j\text{-pcl}(A){\subseteq}A$
- $\div \ \tau_j\text{-pcl}(A){\subseteq}G$
- \therefore A is (τ_i, τ_j) -pgrw-closed.

3.30 Theorem: Every τ_i -regular open and (τ_i, τ_j) -rg-closed set in a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) -pgrw-closed.

Proof: A is a τ_i -regular open and (τ_i, τ_j) -rg-closed set in (X, τ_1, τ_2) .

Let G be a $\tau_i\text{-}\mathrm{rw}\text{-}\mathrm{open}$ set such that A\subseteqG. As A⊆A, $\tau_i\text{-}\mathrm{rw}\text{-}\mathrm{open}$ and A is

 $(\tau_i,\tau_j)\text{-rg-closed}, \tau_j\text{-cl}(A) \subseteq A. \text{ And so } \tau_j\text{-pcl}(A) \subseteq A \subseteq G. \text{ Thus } \tau_j\text{-pcl}(A) \subseteq G \text{ whenever } A \text{ is subset of } G \text{ and } G \text{ is } \tau_i\text{-rw-open.}$

 $\because\ A \ is \ (\tau_i,\tau_j)\mbox{-pgrw-closed}$.

3.31 Theorem: Every τ_i -open and (τ_i, τ_j) -g-closed set in a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) -pgrw-closed.

Proof: A is τ_i -open and (τ_i, τ_j) -g-closed set in a bitopological space (X, τ_1, τ_2) .

Let G be a τ_i -rw-open set containing A in (X, τ_1, τ_2) .

Now A \subseteq A, a τ_i -open set and A is (τ_i , τ_j)-g-closed.

 $\therefore \quad \tau_j\text{-cl}(A) \subseteq A. \text{ And so } \tau_j\text{-pcl}(A) \subseteq G.$

 \therefore A is (τ_i, τ_j) -pgrw-closed.

3.32 Theorem: Every τ_i -open and (τ_i, τ_j) - αg -closed set in a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) -pgrw-closed.

Proof: A is a τ_i -open and (τ_i, τ_j) - αg -closed set in a bitopological space (X, τ_1, τ_2) .

Let G be a τ_i -rw-open set such that A \subseteq G in (X, τ_1 , τ_2).

Now $A \subseteq A$, τ_i -open and A is (τ_i, τ_j) - α g-closed.

- $\therefore \ \tau_j\text{-}\alpha cl(A){\subseteq}A.$
- $\therefore \ \tau_j \text{-pcl}(A) \subseteq A \subseteq G.$
- \therefore A is (τ_i, τ_j) -pgrw-closed.

The following examples show that (τ_i, τ_j) -pgrw-closed sets and τ_j -rw closed sets, τ_j -g-closed sets, τ_j -semi-closed sets, τ_j -g α -closed sets, τ_j -g γ -closed sets, τ_j -rwg-closed sets are independent.

3.33 Example: (τ_1, τ_2) -pgrw-closed sets and τ_2 -rw-closed sets are independent.

i) $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{X,\phi,\{a\}\}$

Here {a,b} is τ_2 -rw closed set, but not (τ_1 , τ_2)-pgrw-closed.

ii) $X = \{a,b,c,d\}, \tau_1 = \{X,\phi,\{a\},\{c,d\},\{a,c,d\}\}, \tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$

The set {c} is (τ_1, τ_2) -pgrw-closed, but not τ_2 -rw closed.

Similarly we may show that (τ_2, τ_1) -pgrw-closed sets and τ_1 -rw closed sets are independent.

3.34 Example: (τ_1, τ_2) -pgrw-closed sets and τ_2 -g-closed sets are independent.

i) $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{X,\phi,\{a\}\}$

The set $\{a,b\}$ is a τ_2 -g-closed set, but not (τ_1,τ_2) -pgrw-closed.

ii) $X = \{a,b,c,d\}, \tau_1 = \{X,\phi,\{a\},\{c,d\},\{a,c,d\}\}, \tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$

The set {c} is (τ_1, τ_2) -pgrw-closed, but not τ_2 -g-closed.

- **3.35 Example:** (τ_1, τ_2) -pgrw-closed sets and τ_2 -semi-closed sets are independent.
- i) $X = \{a,b,c\}, \tau_1 = \{X,\varphi,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{X,\varphi,\{a\}\}$

The set $\{a,c\}$ is (τ_1,τ_2) -pgrw-closed, but not τ_2 -semi-closed.

