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Abstract —  In this paper, we prove that if an indefinite Kaehler Norden manifold M with CR-submanifold 

),( gM  and lightlike submanifold )
~

,( gM satisfies the axioms of transversal r-spheres and r-planes, then M

is an indefinite complex space form. 
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I. INTRODUCTION  

   Cartan [3] initiated the study of axioms of planes on Riemannian manifolds which was generalized by 

Yano and Mogi [16] to holomorphic planes on Kaehler manifolds. Leung and Nomizu extended this idea to the 

axioms of spheres on Riemannian manifolds. Further, Chen and Ogiue [4] proved that the same concept holds 

true on a Kaehler manifold satisfying the axioms of anti-holomorphic planes. In [10], Goldberg and Moskal 

generalized the notion to the axioms of holomorphic spheres and anti-holomorphic spheres on a Kaehler 

manifold, respectively. In [11], Kumar et. al extended the study for lightlike submanifolds on semi-Riemannian 

manifolds and proved the axioms of r-spheres and r-planes.  

The aim of this paper is to study the axioms of transversal r-planes and r-spheres, to the setting of 
indefinite Kaehler Norden manifolds having CR-submanifold and radical transversal lightlike submanifold. 

 

II. PRELIMINARIES 

 

Kaehler Norden manifolds[8] : Let ( M

2𝑛

, 𝐽   , 𝑔 )   be an almost complex manifold with an almost complex 

structure 𝐽   and metric 𝑔  on it. The metric 𝑔  is known as a Norden metric on 𝑀  if  

 

𝑔    𝐽  X , 𝐽  Y  =  −𝑔  X, Y  , 
 

for all vector fields X and Y on 𝑀 . Further, the metric g
~

 on M  is defined by 

                                                                                  ,),(=),(
~

YXJgYXg                                   (1) 

 
 

for arbitrary vector fields X  and Y  on M  and g
~

 is a Norden metric and also known as an associated metric. Moreover, the 

metrics g  and g
~

 are indefinite of neutral signature ),( nn .  

Let   and 
~

 denote the Levi-Civita connection for the metric g  and g
~

,  respectively then 

 𝜑 𝑋, 𝑌 =   
~

X
𝑌 − 

X
Y                                            (2) 

is a symmetric tensor field of type (1,2)  on M . 

 The tensor field F  of type (0,3)  on M  is defined as ),)((=),,( ZYJgZYXF
X

  

and satisfies the following property 

 

),,(=),,(=),,( ZJYJXFYZXFZYXF   

    for all vector fields X, Y and Z on 𝑀 .  

In [8], Ganchev and Borisov characterized eight different classes of almost complex manifolds with Norden metric by 

imposing conditions on the tensor F. Moreover, the following relations between the tensor F and 𝜑  were provided in [9]. 
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)],,(),,(),,([
2

1
=),,( XZJYFZJYXFYXZJFZYX 

                                                                
 (3) 

    and                                             

)],,(),,(=),,( YJZXZJYXZYXF    
for all tangent vector fields X, Y and Z on 𝑀 , where  )]),,((),,( ZYXgZYX   .  

For a Kaehler Norden manifold 𝑀 , the characterization condition 0=),,( ZYXF  is equivalent to    ∇ 𝑋𝐽   𝑌 = 0 .                                     

Therefore from (3), for a Kaehler Norden manifold we have 

𝜑 = 0. 
 

Throughout this paper, we will call 𝑀  as Kaehler Norden manifolds. 

  

CR-submanifolds of Kaehler Norden Manifold:   

Let ),( gM  be an 𝑚-dimensional CR-submanifold of a 2𝑛-dimensional Kaehler Norden manifold M . Then 

there exist two complementary orthogonal distributions 𝐷 of dimension 2𝑝 and 𝐷⊥ of dimension 𝑟 , where 

1 ≤ 𝑟 < min 𝑚, 2𝑛 − 𝑚 ,  of ),( gM  such that 𝐷 and 𝐷⊥ are invariant and anti-invariant distributions with 

respect to an almost complex structure 𝐽   respectively, that is, 𝐽   𝐷 = 𝐷 and 𝐽   𝐷⊥ ⊂ 𝑇𝑀⊥.  

