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Abstract — In this paper, we prove that if an indefinite Kaehler Norden manifold M with CR-submanifold

(M, g) and lightlike submanifold (M , g) satisfies the axioms of transversal r-spheres and r-planes, then M
is an indefinite complex space form.
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I. INTRODUCTION

Cartan [3] initiated the study of axioms of planes on Riemannian manifolds which was generalized by
Yano and Mogi [16] to holomorphic planes on Kaehler manifolds. Leung and Nomizu extended this idea to the
axioms of spheres on Riemannian manifolds. Further, Chen and Ogiue [4] proved that the same concept holds
true on a Kaehler manifold satisfying the axioms of anti-holomorphic planes. In [10], Goldberg and Moskal
generalized the notion to the axioms of holomorphic spheres and anti-holomorphic spheres on a Kaehler
manifold, respectively. In [11], Kumar et. al extended the study for lightlike submanifolds on semi-Riemannian
manifolds and proved the axioms of r-spheres and r-planes.

The aim of this paper is to study the axioms of transversal r-planes and r-spheres, to the setting of
indefinite Kaehler Norden manifolds having CR-submanifold and radical transversal lightlike submanifold.

Il. PRELIMINARIES

__2n
Kaehler Norden manifolds[8] : Let ( M ,J ..g) be analmost complex manifold with an almost complex
structure J and metric g on it. The metric g is known as a Norden metric on M if

gUX,JY) = —gXY),

for all vector fields X and Y on M. Further, the metric g]_ on M is defined by

g(X.Y)=g(IX.Y), (1)

for arbitrary vector fields X and Y on M and fj_ is a Norden metric and also known as an associated metric. Moreover, the

metrics g and §_ are indefinite of neutral signature (n,n) .

Let v and v denote the Levi-Civita connection for the metric g and fj_ respectively then
pX,Y)= vV Y-V Y @)

is a symmetric tensor field of type (1,2) on M .

The tensor field F of type (0,3) on M s defined as ¢ (X.Y.Z)=gV, I)Y.Z)
and satisfies the following property

F(X,Y,Z)=F(X,Z,Y)=F(X,JY,JZ)
for all vector fields X, Y and Z on M.
In [8], Ganchev and Borisov characterized eight different classes of almost complex manifolds with Norden metric by
imposing conditions on the tensor F. Moreover, the following relations between the tensor F and ¢ were provided in [9].
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P(X,Y,2) = %[F(?z,x,v)— F(X,Y,3Z)=F(Y,3Z,X)] (3)
and
F(X,Y,2Z)= (X ,Y,3Z)+p(X,Z,IY)]
for all tangent vector fields X, Y and Zon M, Where ,(x v,z)= g (x.vY) 21 -
For a Kaehler Norden manifold M, the characterization condition £ (x v .z = o isequivalentto (V,))Y =0.
Therefore from (3), for a Kaehler Norden manifold we have
=0

Throughout this paper, we will call M as Kaehler Norden manifolds.

CR-submanifolds of Kaehler Norden Manifold:

Let (M, g) be an m-dimensional CR-submanifold of a 2n-dimensional Kaehler Norden manifold M . Then
there exist two complementary orthogonal distributions D of dimension 2p and D+ of dimension r , where
1 <r <min{m,2n —m}, of (M, g) suchthat D and D* are invariant and anti-invariant distributions with

respect to an almost complex structure J respectively, thatis, ] D = D and J D* < TM*.

Then the tangent bundle TM of M has the following decomposition ([2,5])
TM =TM LTM “=D L D" LJD" L (JD")"
Let P and Q be the projection morphisms on radical distribution and screen distribution, respectively.
Then forany X e I'(TM ), we have

X = PX + QX (4)

where PX e I'(D) and QX e I'(D ). Applying J to (4), we obtain
J_X =TX + FX
where TX and FX are the tangential and normal components of J_X , respectively.
Similarly, forany U e T(TM ),
JU =tU + U )
where tU and fU denote the tangent and normal sections of J_U , respectively.

