Integral Root Labeling of Graphs

${ }^{1}$ V.L. Stella Arputha Mary \& ${ }^{2}$ N. Nanthini
${ }^{l}$ Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi-628001.
${ }^{2}$ M.phil Scholar, St. Mary's College (Autonomous), Thoothukudi-628001.

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. Let $f: V \rightarrow\{1,2, \ldots q+1\}$ is called an Integral Root labeling if it is possible to label all the vertices $v \in V$ with distinct elements from $\{1,2, \ldots q+1\}$ such that it induces an edge labeling $f^{+}: E \rightarrow\{1,2, \ldots q\}$ defined as $f^{+}(u v)=\left\lceil\sqrt{\frac{(f(u))^{2}+(f(v))^{2}+f(u) f(v)}{3}}\right\rceil$ is distinct for all $u v \in E$. (i.e.) The distinct vertex labeling induces a distinct edge labeling on the graph. The graph which admits Integral Root labeling is called an Integral Root Graph.

In this paper, we introduce Integral Root labeling and investigate Integral Root labeling of Path, Comb, Ladder, Triangular Snake and Quadrilateral Snake.

KEY WORDS

Integral Root labeling, Integral Root graph, Path, Comb, Ladder, Triangular Snake, and Quadrilateral Snake.

INTRODUCTION

By a graph $G=(V(G), E(G))$ we mean a finite undirected graph without loops or parallel edges. For all detailed survey of graph labeling we refer to Gallian[1]. For all other standard terminology and notations we follow Harary[2]. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions.

In this paper we investigate the Integral Root labeling of Path, Comb, Ladder, Triangular Snake, and Quadrilateral Snake.

2. BASIC DEFINITIONS

Definition: 2.1
A walk in which $u_{1}, u_{2}, \ldots u_{n}$ are distinct is called a path. A path on n vertices is denoted by P_{n}.

Definition: $\mathbf{2 . 2}$

A Closed Path is called a Cycle. A cycle on n vertices is denoted by C_{n}.
Definition: $\mathbf{2 . 3}$
The graph obtained by joining a single pendent edge to each vertex of a path is called a Comb.

Definition: 2.4

The Cartesian product of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=(V, E)$ with $V=V_{1} \times V_{2}$ and two vertices $u=\left(u_{1} u_{2}\right)$ and $v=\left(v_{1} v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ whenever $\left(u_{1}=v_{1}\right.$ and u_{2} is adjacent to $\left.v_{2}\right)$ or ($u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}). It is denoted by $G_{1} \times G_{2}$.
Definition: $\mathbf{2 . 5}$
The Corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \odot G_{2}$ formed by taking one copy of G_{1} and $\left|\left(G_{1}\right)\right|$ copies of G_{2} where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}.
Definition: $\mathbf{2 . 6}$
The product graph $P_{2} \times P_{n}$ is called a ladder and it is denoted by L_{n}.
Example:
Ladder graph of L_{4} is given below

Definition: 2.7

A Triangular Snake $\boldsymbol{T}_{\boldsymbol{n}}$ is obtained from a path $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}$ by joining u_{i} and $\mathrm{u}_{\mathrm{i}+1}$ to a new vertex v_{i} for $1 \leq \mathrm{i} \leq$ $n-1$.That is every edge of a path is replaced by a triangle C_{3}.
Example:
Triangular Snake T_{4} is given below

Definition: $\mathbf{2 . 8}$

A Quadrilateral Snake $\boldsymbol{Q}_{\boldsymbol{n}}$ is obtained from a path $u_{1}, u_{2}, \ldots u_{n}$ by joining u_{i} and u_{i+1} to two new vertices v_{i} and w_{i} respectively and then joining v_{i} and w_{i}. That is every edge of a path is replaced by a cycle C_{4}.
Example:
Quadrilateral Snake Q_{4} is given below

3. MAIN RESULTS

Definition: 3.1

Let $G=(V, E)$ be a graph with p vertices and q edges. Let $f: V \rightarrow\{1,2, \ldots q+1\}$ is called an Integral Root labeling if it is possible to label all the vertices $v \in V$ with distinct elements from $\{1,2, \ldots q+1\}$ such that it induces an edge labeling $f^{+}: E \rightarrow\{1,2, \ldots q\}$ defined as
$f^{+}(u v)=\left\lceil\sqrt{\frac{(f(u))^{2}+(f(v))^{2}+f(u) f(v)}{3}}\right\rceil$ is distinct for all $u v \in E$. (i.e.) The distinct vertex labeling induces a distinct edge labeling on the graph. The graph which admits Integral Root labeling is called an Integral Root Graph.