 

Then the tangent bundle MT  of M  has the following decomposition ([2,5])  

 


 )( == DJDJDDTMTMMT  

Let P  and Q be the projection morphisms on radical distribution and screen distribution, respectively. 

Then for any )(TMX  , we have  

 
QXPXX =  (4) 

 where )( DPX   and )D(


QX . Applying J  to (4), we obtain  

 FXTXXJ =   

 where TX  and FX  are the tangential and normal components of XJ , respectively.  

Similarly, for any )(


 TMU , 

 
fUtUUJ =  (5) 

 where tU  and fU  denote the tangent and normal sections of UJ , respectively.  

Let   and ∇ denote the Levi-Civita connection of 𝑔  and 𝑔 on M and 𝑀 . Then the Gauss and 

Weingarten formulae are given as :  

 ,=),,(= UDXAUYXhYY
XUXXX   (6) 

 for any )(, TMYX   and ))((


 TMU , where  h  is a symmetric bilinear form on )(TM and is 

known as second fundamental form, 
U

A  is a shape operator on M  and 𝐷 is the normal connection on (𝑇𝑀)⊥ 

which is a metric connection. 

 Let 𝑃1 and 𝑃2  be the projection morphisms  of (𝑇𝑀)⊥ on  𝐽  𝐷⊥and (𝐽  𝐷⊥)⊥  respectively, then (6) becomes  
 

 UDUDXAUYXhYXhYY
XXUXXX

2121
=),,(),(=   (7) 

 where we put  

 )),,((=),()),,((=),(
2

2

1

1
YXhPYXhYXhPYXh  

 

              ).(=),(=
2

2

1

1
UDPUDUDPUD

XXXX
 

 

Infact 𝐷1 and 𝐷2 are not linear connections on 𝑇𝑀⊥ but are Otsuki connections with respect to the vector 

bundle morphisms 𝑃1 and 𝑃2 respectively. Thus equation (7) can be written as  

 

 ),,(),(=
21

YXhYXhYY
XX            (8)

 

             ),(=
21

NXDNXAN
XNX  ,  (9) 
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             ,),(=
21

WWXDXAW
XWX     (10)

 

 

where ∇𝑋 
1 𝑁 = 𝐷𝑋

1𝑁 and ∇𝑋 
2 𝑊 = 𝐷𝑋

2𝑊 are metric connections on 𝐽   𝐷⊥ and (𝐽   𝐷⊥)⊥ , respectively and  

𝐷1(X, N) = 𝐷𝑋
1𝑁 and 𝐷2(X, W) = 𝐷𝑋

2𝑊 are bilinear mappings. Using equations (8)-(10), we obtain  

 

),,()),((
1

XAYgNYXhg
N


  

                              (11)  

),,()),((
2

XAYgWYXhg
W


  

                              (12)  

),),(()),((
12

NWXDgWNXDg 
  

               

where ,)(,, TMZYX  )D(


 JN
and 

.)( 


 DJW
 

 Assuming that the curvature tensors of   and ∇ be denoted by 𝑅  and 𝑅, respectively, and by making direct 

calculations, we have  

 

)),(,()),(,(),)((),)((

)),(,()),(,(),)((),)((

),,(=),,(

121222

212111

),(),(),(),(
2211

ZXhYDZYhXDZXhZYh

ZXhYDZYhXDZXhZYh

XAYAXAYAZYXRZYXR

YX

YX

ZYhZXhZYhZXh







   

  (13) 

and  

 

)),(,()),(,(),)((),)((

)),(,()),(,(),)((),)((=)),((

121222

212111

ZXhYDZYhXDZXhZYh

ZXhYDZYhXDZXhZYhZYXR

YX

YX






     
(14) 

  

where                   ),,(),(),(),)((
11111

ZYhZYhZYhZYh
XX

X
X

                                  