Let v and V denote the Levi-Civita connection of gand g on M and M . Then the Gauss and
Weingarten formulae are given as :
VxY =V, Y +h(X,Y), VxU=-A,X+D,U, (6)
forany X,Y e ’'(TM ) and U e I ((TM )" ), where h is a symmetric bilinear form on ' (TM )and is

known as second fundamental form, A is a shape operator on M and D is the normal connection on (TM)*

which is a metric connection. B B
Let P, and P, be the projection morphisms of (TM)* on jDtand (JD1)! respectively, then (6) becomes
VY =V Y +h'(X,Y)+h*(X,Y), ViU =-A,X+D'U+DU )

where we put
h'(X,Y) =P (h(X,Y)), h*(X,Y)=P,(h(X,Y)),

1 2

D,U=P(D,U) D U =P,(D,U)

Infact D* and D? are not linear connections on TM* but are Otsuki connections with respect to the vector
bundle morphisms P, and P, respectively. Thus equation (7) can be written as

VY =V Y +h (X, Y)+h(X,Y), ®)

VN =-A/ X +V N +D*(X,N), )
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VW = —A, X + D' (X, W)+ VW, (10)

where V¥ N = DN and VZ W = DZW are metric connections on J D+ and (J D+)* , respectively and
DY(X,N) = DN and D?(X,W) = DW are bilinear mappings. Using equations (8)-(10), we obtain

g(h (X, YIN) = g (Y, A, X), (11)
g(h? (X, YIW) = g(Y,A, X), (12)
g(D*(X,NW)=-g(D*(X,W)N)

where X ,Y,Z e I'(TM ), N € r(J_Di)andw e (JD")".

Assuming that the curvature tensors of v and V be denoted by R and R, respectively, and by making direct
calculations, we have

R(X.,Y.Z)=R(X.Y,Z)+ A Y — A X + A Y — A

ht(x .z) hi(y .z) h2(x .z) h2(Y .z)

+(V , ,h')(Y,Z)—(V,h')(X,Z)+ D'(X,h?(Y,Z))—D*(Y,h?(X,Z))

+(V,.h2)XY,Z)—(V,h®)(X,Z)+D?(X,h*(Y,Z)) - D?(Y,h"(X,Z))

(13)
and

(E(X,Y)Z)* = (V,h")(Y ,Z)=(V,h')(X,Z)+ D*(X,h?((Y,zZ))—D*(Y ,.h?(X,Z))

+(V ,hZXY.,Z)—(V,h?)X(X.,Z)+ D?*(X.,.h*'(Y,Z)) - D?(Y.h*"(X.,Z))
(14)

where (V. h')XY,Z)=V'xh'(Y,Z)-h'(V Y,Z)-h'(Y,V 2Z)
(15)
and

(V,ho)Y,Z)=V h®(Y,Z)-h*(V,Y,Z)-h*(Y,V,k2Z), (16)
Forany X,Y,Z € T'(TM ).

Lightlike Submanifolds of Semi-Riemannian Manifolds :

Let (M_, E;_') be a real (m + n) -dimensional semi-Riemannian manifold having constant index q
suchthat m,n>1,1<g<m+n-1and (M,g) bean m -dimensional submanifold and g be the induced

metric of ﬁ_ on M . Then M is known as a lightlike submanifold of M if @T is degenerate metric on the
tangent bundle TM of M . For a degenerate metric g on M , T,M * is a degenerate n -dimensional
subspace of TXM—. Thus both T_.M and T ,M * are no longer complementary but degenerate orthogonal
subspaces of TM . So, there exists a subspace known as the radical or null subspace, that is,
Rad (TM)=TM T M ",
Further, if the mapping Rad (TM ):xe M — RadT M , defines a smooth distribution of rank

r >0 on M then the submanifold M is known as an r -lightlike submanifold of M_([Y]) and Rad (TM )
is known as the radical distribution on M and a semi-Riemannian complementary distribution S (TM ) of
Rad (TM ) in TM is known as the Screen distribution, that is,
TM = Rad (TM ) L S(TM ), 17)
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1

and S(TM ) is a complementary vector subbundle to Rad (TM ) in TM *. Let tr (TM ) and Itr (TM )

be complementary (but not orthogonal) vector bundles to TM in TM |, andto Rad (TM ) in S (TM *)*
respectively. Then, we have
tr(TM )= Itr (TM ) L S(TM ). (18)
T™ |, =TM @ tr (TM )
) (19