- ii) $X = \{a,b,c,d\}, \tau_1 = \{X,\phi,\{a\},\{c,d\},\{a,c,d\}\}, \tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$ The set $\{b,c\}$ is τ_2 -semi-closed, but not (τ_1,τ_2) -pgrw-closed.
- **3.36 Example:** (τ_1, τ_2) -pgrw-closed sets and τ_2 -g α -closed sets are independent.
- i) $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{X,\phi,\{a\}\}$

 $\{a,b\}$ is a τ_2 -g α closed set, but not (τ_1,τ_2) -pgrw-closed.

- ii) $X = \{a,b,c,d\}, \tau_1 = \{X,\phi,\{a\},\{c,d\},\{a,c,d\}\}, \tau_2 = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$ The set $\{a,b,d\}$ is (τ_1,τ_2) -pgrw-closed, but not τ_2 -g α closed.
- **3.37 Example:** (τ_1, τ_2) -pgrw-closed sets and τ_2 -g*-closed sets are independent.
- i) $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{X,\phi,\{a\}\}$

The set {a,c} is (τ_1, τ_2) -pgrw-closed, but not τ_2 -g*-closed.

ii) $X = \{a,b,c,d\}, \tau_1 = \{X,\phi,\{a\},\{c,d\},\{a,c,d\}\}, \tau_2 = \{X,\phi,\{a\},\{a,b\},\{a,b,c\}\}$

The set {a,d} is a τ_2 -g*-closed set, but not (τ_1 , τ_2)-pgrw-closed.

3.38 Example: (τ_1, τ_2) -pgrw-closed sets and τ_2 -rwg-closed sets are independent.

i) $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{X,\phi,\{a\}\}$

 $\{a,b\}$ is $\tau_2\text{-rwg-closed},$ but not $(\tau_1,\tau_2)\text{-pgrw-closed}.$

ii) $X = \{a,b,c,d\}, \tau_1 = \{X,\phi,\{a\},\{c,d\},\{a,c,d\}\}, \tau_2 = \{X,\phi,\{a\},\{a,b\},\{a,b,c\}\}$

The set {c,d} is (τ_1, τ_2) -pgrw-closed, but not τ_2 -rwg-closed.

3.39 The following diagram shows the relation between (τ_i, τ_j) -pgrw-closed set and other sets.

IV pgrw-closure of a set in a bitopological space:

4.1 Definition: In a bitopological space (X, τ_1, τ_2) (τ_i, τ_j) -pgrw-closure of a subset A of X is the intersection of all (τ_i, τ_j) -pgrw-closed sets containing A and is denoted by (τ_i, τ_j) -pgrwcl(A). i.e. (τ_i, τ_j) -pgrwcl(A)= $\cap F_{F \in F}$ where $F = \{F: F \text{ is a } (\tau_i, \tau_j) \text{-pgrw-closed set containing A}\}$.

4.2 Example: $X = \{a,b,c,d\}, \tau_1 = \{X,\phi,\{a\},\{c,d\},\{a,c,d\}\}, \tau_2 = \{X,\phi,\{a\},\{a,b\},\{a,b,c\}\};$

 (τ_1,τ_2) -pgrw-closed sets are X, ϕ ,{c},{d},{c,d},{a,b,c},{b,c,d},{a,c,d},{a,b,d}.

Let A={a,c}. (τ_1,τ_2) -pgrwcl(A)={a,c}

4.3 Example: (τ_i, τ_j) -pgrwcl(X)=X, (τ_i, τ_j) -pgrwcl(ϕ)= ϕ

4.4 Remark: (τ_i, τ_j) -pgrwcl(A) need not be (τ_i, τ_j) -pgrw-closed. For example, in 4.2 let A={a,d}, then (τ_1, τ_2) -pgrwcl(A)={a,d}=A which is not (τ_1, τ_2) -pgrw-closed.

4.5 Theorem: If A is a subset of a bitopological space (X, τ_1, τ_2) , then

i) $A \subseteq (\tau_i, \tau_j)$ -pgrwcl(A)

- ii) (τ_i, τ_j) -pgrwcl $((\tau_i, \tau_j)$ -pgrwcl(A))= (τ_i, τ_j) -pgrwcl(A)
- iii) \forall (τ_i, τ_j)-pgrw-closed set A (τ_i, τ_j)-pgrwcl(A)=A.

Proof:

i) By definition it follows that $A \subseteq (\tau_i, \tau_j)$ -pgrwcl(A).

ii) $A \subseteq X$. (τ_i, τ_j) -pgrwcl(A)= $\cap F_{F \in F}$ where $F = \{F: F \text{ is a } (\tau_i, \tau_j) \text{-pgrw-closed set containing A}\}$.