(15) 

   and  

 ),,(),(),(),)((
22222

ZYhZYhZYhZYh
XX

X
X

    (16) 

For any .)(,, TMZYX   

 

Lightlike Submanifolds of Semi-Riemannian Manifolds : 
 

Let )
~

,( gM  be a real )( nm  -dimensional semi-Riemannian manifold having constant index q  

such that 1, nm , 11  nmq  and )
~

,( gM  be an m -dimensional submanifold and g
~

 be the induced 

metric of g
~

 on M . Then M  is known as a lightlike submanifold of M  if g
~

 is degenerate metric on the 

tangent bundle TM  of M . For a degenerate metric g
~

 on M , 


MT
x

 is a degenerate n -dimensional 

subspace of MT
x

. Thus both MT
x

 and 


MT
x

 are no longer complementary but degenerate orthogonal 

subspaces of MT . So, there exists a subspace known as the radical or null subspace, that is,  

 
.=)(


 MTMTMTRad

xxx
 

Further, if the mapping MRadTMxTMRad
x

:)( , defines a smooth distribution of rank 

0>r  on M  then the submanifold M  is known as an r -lightlike submanifold of M ([7]) and )(TMRad  

is known as the radical distribution on M  and a semi-Riemannian complementary distribution )(TMS  of 

)(TMRad  in TM  is known as the Screen distribution, that is,  

 
),()(= TMSTMRadTM   (17) 
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 and )(


TMS  is a complementary vector subbundle to )(TMRad  in 


TM . Let )(TMtr  and )(TMltr  

be complementary (but not orthogonal) vector bundles to TM  in 
M

MT |  and to )(TMRad  in 


)(TMS  

respectively. Then, we have  

 
).()(=)(


 TMSTMltrTMtr  (18) 

  

                                       
).()())()((

)(=|






TMSTMSTMltrTMRad

TMtrTMMT
M

 (19) 

We have studied the following possible four cases with respect to the dimension m  and codimension n  of M 

and rank r  of )(TMRad  :   

           1.   r-lightlike, if ),(min<<0 nmr ;  

           2.   coisotropic, if mnr <=1  ,    {0}=)(


TMS ;  

           3.   isotropic, if nmr <=<1 , {0}=)(TMS ;  

           4.   totally lightlike, if nmr ==<1 ,  )(={0}=)(


TMSTMS .  

  For any quasi-orthonormal  fields of frames, we have the following theorem : 

 Theorem 1.([7])  Let ))(),(,,(


TMSTMSgM  be an r -lightlike submanifold of a semi-Riemannian 

manifold ),( gM . Then there exists a complementary vector bundle )(TMltr  of )(TMRad  in 


)(TMS  

and a basis of )|)((
U

TMltr  consisting of smooth section }{
a

N  of 
U
|)(


TMS , where U  is a coordinate 

neighborhood of M , such that  

 0,=),(,=),(
baabba

NNgNg   

for any },{1,2,..,, rba  where },...,{
1 r

  is a lightlike basis of ))(( TMRad .  

 Let 
~

denote the Levi-Civita connection on M , then using the decomposition (19), the Gauss and 

Weingarten formulae are given as :  

 ,
~

=
~

),,(
~~

=
~

UXAUYXhYY
XUXXX


  (20) 

 for any )(, TMYX   and ))(( TMtrU  , where },
~

{ XAY
UX

  and }),,({ UYXh
X


  belong to 

)(TM  and ))(( TMtr , respectively. Here 
~

 is a torsion-free linear connection on M , h
~

 is a symmetric 

bilinear form on )(TM  which is called second fundamental form, 
U

A
~

 is a linear a operator on M  and 

known as shape operator. 