=(Rad (TM )@ Itr (TM )) L S(TM ) L S(TM 7).
We have studied the following possible four cases with respect to the dimension m and codimension n of M
andrank r of Rad (TM ) :
1. r-lightlike, if 0 < r < min (m,n);
2. coisotropic,if1<r=n<m, S(™ 7)={0} ;
3. isotropic,ifl<r=m<n, S(TM ) = {0} ;
4. totally lightlike,if L<r=m=n, S(TM )={0} = S(TM 7).
For any quasi-orthonormal fields of frames, we have the following theorem :
Theorem 1.([7]) Let (M ,g,S(T™ ), S(TM “)) be an r -lightlike submanifold of a semi-Riemannian

1

manifold (M_, g) . Then there exists a complementary vector bundle Itr (TM ) of Rad (TM ) in S(TM )"

1yL

and a basis of I" (Itr (TM ) |,) consisting of smooth section {N .} of S(TM ~)" |, , where U is a coordinate
neighborhood of M , such that
g(N,,&,)=6,, 9(N_,N)=0
forany a,b e {1,2,.., r}, where {&,,.., & } isalightlike basis of I (Rad (TM )) .
Let v denote the Levi-Civita connection on M_, then using the decomposition (19), the Gauss and
Weingarten formulae are given as :

V.Y =V Y +h(X,Y), V,U=-AX+ViU, (20)
forany X,Y eI’'(TM ) and U e I'(tr (TM )) , where {GXY,AU X} and {h(X,Y), ViU} belong to
'(TM ) and I"(tr (TM )) , respectively. Here vV is a torsion-free linear connection on M , h isa symmetric

bilinear form on I'(TM ) which is called second fundamental form, A, is a linear a operator on M and

known as shape operator.
According to decompositon (18), considering the projection morphisms L and S of tr (TM ) on

Itr (TM ) and S(TM ), respectively, then equation (20) becomes

V.Y =V Y +h'(X,Y)+h (X,Y) (21)
VN = A X +VLN+D(X.N), (22)
VW = A, X +VIW £ D' (X, W), (23)

where X e T(TM ), N e T'(Itr (TM )) andW e ' (S(TM *)) and we put

h'(X.Y)=L(h(X,Y) h(X,Y)=s(h(X,Y))

D,U=L(V,U) DiU=S(V,U)
As h' and h°® are I'(Itr (TM )) -valued and ' (S(TM ")) -valued respectively, therefore these are known as

the lightlike second fundamental form and the screen second fundamental formon M .
It is well known From the geometry of non degenerate submanifolds that the induced

connection vV is a metric connection. But this is not true for lightlike submanifolds (degenerate submanifolds).

Indeed, considering V a metric connection, we have
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(Vg)XY.Z)=g(h'(X,Y),Z)+g(h'(X,Z)Y)
forany X,Y,Z eI'(TM ).
The submanifold (M , g) is said to be totally umbilical submanifold if the first and second fundamental forms
are proportional, that is,
h(X,Y)=gX,Y)H
for any X,Y e I'(TM ), where H is called the mean curvature vector of M. Using Gauss and Weingarten
formulae, it is clear that (M, g) is totally umbilical if and only if on each coordinate neighborhood u there exists

smooth vector fields H! € F(J_D “yand H® e F(J_D I,
such that
RY(X,Y) = H'g(X,Y),h*(X,Y) = H*g(X,Y),
(24)

Similarly, in case of lightlike submanifold, we have the following definition.

Definition 2. [7] A lightlike submanifold (M , g ) of a semi-Riemannian manifold (M, ], g, ) is said to be
totally umbilical in M if there is a smooth transversal vector field H e " (tr (TM )) on M, known as the
transversal curvature tensor field of M, such that, forany X ,Y e I'(TM ),

h(X,Y) = G(X,Y)H.

