Some New Closed Functions in Topological Spaces

B.R. Pattanashetti

Department of Mathematics, PC Jabin Science College, Hubballi- 580 031, India

Abstract

A set A in a topological space (X ,T) is said to be a $g^{p-closed}(briefly, g^{p-closed})$ if $pcl(A) \subset U$ whenever $A \subset U$ and U is g-open in X. In this paper, we introduce quasi $g^{p-closed}$ maps from a space X into a space Y as the image of every $g^{p-closed}$ set is closed. Also, we obtain its characterizations and its basic properties.

Mathematics Subject classification: 54C10, 54C08, 54C05

Keywords: Topological spaces, g^*p -open set, g^*p -closed set, g^*p interior, g^*p -closure, quasi g^*p -open function

1. Introduction

The notion of pre-open set [5] plays a significant role in general topology. The most important generalizations of regularity (resp. normality) are the notions of pre-regularity [1] and strong regularity (resp. pre-normality [6], strong normality [6]).Levine [3] in 1963, started the study of generalized open sets with the introduction of semi-open sets. Then Njatsad [7] studied a-open sets; In 1982,Mashhour et.' al [5] introduced preopen sets and pre-continuity in topology.

In 2002, Veerakumar [12] have defined the notion of g^*p -closed sets, g^*p -continuity and g^*p -irresolute maps. In this paper, we will continue the study of related functions by involving g^*p -open sets. We introduce and characterize the concept of quasi g^*p -open functions.

2. Preliminaries

Throughout this paper, by spaces we mean topological spaces on which no separation axioms are assumed unless otherwise mentioned and f: $(X, \tau) \rightarrow (Y, a)$ (or simply f: $X \rightarrow Y$) denotes a function f of a space (X, τ) into a space (Y, a). For a subset A of X, cl(A) and int(A) denote the closure and interior of A, respectively.

Definition 2.1. A subset A of X is said to be **pre-open** [5] if A \subset int(cl(A)). The complement of preopen set is said to be **pre-closed** [5]. The family of all pre-open sets (respectively pre-closed sets) of (X , τ) is denoted by pO(X, τ) [respectively pCL (X, τ)].

Definition 2.2. Let A be a subset of X. Then (i) **pre-interior** [2,5] of A is the union of all pre-open sets contained in A. (ii) **pre-closure** [2,5] of A is the intersection of all pre-closed sets containing A.

The pre-interior [respectively pre-closure] of A is denoted by pint(A) [respectively pcl(A)].

Definition 2.3. A subset A of a space X is called a **g-closed set** [4] (briefly, g-closed) if cl (A) $\subset U$ whenever A $\subset U$ and U is open in X. The complement of g-open set is said to be **g-open set** [4].

Definition 2.4. A subset A of a space X is called a **g*p-closed set** [12](briefly, g*p-closed) if pcl (A) \subset U whenever A \subset U and U is g-open in X. The complement of g*p-open set is said to be g*p-closed **set** [8]. The family of all g*p-open sets (respectively g*p-closed sets) of (X, T) is denoted by G*pO (X, T) [respectively G*pCL(X, T)].

$\ensuremath{\textbf{Definition2.5.Let}}\xspace A$ be a subset of X $\ .$ Then

- (i) **g*p-fnterior**[12] of A is the union of all g*p-open sets contained in A.
- (ii) **g*p-closure** [12] of A is the intersection of all g*p-closed sets containing A.

The g*p-interior [respectively g*p-closure] of A is denoted by g*pint(A) [respectively g*pcl(A)].

Definition 2.6. A subset S is called a g*p-neighbourhood [12] of a point x of X, if there exists a g*p-open set U such that $x \in U \subset S$.

Definition 2.7. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a g*p-open function [12] if the image f (A) is g*p-open in (Y, σ) for each open set A in (X, τ) .

Definition 2.8. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a **g*p-continuous** [12] if the inverse image of every closed set in (Y, σ) is g*p-closed in (X, τ) .

Definition 2.9. A function f: $(X, T) \rightarrow ((Y, a) \text{ is called a } g*p-irresolute [12] if the inverse image of every g*p-closed in (Y, a) is g*p-closed in (X, T).$

3. Quasi g*p-closed Functions

Definition 3.1. A function $f: X \to Y$ is said to **quasi g*p-closed** if the image of each g*p-closed set in X is closed in Y. Clearly, every quasi g*p-closed function is closed as well as g*p-closed.

Lemma 3.2. If a function $f: X \to Y$ is quasi g^*p -closed, then f^1 (int (B)) $\subset g^*p$ -int ($f^1(B)$) for every subset B of Y.

Proof. This proof is similar to the proof of Lemma on quasi g*p-open maps [13]

Theorem 3.3. A function $f: X \to Y$ is quasi g^*p -closed iff for any subset B of Y and for any g^*p -open set G of X containing f^1 (B), there exists an open set U of Y containing B such that f^1 (U) \subset G.

Proof This proof is similar to that Theorem 3.5. [13]

Definition 3.4. A function f: $X \rightarrow Y$ is called **g*p*-closed** if the image of g*p-closed subset of X is g*p-closed set in Y.

Theorem 3.5. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are two quasi g^*p -closed function, then $g^\circ f$ is quasi g^*p -closed function.

Proof. Obvious.

Furthermore, we have the following Theorem:

Theorem 3.6. Let f: $X \rightarrow Y$ and g : $Y \rightarrow Z$ be any two functions. Then

(i) If f is g^*p -closed and g is quasi g^*p -closed, then $g^\circ f$ is closed.

(ii) If f is quasi $g^{*}p$ -closed and g is $g^{*}p$ -closed, then $g^{\circ}f$ is $g^{*}p^{*}$ -closed.