 According to decompositon (18), considering the projection morphisms L  and S  of )(TMtr  on 

)(TMltr  and )(


TMS , respectively, then equation (20) becomes 

  ),,(
~

),(
~~

=
~

YXhYXhYY
sl

XX


                
(21) 

 
),,(

~~
=

~
NXDNXAN

sl

XNX


            
(22) 

 
),,(

~~
=

~
WXDWXAW

ls

XWX
                      (23) 

 where ))((),( TMltrNTMX   and ))((


 TMSW
and we put

  

)),,(
~

(=),(
~

)),,(
~

(=),(
~

YXhSYXhYXhLYXh
sl

 

 

 ).(=),(= USUDULUD
X

s

XX

l

X


  

 As 
l

h  and 
s

h  are ))(( TMltr -valued and ))((


 TMS -valued respectively, therefore these are known as 

the lightlike second fundamental form and the screen second fundamental form on M .  

            It is well known From the geometry of  non degenerate submanifolds that the induced 

connection 
~

 is a metric connection. But this is not true for  lightlike submanifolds (degenerate submanifolds). 

Indeed, considering 
~

 a metric connection, we have  
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),),,(

~
()),,(

~
(=),)(

~
( YZXhgZYXhgZYg

ll

X
  

for any )(,, TMZYX  .  

The submanifold ),( gM is said to be totally umbilical submanifold if the first and second fundamental forms 

are proportional, that is, 

ℎ 𝑋, 𝑌 = 𝑔(𝑋, 𝑌)𝐻 

for any ,)(, TMYX   where 𝐻 is called the mean curvature vector of 𝑀. Using Gauss and Weingarten 

formulae, it is clear that (𝑀, 𝑔) is totally umbilical if and only if on each coordinate neighborhood 𝑢 there exists 

smooth vector fields 𝐻1 ∈ )(


 DJ  and ,)(
2 

 DJH  

such  that 

    ℎ1 𝑋, 𝑌 = 𝐻1𝑔 𝑋, 𝑌 , ℎ2 𝑋, 𝑌 = 𝐻2𝑔 𝑋, 𝑌 ,        
 (24) 
 

Similarly, in case of  lightlike submanifold, we have the following definition. 

 

Definition 2. [7] A lightlike submanifold )
~

,( gM of a semi-Riemannian manifold 
 
(𝑀    , 𝐽  , 𝑔 , 𝑔  ) is said to be 

totally umbilical in 𝑀  if there is a smooth transversal vector field ))(( TMtrH  on 𝑀, known as the 

transversal curvature tensor field of  𝑀, such that, for any ,)(, TMYX 
 

                                                                              ℎ  𝑋, 𝑌 = 𝑔 (𝑋, 𝑌)𝐻. 

Definition 3. [13]  Let ))(),(,
~

,(


TMSTMSgM  be a lightlike submanifold of an  almost complex manifold 

with Norden metric )
~

,,,( ggJM . Then )
~

,( gM  is called radical transversal lightlike submanifold of M  if  

 ),(=))(( TMltrTMRadJ  (25) 

              ).(=))(( TMSTMSJ  (26) 

 In [13], Nakova studied the almost complex manifold with Norden metric with non-degenerate CR-

submanifold ),( gM and degenerate submanifold )
~

,( gM  and provided the mutual relationship 

between the geometric objects of these two submanifolds. 
 Theorem 4. [13] Let (𝑀    , 𝐽  , 𝑔 , 𝑔  )  be a 2𝑛-dimensional almost complex manifold with Norden metric and 𝑀 be 

an 𝑚−dimensional submanifold of 𝑀 . The submanifold ),( gM  is a CR-submanifold with a 𝑟 −dimensional 

totally real distribution 𝐷 if and only if )
~

,( gM is a 𝑟 −lightlike radical transversal lightlike submanifold of  𝑀 . 

As a consequence of above Theorem, we have  

                    𝑆 𝑇𝑀 = 𝐷, 𝑅𝑎𝑑 𝑇𝑀 =  𝐷⊥ ,  𝑆 𝑇𝑀 ⊥ =  𝐽  𝐷⊥ ⊥ and 𝑙𝑡𝑟 𝑇𝑀 = 𝐽 𝐷⊥. 