Definition 3. [13] Let (M ,g,S(TM ), S(TM )*) be a lightlike submanifold of an almost complex manifold
with Norden metric (Ivl_, J_ g, §_) .Then (M , g) is called radical transversal lightlike submanifold of M if
J(Rad (TM )) = Itr (TM ), (25)
J(S(TM ) = S(T™M ). (26)

In [13], Nakova studied the almost complex manifold with Norden metric with non-degenerate CR-
submanifold (M , g) and degenerate submanifold (M , g) and provided the mutual relationship
between the geometric objects of these two submanifolds.

Theorem 4. [13] Let (M,],3,g) be a 2n-dimensional almost complex manifold with Norden metric and M be
an m —dimensional submanifold of M. The submanifold (M , g) is a CR-submanifold with a r —dimensional

totally real distribution D if and only if (M , g) is a r —lightlike radical transversal lightlike submanifold of M.

As a consequence of above Theorem, we have _ _
S(TM) = D,Rad(TM) = D*, S(TM)* = (JD4)* and ler(TM) = JD*.

Since v is the Levi-Civita connection with respect to the Norden metric g on M, therefore (21) can be written
as

VoY =V Y 40 (X, Y) 40 (X, Y)+p2(X,Y) @7)
where ¢ (X ,Y ), 9" (X ,Y)and ¢’ (X ,Y) denote the components of ¢ (X ,Y) belong to TM, JD* and
(JD4)* respectively. Since for a Kaehler Norden manifold ¢ (X ,Y) = 0, therefore by making use of

equations (3) and (27), implies the following relations between the induced geometric objects of the
submanifolds (M, g)and (M , g), respectively.

V.Y =VY, VY =V,Y
h'(X,Y)=h"(X,Y), h*(X,Y)=h?(X,Y),

A VN =V.N, D (X,N)=D*(X,N),

= N X,

|
=VIW, A, X =A,X,D (X,N)=D"(X,N). (28)
Now we prove the equivalent conditions for a CR-submanifold to be totally geodesic.
Theorem 5. Let (M, g) be a CR-submanifold and (M, §) be a radical transversal lightlike submanifold of a
Kaehler Norden manifold (M, ], g, §). Then the following assertions are equivalent

(i) (M, g) is totally geodesic.
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(ii) (M, g) istotally geodesic.

(iii) D! is a metric Ostuki connection on TM*.

(iv) D? is a metric Ostuki connection on TM*.

(v) V* is a metric linear connection on tr(TM).

(vi) D* is a metric Ostuki connection on tr(TM)

Proof. By virtue of Theorems 3.10 and 3.11 in [6], it is clear that the assertions (i), (iii) and (iv) are equivalent
to the condition D?(X,N) = Oforany X  I'(TM )and N e I'"(D *). Moreover from [7], (pp. 159 and
166), it is clear that the assertions (ii), (v) and (vi) are equivalent to D*(X,N) = 0 forany X e I'(TM ) and

N e T (Itr (TM )), and A!, A° vanish identically on M. Also from (28) we have
D(X,N)=D?(X,N) =0,

h'(X.,Y)=h"(X,Y)=0,h°(X,Y)=h?(X,Y)=0.

Also, the conditions D2(X,N) = 0 and h!, h? vanishes identically on M are equivalent by use of Theorem 3.10
from [6]. Thus, completes the proof.

In [6], we have proved the following result.

Theorem 6. If (M, g) is a totally umbilical CR-submanifold of a Kaehler Norden manifold M then the induced
connection Vof radical transversal lightlike submanifold (M, §) is a metric connection.

I11. MAIN RESULTS

Axioms of transversal r-planes: An indefinite Kaehler Norden manifold M having complex dimensiond > 1
satisfies the axioms of transversal » —planes if for each m € M and r —dimensional transversal subspace T of
T,(M)=T,1 < r < d,then there exists a totally geodesic radical transversal lightlike submanifold M
satisfyingm € MandT,,(M) =T.

Axioms of transversal r-spheres: An indefinite Kaehler Norden manifold M having complex dimensiond > 1
satisfies the axioms of transversal r — spheres if for each m € M and r —dimensional transversal subspace T of
T,(M)=T,1 < r < d,then there exists a totally umbilical radical transversal lightlike submanifold M with
parallel transversal curvature vector field satisfyingm € Mand T,,(M) =T.