If $F \in F$, then (τ_i, τ_j) -pgrwcl(A) $\subseteq F$. Since F is a (τ_i, τ_j) -pgrw-closed set containing pgrwcl(A), (τ_i, τ_j) -pgrwcl $((\tau_i, \tau_j)$ -pgrwcl(A)) $\subseteq F \forall F \in F$. Hence (τ_i, τ_j) -pgrwcl $((\tau_i, \tau_j)$ -pgrwcl(A)) $\subseteq \cap F_{F \in F}$ i.e. (τ_i, τ_j) -pgrwcl $((\tau_i, \tau_j)$ -pgrwcl(A)) $\subseteq (\tau_i, \tau_j)$ -pgrwcl(A).....(a)

And by (1) $A \subseteq (\tau_i, \tau_j)$ -pgrwcl(A) and so (τ_i, τ_j) -pgrwcl(A) $\subseteq (\tau_i, \tau_j)$ -pgrwcl((τ_i, τ_j) -pgrwcl(A))....(b)

(a) and (b) \Rightarrow (τ_i, τ_j)-pgrwcl((τ_i, τ_j)-pgrwcl(A)) = (τ_i, τ_j)-pgrwcl(A)

iii) By (1) A \subseteq (τ_i, τ_j)-pgrwcl(A). If A is a (τ_i, τ_j)-pgrw-closed subset of (X, τ_1, τ_2), then (τ_i, τ_j)-pgrwcl(A) \subseteq A.

 \therefore (τ_i, τ_j)-pgrwcl(A)=A.

Converse of (iii) is not true.

4.6 Example: Refer 4.4.

- **4.7 Theorem:** A and B are subsets of a bitopological space (X, τ_1, τ_2) .
- i) If B is any (τ_i, τ_j) -pgrw-closed set containing A, then (τ_i, τ_j) -pgrwcl(A) \subseteq B.
- ii) If $A \subseteq B$, then (τ_i, τ_j) -pgrwcl $(A) \subseteq (\tau_i, \tau_j)$ -pgrwcl(B).

iii) (τ_i, τ_j) -pgrwcl(A)U (τ_i, τ_j) -pgrwcl(B) $\subseteq (\tau_i, \tau_j)$ -pgrwcl(AUB)

Proof:

- i) Follows from definition.
- ii) In a bitopological space (X, τ_1, τ_2) A and B are subsets of X.

 $(\tau_i,\tau_j)\text{-}pgrwcl(A) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrw\text{-}closed \text{ set containing } A \} (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is a } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwcl(B) = \bigcap F_{F \in F} \text{ where } F = \{F:F \text{ is } (\tau_i,\tau_j)\text{-}pgrwc$

 $(\tau_i, \tau_j)\text{-}pgrw\text{-}closed \ set \ containing } B \, \}$

 $A \subseteq B \ \Rightarrow \mathcal{F} \subseteq F \ \Rightarrow \ \cap F_{F \in F} \subseteq \cap F_{F \in \mathcal{F}} \ \Rightarrow \ (\tau_i, \tau_j) \text{-}pgrwcl(A) \subseteq (\tau_i, \tau_j) \text{-}pgrwcl(B)$

iii) $A \subseteq A \cup B$ and $B \subseteq A \cup B$

 $\Rightarrow \ (\tau_i,\tau_j) - pgrwcl(A) \subseteq (\tau_i,\tau_j) - pgrwcl(A \cup B), \ (\tau_i,\tau_j) - pgrwcl(B) \subseteq (\tau_i,\tau_j) - pgrwcl(A \cup B)$

 $\Rightarrow \ (\tau_i,\tau_j)\text{-}pgrwcl(A) \cup (\tau_i,\tau_j)\text{-}pgrwcl(B) \subseteq (\tau_i,\tau_j)\text{-}pgrwcl(A \cup B).$

4.8 Theorem: If A and B are subsets of a bitopological space (X,τ_1,τ_2) , then (τ_i,τ_j) -pgrwcl $(A\cap B)\subseteq (\tau_i,\tau_j)$ -pgrwcl $(A)\cap (\tau_i,\tau_j)$ -pgrwcl(B).

Proof: A and B are subsets of (X, τ_1, τ_2) . A \cap B \subseteq A and A \cap B \subseteq B

 $\therefore \ (\tau_i,\tau_j)\text{-}pgrwcl(A \cap B) \subseteq (\tau_i,\tau_j)\text{-}pgrwcl(A), \ (\tau_i,\tau_j)\text{-}pgrwcl(A \cap B) \subseteq (\tau_i,\tau_j)\text{-}pgrwcl(B).$

 $\therefore \ (\tau_i, \tau_j) \text{-}pgrwcl(A \cap B) \subseteq (\tau_i, \tau_j) \text{-}pgrwcl(A) \cap (\tau_i, \tau_j) \text{-}pgrwcl(B)$

4.9 Theorem: A is a nonempty subset of a bitopological space (X, τ_1, τ_2) . $x \in (\tau_i, \tau_j)$ -pgrwcl(A) if and only if $A \cap V \neq \phi \forall (\tau_i, \tau_j)$ -pgrw-open set V containing x.