Since 
~

 is the Levi-Civita connection with respect to the Norden metric g
~ on 𝑀 , therefore (21) can be written 

as 

),(),(),(
~

=
~ 21

YXYXYXYY
XX

 
                                     

(27) 

where ),(,),(
1

YXYX   and ),(
2

YX denote the components of ),( YX  belong  to 𝑇𝑀, 𝐽  𝐷⊥ and 

( 𝐽  𝐷⊥)⊥ respectively. Since for a Kaehler Norden manifold  ,0),( YX  therefore by making use of 

equations (3) and (27),  implies the following relations between the induced geometric objects of the 

submanifolds )
~

,( gM and ,),( gM respectively. 

,=
~

YY XX


  
YY

XX
 =

~
 

),,(),(
~ 1

YXhYXh
l

 ),,(),(
~ 2

YXhYXh
s

  

 
,

~
XAXA

NN
 ,

~ 1
NN

X

l

X
 ,),(),(

2
NXDNXD

s
  

                  ,
~ 2

WW
X

s

X
   ,

~
XAXA

WW
 .),(),(

1
NXDNXD

l
             (28) 

 

Now we prove the equivalent conditions for a CR-submanifold to be totally geodesic. 

Theorem 5. Let (𝑀,𝑔) be a CR-submanifold and (𝑀, 𝑔 ) be a radical transversal lightlike submanifold of a 

Kaehler Norden manifold (𝑀    , 𝐽  , 𝑔 , 𝑔  ). Then the following assertions are equivalent 

(𝑖) (𝑀, 𝑔) is totally geodesic. 
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(𝑖𝑖) (𝑀,𝑔 )  is totally geodesic. 

(𝑖𝑖𝑖) 𝐷1 is a metric Ostuki connection on 𝑇𝑀⊥. 

(𝑖𝑣) 𝐷2 is a metric Ostuki connection on  𝑇𝑀⊥. 

(𝑣) ∇t  is a metric linear connection on 𝑡𝑟(𝑇𝑀). 

(𝑣𝑖) 𝐷𝑠 is a metric Ostuki connection on 𝑡𝑟(𝑇𝑀) 

Proof. By virtue of Theorems 3.10 and 3.11 in [6], it is clear that the assertions (𝑖), (𝑖𝑖𝑖) and (𝑖𝑣) are equivalent 

to the condition 𝐷2(𝑋,𝑁)  =  0 for any )(TMX  and .)(


 DN  Moreover from [7], (pp. 159 and 

166), it is clear that the assertions (𝑖𝑖), (𝑣) and (𝑣𝑖) are equivalent to 𝐷𝑠(𝑋, 𝑁)  =  0 for any )(TMX  and 

,))(( TMltrN   and ℎ 𝑙 , ℎ 𝑠  vanish identically on 𝑀. Also from (28) we have 

,0),(),(
2

 NXDNXD
s  

,0),(),(
~ 1

 YXhYXh
l

.0),(),(
~ 2

 YXhYXh
s

 

Also, the conditions 𝐷2(𝑋,𝑁)  =  0 and ℎ1 , ℎ2 vanishes identically on 𝑀 are equivalent by use of Theorem 3.10 
from [6]. Thus, completes the proof. 

In [6], we have proved the following result. 

Theorem 6. If (𝑀,𝑔)  is a totally umbilical CR-submanifold of a Kaehler Norden manifold 𝑀  then the induced 

connection 𝛻 of radical transversal lightlike submanifold (𝑀,𝑔 )  is a metric connection. 

 

III. MAIN RESULTS 

 
Axioms of transversal r-planes: An indefinite Kaehler Norden manifold 𝑀  having complex dimension 𝑑 >  1 

satisfies the axioms of transversal 𝑟 −planes if for each 𝑚 ∈ 𝑀  and 𝑟 −dimensional transversal subspace 𝑇 of 

𝑇𝑚 ( 𝑀)    = 𝑇, 1 ≤  𝑟 <  𝑑, then there exists a totally geodesic radical transversal lightlike submanifold 𝑀 

satisfying 𝑚 ∈ 𝑀  and 𝑇𝑚 ( 𝑀)    = 𝑇.  
 