(iii) If f is g^p^* -closed and g is quasi g^p -closed, then g° f is quasi g^p -closed.

Proof. Obvious.

Theorem 3.7. Let f: X \rightarrow Y and g : Y \rightarrow Z be two functions such that

g°f: X \rightarrow Z is quasi g*p-closed.

(i) If f is g*p-irresolute surjective, then g is closed.

(ii) If g is g*p-continuous injective, then f is g*p*-closed.

Proof (i) Suppose that F is an arbitrary closed set in Y. As f is g^p - irresolute.f¹ (F) is g^p -closed in X. Since $g^{\circ}f$ is quasi g^p -closed and f is surjective, $g^{\circ}f(f^1(F)) = g(F)$ which is closed in Z. This implies g is a closed function.

(ii) Suppose F is any g*p-closed set in X . Since g°f is quasi g*p-closed,(g°f)

(F) is closed in Z. Again g is a g^*p -continuous injective function, $g^{-1}(g^{\circ}f(F)) = f(F)$, which is g^*p -closed in Y. This shows that f is g^*p^* -closed.

Theorem 3.8. Let X and Y be topological spaces. Then the function $g : X \to Y$ is a quasi g^*p -closed if and only if g(X) is closed in Y and $g(V) \setminus g(X \setminus V)$ is open in g(X) whenever V is g^*p -open in X.

Proof. Necessity: Suppose g: $X \rightarrow Y$ is a quasi g*p-closed function. Since X is a g*p-closed, g (X) is closed in Y and g (V) $g(X \lor V) = g(V)Hg(X) g(X \lor V)$ is open in g (X) when V is g*p-open in X.

Sufficiency: Suppose g (X) is closed in Y, g (V) g(X V) is open in g (X) when V is g*p-open in X, and let C be closed in X. Then g (C) = g (X) g(X C) (C) is closed in g (X) and hence, closed in Y.

Corollary 3.9. Let X and Y be topological spaces. Then a surjective function $g : X \rightarrow Y$ is quasi g^*p -closed iff $g(V) \setminus g(X \setminus V)$ is open in Y whenever U is g^*p -open in X.

Proof Obvious.

Corollary 3.10.Let X and Y be topological spaces and let $g : X \rightarrow Y$ be a g*p-continuous quasi g*p-closed surjective function. Then the topology on Y is $\{g(V) \mid g(X \setminus V) : V \text{ is g*p-open in } X\}$.

Proof Let W be open in Y. Then g^{-1} (W) is g^*p -open in X, and $g(g^{-1}(W)) | g(X | g^{-1}(W)) = W$. Hence, all open sets in Y are of the form g(V) | g(X | V), V is g^*p -open in X. On the other hand, all sets of the form g(V) | g(X | V), V is g^*p -open in X, are open in Y from Corollary 3.9.

Definition 3.11. A topological space (X, T) is said to be **g*p-normal**, if for any pair of disjoint g*p-closed subsets F1 and F2 of X, there exist disjoint open sets U and V such that F1 \subset Uand F2 \subset V.

Theorem 3.12. Let X and Y be topological spaces with X is g^*p -normal. If $g: X \rightarrow Y$ is g^*p -continuous quasi g^*p -closed surjective function. Then Y is normal.

Proof. Let K and M be disjoint closed subsets of Y. Then $g^{-1}(K)$, $g^{-1}(M)$ are disjoint g^*p -closed subsets of X. Since X is g^*p -normal, there exists disjoint open sets V and W such that $g^{-1}(K) \subset V$ and $g^{-1}(M) \subset W$. Then $K \subset g(V) \setminus g(X \setminus V)$ and $M \subset g(W) \setminus g(X \setminus W)$. Further by Corollary 3.9., $g(V) \setminus g(X \setminus V)$ and $g(W) \setminus g(X \setminus W)$ are open sets in Y and clearly $(g(V) \setminus g(X \setminus V)) \cap (W) \setminus g(X \setminus W)) = \emptyset$. This shows that Y is normal.

References

[1] H. Corson and E. Michel, Metrizibility of certain countable unions, Illinois J. Math. 8(1964), 351-360.

[2] S. N. El-Deeb, I. A. Hassanein and A. S. Mashhour, On pre-regular spaces, Bull. Mathe. de la Soc. Math, de la R. S. de Roumanie, Tome 27 (75) Nr.4 (1983).

[3] N. Levine, Semi-open sets and Semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.

[4] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.

[5] A.S.Mashhour, M.E.Abd El-Monsef and S.N. El-Deeb, On pre continuous and weak pre continuous mappings, Proc. Math, and Phys. Soc. Egypt, 53 (1982), 47-53.

[6] A.S.Mashhour, M.E.Abd El-Monsef and I. A.Hasanein, On pretopological spaces, Bull. Mathe. de la Soc. Math, de la R. S. de Roumanie, Tome 28 (76) Nr. 1 (1984).

[7] 0. Njastad, On some classes of nearly open sets, Pacific Jl. Math., 15 (1965), 961-970.

[8] ElNaschie MS. Quantum gravity from descriptive set theory. Chaos, Solitons & Fractals 2004;19:1339-44.

- [9] El Naschie MS. "Quantum gravity", Clifford algebra, Fuzzy set theory and the fundamental constants of nature. Chaos, Solitons & Fractals 2004;20:437-50.
- [10] El Naschie MS. On the uncertainty of Cantoriangeomerty and two-slit experiment. Chaos, Solitons & Fractals 1998;9(3):517-29.
 [11] Svozil K. Quantum field theory on fractal space-time: a new regularization method. J Phy A Math Gen 1987;20:3861-75.
- [12] M.K.R.S. Veerakumar, g*-preclosed sets, ActaCienciaIndica, Vol XXVIII M.No.I (2002), 51-60