Proof: A is a nonempty subset of a bitopological space (X, τ_1, τ_2) and $x \in (\tau_i, \tau_j)$ -pgrwcl(A)....hypothesis.

Suppose $\exists a (\tau_i, \tau_j)$ -pgrw-open set V containing x such that $A \cap V = \phi$. Then $A \subseteq X - V$ and X - V is a (τ_i, τ_j) -pgrw-closed set and so (τ_i, τ_j) -pgrwcl($A \subseteq X - V$.

∴ $x \notin V$ which is a contradiction. Hence $A \cap V \neq \phi \forall (\tau_i, \tau_j)$ -pgrw-open set V containing x.

Conversely

A is a nonempty subset of (X, τ_1, τ_2) and $x \in X$ is such that $A \cap V \neq \phi \forall (\tau_i, \tau_j)$ -pgrw-open set V containing x.....hypothesis.

 $x \notin (\tau_i, \tau_j)\text{-}pgrwcl(A)$

- $\Rightarrow \ \ \, \text{There exists a } (\tau_i,\tau_j)\text{-}pgrw\text{-}closed \ \text{set }F \ \text{such that } A {\subseteq} F \ \text{and} \ x {\notin} F.$
- ⇒ There exists a (τ_i, τ_j) -pgrw-open set X-F containing x and A \cap (X-F)= ϕ which is a contradiction. \therefore x $\epsilon(\tau_i, \tau_j)$ -pgrwcl(A)

4.10 Theorem: In a bitopological space (X, τ_1, τ_2) if $\tau_1 \subseteq \tau_2$ and RWO $(X, \tau_1) \subseteq$ RWO (X, τ_2) , then

 $\forall A \subseteq X, (\tau_1, \tau_2) \text{-pgrwcl}(A) \subseteq (\tau_2, \tau_1) \text{-pgrwcl}(A).$

Proof: A is a subset of a bitopological space (X, τ_1, τ_2) .

 (τ_1, τ_2) -pgrwcl(A)= $\cap F_{F \in F}$ where $F = \{F: F \text{ is a } (\tau_1, \tau_2)\text{-pgrw-closed set and } A \subseteq F\}.$

 (τ_2,τ_1) -pgrwcl(A)= $\cap F_{F \in \mathcal{F}}$ where $\mathcal{F} = \{F: F \text{ is a } (\tau_2,\tau_1)\text{-pgrw-closed set and } A \subseteq F\}.$

 $\tau_1 \subseteq \tau_2$ and RWO(X, τ_1) \subseteq RWO(X, τ_2)

- $\Rightarrow \ D_{pgrw}\left(X,\tau_{2},\tau_{1}\right) \subseteq D_{pgrw}(X,\tau_{1},\tau_{2}) \ (3.8).$
- ⇒ *F*⊆F
- $\Rightarrow \quad \cap F_{F \in F} \subseteq \cap F_{F \in \mathcal{F}}$
- $\Rightarrow (\tau_1, \tau_2)\text{-}pgrwcl(A) \subseteq (\tau_2, \tau_1)\text{-}pgrwcl(A).$

4.11 Theorem: For every subset A of a bitopological space (X, τ_1, τ_2) ,

- i) (τ_i, τ_j) -pgrwcl(A) $\subseteq \tau_j$ -cl(A)
- ii) (τ_i, τ_j) -pgrwcl(A) $\subseteq \tau_j$ -pcl(A)
- iii) (τ_i, τ_j) -pgrwcl(A) $\subseteq \tau_j$ -rcl(A)

- iv) (τ_i, τ_j) -pgrwcl(A) $\subseteq \tau_j$ - δ cl(A)
- v) (τ_i, τ_j) -pgrwcl(A) $\subseteq \tau_j$ -acl(A)
- vi) (τ_i, τ_j) -pgrwcl(A) $\subseteq \tau_j$ -#rgcl(A).

Proof:

i) A is a subset of a bitopological space (X, τ_1, τ_2) .