Theorem: 3.2

Any path P_{n} is an Integral Root graph.

Proof:

Let G be a path graph P_{n}.
Let $\left\{u_{1}, u_{2}, \ldots . u_{n}\right\}$ be the vertices of path P_{n} and $\left\{e_{1}, e_{2}, \ldots . e_{n-1}\right\}$ be the edges of path P_{n}
The path P_{n} consists of n vertices and $n-1$ edges.
Define $f: V\left(P_{n}\right) \rightarrow\{1,2, \ldots . q+1\}$ by $f\left(u_{i}\right)=i ; \quad 1 \leq i \leq n$.
Then we find the edge labels $f^{+}\left(e=u_{i} u_{i+1}\right)=\left\lceil\sqrt{\frac{i^{2}+i(i+1)+(i+1)^{2}}{3}}\right\rceil ; \quad 1 \leq i \leq n-1$

$$
\begin{aligned}
& =\left\lceil\sqrt{\frac{i^{2}+i^{2}+i+i^{2}+1+2 i}{3}}\right\rceil \\
& =\left\lceil\sqrt{\frac{3 i^{2}+3 i+1}{3}}\right\rceil \\
& =i \text { are distinct. }
\end{aligned}
$$

Hence P_{n} is an Integral Root graph.

Example: 3.3

The Integral Root labeling of P_{6} is given below

Figure: 1

Theorem: 3.4

Any Comb $P_{n} \boldsymbol{\Theta} \boldsymbol{k}_{\mathbf{1}}$ is an Integral Root graphs. $n \geq 2$

Proof:

Let G be a comb graph $P_{n} \boldsymbol{\Theta} \boldsymbol{k}_{\mathbf{1}}$.
Let $\left\{u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}\right\}$ be the vertices of comb.
The comb has $2 n-1$ edges.
Define a function $f: V\left(P_{n} \boldsymbol{\Theta} \boldsymbol{k}_{1}\right) \rightarrow\{1,2, \ldots . q+1\}$ by
$f\left(u_{i}\right)=2 i-1 ; 1 \leq i \leq n$,
$f\left(v_{i}\right)=2 i ; \quad 1 \leq i \leq n$.
Then we find the edge labels
$f^{+}\left(e=u_{i} u_{i+1}\right)=2 i ; \quad 1 \leq i \leq n-1 ;$
$f^{+}\left(e=u_{i} v_{i}\right)=2 i+1 ; \quad 1 \leq i \leq n-1$ are distinct.
Hence $P_{n} \boldsymbol{\Theta} \boldsymbol{k}_{\mathbf{1}}$ is an Integral Root graph.

Example: 3.5

The Integral Root labeling of $P_{7} \boldsymbol{\Theta} \boldsymbol{k}_{\mathbf{1}}$ is given below.

Figure: 2
Theorem: 3.6
Any Ladder L_{n} is an Integral Root graph.

Proof:

Let G be a Ladder graph L_{n}.
Let $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$ be the vertices of ladder.
Define a function $f: V\left(L_{n}\right) \rightarrow\{1,2, \ldots . q+1\}$ as
$f\left(u_{i}\right)=3 i-2 ; \quad 1 \leq i \leq n$,
$f\left(v_{i}\right)=3 i-1 ; \quad 1 \leq i \leq n$.
Then we find the edge labels
$f^{+}\left(u_{i} u_{i+1}\right)=3 i-1 ; \quad 1 \leq i \leq n-1$,
$f^{+}\left(u_{i} v_{i}\right)=3 i-2 ; \quad 1 \leq i \leq n-1$,
$f^{+}\left(v_{i} v_{i+1}\right)=3 i ; \quad 1 \leq i \leq n-1$ are distinct.
Hence L_{n} is an Integral Root graph.
Example: 3.7
The Integral Root labeling of L_{6} is given below