Lemma Il1. 1. Let (M, g) be a totally umbilical CR-submanifold and (M, §) be a radical transversal lightlike
submanifold of an indefinite Kaehler Norden manifold M. Then the following conditions hold true.

() Vi H' = 0 ifand only if Vyh! = 0 and

(i) V3 H? = 0 ifand only if VA% = 0.

Proof : Suppose (M, g) be a totally umbilical CR-submanifold of an indefinite Kaehler Norden manifold M.
For any tangent vector fields U, V, W and use of equations (15) and (24), yields

Vyht(V, W) =T} (g(V,W)HY) — g(VyV,W)H" - g(V,V,W)H"

=u(g(V,W)H' )+ (g(V,.W)Ti H') = g(V,V,W)H" - g(V,V,W)H'
= (W), WHH' + (g(v,W)vy HY)

= VeV, WA + (G, jw)vyHY) = (G, jw)v, 7Y,
using the Theorem 6, we have V is a metric connection for a totally umbilical CR-submanifold and thus implies
that

1 — (#(v Tw\e1 i) — 1 gyl

Vuh' (v, W) = (g(v.Jw)73 H ) = (gv,w)v H") (29)

Similarly,
Vuh? (v, W) = (g(v, w)vg H?) (30)

Thus, the result follows from above equations (29) and (30).

Theorem I11.2. [1] Let M be an indefinite Kaehler manifold with complex dimension >2. Then M is an
indefinite complex space form if and only if g(R (X,Y)JX, X) = 0, for every orthonormal vector X,Y,JX €

r (TM).
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Theorem 111.3. Let (M, ], g, §) be a 2n —dimensional Kaehler Norden manifold. Let (M, §) be aradical
transversal lightlike submanifold and (M, g) be a totally umbilical CR-submanifold of M. If M satisfies the
axiom of transversal r-spheres for some fixed r, 1 <r < 2n, then M has a constant holomorphic curvature.

Proof. For any arbitrary pointp € M, let U,V and W be orthonormal vector fields such that
gw,jvy = gw,jw) gw,jwy = o. o
Let T denote an r —dimensional transversal subspace of 7, (M) containing U and V transversal to JU. If M
satisfies the axioms of transversal r —spheres then there exists an 2r —dimensional totally umbilical transversal
CR-submanifold (M, g) with parallel transversal curvature vector field H and an induced metric connection V
such that 7, (M) = T. Since the transversal curvature vector field is parallel, that is, Vi H = 0, using Theorem
3.10 of [6] and Lemmalll.1, we have V{h! = 0 and Vih? = 0. Since (M, g) is a totally umbilical CR-
submanifold such that the distribution D defines a totally geodesic foliation in (M, g),
therefore using Theorems 3.10 of [6] and Theorem 6 with (24), we have H! = 0. Hence we have
Vyh! =0 and Vyh? = 0 or, in particular,
Vyh'(Jv,U) = 0, Vjyh' (U, U) = 0,
Vyh*(JV,U) = 0, Vjyh*(U, U) = 0. (31)
Using equation (13), the transversal form of (R(U,V)U)" is given by

(RW, VDN = (Vyh)(V,U) — (VyR)(U,U) + D' (U, R2(V,U)) — D* (V, h?(U, 1))
+(Vyh®)(V,U) — (VWh?) (U, U) + D*(U,h*(V,U)) — D*(V, R (U, 1)), (32)

Forany U,V € T(TM ).

Since M is totally umbilical CR-submanifold, therefore using Theorem 3.10 of [6] and by use of equations (23)
and (31) in (32) gives
(R(U,VYU)N = 0.
Hence
gRWU, MU, Ju) = 0.
Thus the assertion follows from Theorem I11.2.

Corollary I11.4. Let (M, ], g, ) be a 2n —dimensional Kaehler Norden manifold. Let (M, §) be a radical
transversal lightlike submanifold and (M, g) be a totally umbilical CR-submanifold of M. If M satisfies the
axiom of transversal r-planes for some fixed r, 1 <r < 2n, then M has a constant holomorphic curvature.

I11. CONCLUSIONS
Thus, we have concluded that in the setting of Kaehler manifold with Norden manifolds, the Axioms of
spheres(planes) hold true.
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