 $\tau_j\text{-}cl(A)=\cap F_{F\in\mathcal{F}} \text{ where } \mathcal{F}=\{F:A\subseteq F \text{ and } F \text{ is } \tau_j\text{-}closed.\}.$

 (τ_i, τ_j) -pgrwcl(A)= $\cap F_{F \in F}$ where $F = \{F: F \supseteq A \text{ and } F \text{ is } (\tau_i, \tau_j) \text{-pgrw-closed.} \}$

Every τ_j -closed set is (τ_i, τ_j) -pgrw-closed(3.19(i)).

 $\Rightarrow \ \mathcal{F} \subseteq F \quad \Rightarrow \ \cap F_{F \in F} \subseteq \cap F_{F \in \mathcal{F}}$

 \Rightarrow (τ_i, τ_j) -pgrwcl(A) $\subseteq \tau_j$ -cl(A).

Similarly other results may be proved.

4.12 Theorem: For every subset A of a bitopological space (X, τ_1, τ_2)

- i) (τ_i, τ_j) -gpcl(A) $\subseteq (\tau_i, \tau_j)$ -pgrwcl(A)
- ii) (τ_i, τ_j) -gprcl(A) $\subseteq (\tau_i, \tau_j)$ -pgrwcl(A)

Proof: i) A is a subset of a bitopological space (X, τ_1, τ_2) .

 (τ_i, τ_j) -gpcl(A)= $\cap F_{F \in \mathcal{F}}$ where $\mathcal{F} = \{F: F \text{ is a } (\tau_i, \tau_j)\text{-gp closed set containing A}\}.$

 (τ_i, τ_j) -pgrwcl(A)= $\cap F_{F \in F}$ where $F = \{F: F \text{ is a } (\tau_i, \tau_j) \text{-pgrw closed set containing A}\}$. Every (τ_i, τ_j) -pgrw closed set is (τ_i, τ_j) -gpr closed (3.24).

- \Rightarrow $F \subseteq \mathcal{F}$
- $\Rightarrow \cap F_{F \in \mathcal{F}} \subseteq \cap F_{F \in F}$

 \Rightarrow (τ_i, τ_j) -gpcl(A) \subseteq (τ_i, τ_j) -pgrwcl(A)

Similarly (ii) may be proved.

REFERENCES

- [1]. J. C. Kelly, Bitopological Spaces, Proc. London Math. Soc. (3), 13 (1962), 71-81.
- [2]. S. P. Arya and T. M. Nour, Separation Axioms for Bitopological spaces, Ind. J. Pure Appl. Math., 19, 1998, 42-50.
- [3]. T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. part III, 35 (1986), 19-28.
- [4]. Y. Gnanambal, Studies on generalized pre-regular closed sets and generalized of locally closed sets, Ph.D., Thesis Bharathiar University, Coimbatore, (1998).
- [5]. M. Sheik John, ω-homeomorphism in topological spaces-Ph.D. Dissertation
- [6]. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41
- [7]. A.S. Mashhour, M. E., Abd El-Monsef and El-Deeb S. N., On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 1982; 53:47-53.
- [8]. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 1961-1970.
- [9]. D.Andrijevic, Semi-pre open sets, Mat. Vesnik., 38(1), 1986, 24-32.
- [10]. M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math.Soc.1937; 41: 374-481.
- [11]. Velicko N. V., H-closed topological spaces, Trans. Amer. Math. Soc.78 (1968), 103-118.
- [12]. Rajarubi P., Studies on regular semi-open sets in topological spaces, Ph D. Thesis, Annamalai University.
- [13]. N. Levine Generalized closed sets in topology, Rend. Circ. Mat. Palermo 1970; 19(2):89-96.

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 54 Number 5 - February 2018

- [14]. M. K. R. S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math, 17 21(2000), 1-19.
- [15]. R. S. Wali, Thesis: Some topics in general and fuzzy topological spaces, Karnataka University Dharwad.
- [16]. Syed Ali Fathima and Mariasingam, On #rg-closed sets in topological spaces, International journal of mathematical archive-2(11), 2011, 2497 2502
- [17]. N. Nagaveni, Studies on Generalizations of Homeomorphisms in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- [18]. H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 1994; 15:51-63.
- [19]. Alias. B. Khalf, On generalized pre-closed sets generalized pre-continuous functions and T_{gp}-spaces in bitopological spaces, International Conference on Applicable General Topology Aug 12-18, 200, Hacettepe University Ankara, Turkey.
- [20]. I. Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, (1997).
- [21]. Y. Gnanambal, Studies on generalized pre-regular closed sets and generalized of locally closed sets, Ph.D., Thesis Bharathiar University, Coimbatore, (1998).
- [22]. O.A.El-Tantawy and H.M.Abu-Donia, Generalized Separation Axioms in bitopological space, The Arabian J.for Science and Engg., 30(1A)(2005), 117-129.