Axioms of transversal r-spheres: An indefinite Kaehler Norden manifold 𝑀  having complex dimension 𝑑 >  1 

satisfies the axioms of transversal 𝑟 − spheres if for each 𝑚 ∈ 𝑀  and 𝑟 −dimensional transversal subspace 𝑇 of 

𝑇𝑚 ( 𝑀)    = 𝑇, 1 ≤  𝑟 <  𝑑, then there exists a totally umbilical radical transversal lightlike submanifold 𝑀 with 

parallel transversal curvature vector field satisfying 𝑚 ∈ 𝑀  and 𝑇𝑚 ( 𝑀)    = 𝑇.  
 

Lemma III. 1. Let (𝑀,𝑔) be a totally umbilical CR-submanifold and  (𝑀, 𝑔 ) be a radical transversal lightlike 

submanifold of an indefinite Kaehler Norden manifold  𝑀 . Then the following conditions hold true. 

 𝑖  𝛻𝑈 
1 𝐻1 = 0 if and only if  ∇Uℎ

1 = 0 and  
 𝑖𝑖  𝛻𝑈 

2 𝐻2 = 0 if and only if ∇Uℎ
2 = 0. 

 

Proof : Suppose (𝑀, 𝑔) be a totally umbilical CR-submanifold of an indefinite Kaehler Norden manifold  𝑀 . 
For any tangent vector fields 𝑈,𝑉,𝑊 and use of equations (15) and (24), yields 

∇Uℎ
1(𝑉,𝑊) = 𝛻𝑈 

1 (𝑔(𝑉,𝑊)𝐻1)  − g(∇U𝑉,𝑊)𝐻1
− g(V, ∇U𝑊)𝐻1

 

 

= 𝑈  𝑔 𝑉,𝑊 𝐻1  +  𝑔 𝑉,𝑊 𝛻𝑈 
1 𝐻1

 − g(∇U𝑉,𝑊)𝐻1
− g(V,∇U𝑊)𝐻1

 

=  (∇U𝑔)(𝑉,𝑊)𝐻1
 + (𝑔 𝑉,𝑊 𝛻𝑈 

1 𝐻1) 

    =  (∇  U𝑔 )(𝑉,𝑊)𝐻 𝑙
 + (𝑔  𝑉, 𝐽  𝑊 𝛻𝑈 

1 𝐻 𝑙) = (𝑔  𝑉, 𝐽  𝑊 𝛻 𝑈 
1
𝐻 𝑙), 

 

using the Theorem 6, we have ∇  is a metric connection for a totally umbilical CR-submanifold and thus implies 
that 

                                            ∇Uℎ
1 𝑉,𝑊 =  𝑔  𝑉, 𝐽 𝑊 𝛻 𝑈 

1 𝐻 
𝑙
 =  𝑔 𝑉,𝑊 𝛻𝑈 

1 𝐻1
                                       (29) 

Similarly, 

                                                                        ∇Uℎ
2 𝑉,𝑊 =  𝑔 𝑉,𝑊 𝛻𝑈 

2 𝐻2                                                          (30) 

Thus, the result follows from above equations  (29) and (30). 

 
Theorem III.2. [1] Let 𝑀  be an indefinite Kaehler manifold with complex dimension ≥2. Then 𝑀  is an 

indefinite complex space form if and only if 𝑔  𝑅   𝑋, 𝑌 𝐽  𝑋, 𝑋 = 0, for every orthonormal vector 𝑋, 𝑌, 𝐽  𝑋 ∈

 (𝑇𝑀)    .  
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Theorem III.3. Let (𝑀    , 𝐽  , 𝑔 , 𝑔  ) be a 2𝑛 −dimensional Kaehler Norden manifold. Let (𝑀, 𝑔 ) be a radical 

transversal lightlike submanifold and (𝑀, 𝑔)  be a totally umbilical CR-submanifold of  𝑀   . If  𝑀    satisfies the 

axiom of transversal r-spheres for some fixed  r, 1 ≤ 𝑟 <  2𝑛, then 𝑀  has a constant holomorphic curvature. 

 

Proof. For any arbitrary point 𝑝 ∈ 𝑀 ,  let 𝑈,𝑉 and 𝑊 be orthonormal vector  fields such that 

𝑔 (𝑈, 𝐽  𝑉 )  =  𝑔 (𝑈, 𝐽  𝑊) 𝑔 (𝑉, 𝐽  𝑊)  =  0. 
Let 𝑇 denote an 𝑟 −dimensional transversal subspace of 𝑇𝑝(𝑀 )  containing 𝑈 and 𝑉 transversal to  𝐽  𝑈. If 𝑀  

satisfies the axioms of transversal 𝑟 −spheres then there exists an 2𝑟 −dimensional totally umbilical transversal 

CR-submanifold (𝑀,𝑔)   with parallel transversal curvature vector field 𝐻 and an induced metric connection ∇  

such that 𝑇𝑝 𝑀  = 𝑇. Since the transversal curvature vector field is parallel, that is, ∇U
⊥𝐻 = 0, using Theorem 

3.10 of [6] and LemmaIII.1, we have ∇U
⊥h1 = 0 and  ∇U

⊥h2 = 0. Since (𝑀,𝑔) is a totally umbilical CR-

submanifold such that the distribution 𝐷 defines a totally geodesic foliation in (𝑀,𝑔), 

therefore using Theorems 3.10 of [6] and Theorem 6 with (24), we have 𝐻1  =  0. Hence we have 

                                                                              ∇Uℎ
1 = 0  and  ∇Uℎ

2 = 0 or, in particular,  
                                                                                  ∇Uℎ

1 𝐽  𝑉, 𝑈 = 0, ∇J Vℎ
1 𝑈,𝑈 = 0, 

                                                                        ∇Uℎ
2 𝐽  𝑉, 𝑈 = 0, ∇J Vℎ

2 𝑈, 𝑈 = 0.                                       (31) 

Using equation (13), the transversal form of (𝑅 (𝑈, 𝑉)𝑈)𝑁 is given by 

 

 𝑅  𝑈, 𝑉 𝑈 𝑁 = (∇Uℎ
1) 𝑉,𝑈 − (∇Vℎ

1) 𝑈, 𝑈 + 𝐷1   𝑈, ℎ2 𝑉, 𝑈  − 𝐷1   𝑉, ℎ2 𝑈,𝑈   

+(∇Uℎ
2) 𝑉,𝑈 − (∇Vℎ

2) 𝑈,𝑈 + 𝐷2 𝑈, ℎ1 𝑉, 𝑈  − 𝐷2 𝑉, ℎ1 𝑈,𝑈  ,   (32) 

 

For any .)(, TMVU   

Since 𝑀 is totally umbilical CR-submanifold, therefore using Theorem 3.10 of [6] and by use of equations (23) 

and (31) in (32) gives 

(𝑅 (𝑈, 𝑉)𝑈)𝑁 =  0. 
Hence 

𝑔 (𝑅  𝑈, 𝑉 𝑈, 𝐽  𝑈)  =  0. 
Thus the assertion follows from Theorem III.2. 

 

Corollary III.4. Let (𝑀    , 𝐽  , 𝑔 , 𝑔  ) be a 2𝑛 −dimensional Kaehler Norden manifold. Let (𝑀,𝑔 ) be a radical 

transversal lightlike submanifold and (𝑀, 𝑔)  be a totally umbilical CR-submanifold of  𝑀   . If  𝑀    satisfies the 

axiom of transversal r-planes for some fixed  r, 1 ≤ 𝑟 <  2𝑛, then 𝑀  has a constant holomorphic curvature.  
 

 

III. CONCLUSIONS  

Thus, we have concluded that in the setting of Kaehler manifold with Norden manifolds, the Axioms of 

spheres(planes) hold true. 
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