Figure: 3

Theorem: 3.8

Any Triangular Snake T_{n} is an Integral Root graph.
Proof:
Let G be a triangular snake T_{n}.
Define a function $f: V\left(T_{n}\right) \rightarrow\{1,2, \ldots, q+1\}$ by
$f\left(u_{i}\right)=3 i-2 ; 1 \leq i \leq n$,
$f\left(v_{i}\right)=3 i-1 ; 1 \leq i \leq n-1$.
Then we find the edge labels
$f^{+}\left(u_{i} u_{i+1}\right)=3 i-1 ; 1 \leq i \leq n-1$,
$f^{+}\left(v_{i} u_{i+1}\right)=3 i ; \quad 1 \leq i \leq n-1$,
$f^{+}\left(u_{i} v_{i}\right)=3 i-2 ; \quad 1 \leq i \leq n-1$ are distinct.
Hence T_{n} is an Integral Root graph.
Example: 3.9
The Integral Root labeling of T_{6} is given below

Figure 4
Theorem: $\mathbf{3 . 1 0}$
Any Quadrilateral Snake Q_{n} is an Integral Root graph.

Proof:

Let G be a Quadrilateral Snake Q_{n}.
Define a function $f: V\left(Q_{n}\right) \rightarrow\{1,2, \ldots . q+1\}$ by
$f\left(u_{i}\right)=4 i-3 ; 1 \leq i \leq n$,
$f\left(v_{i}\right)=4 i-2 ; \quad 1 \leq i \leq n-1$,
$f\left(w_{i}\right)=4 i-1 ; \quad 1 \leq i \leq n-1$.
Then the edge labels
$f^{+}\left(u_{i} v_{i}\right)=4 i-3 ; \quad l \leq i \leq n-1$,
$f^{+}\left(u_{i} u_{i+1}\right)=4 i-1 ; 1 \leq i \leq n-1$,
$f^{+}\left(u_{i+1} w_{i}\right)=4 i ; \quad l \leq i \leq n-1$,
$f^{+}\left(v_{i} w_{i}\right)=4 i-2 ; \quad 1 \leq i \leq n-1$ are distinct.
Hence Q_{n} is an Integral Root graph.

Example: 3.11

The Integral Root labeling of Q_{5} is given below.

Figure: 5

Theorem: $\mathbf{3 . 1 2}$

Any cycle C_{n} is not a Integral Root graph $n \geq 3$.

Proof:

Let G be a graph of cycle C_{n}.
Let $\left\{u_{1}, u_{2}, \ldots . u_{n}\right\}$ be the vertices of cycle C_{n} and $\left\{e_{1}, e_{2}, \ldots . e_{n-1}\right\}$ be the edges of cycle C_{n}.
The cycle C_{n} consists of n vertices and $n-1$ edges.
Define $f: V\left(C_{n}\right) \rightarrow\{1,2, \ldots . q+1\}$ by
$f\left(u_{i}\right)=i ; 1 \leq i \leq n$
Then we find the edge labels
$f^{+}\left(e=u_{i} u_{i+1}\right)=i ; 1 \leq i \leq n-1$ are distinct., and $f\left(u_{n} u_{1}\right)$ is not distinct.
Hence C_{n} is not a Root graph.

Example: 3.13

Cycle C_{7} is not Integral Root Labeling of graph is given below

Figure 6

REFERENCES

[1] J.A.Gallian, 2010, "A dynamic Survey of graph labeling," The electronic Journal of Combinatories17\#DS6.
[2] F.Harary, 1988, "Graph Theory," Narosa Publishing House Reading, New Delhi.
[3] S.Sandhya, S. Somasundaram, S. Anusa, "Root Square Mean labeling of graphs," International Journal of Contemporary Mathematical Science, Vol.9, 2014, no.667-676.
[4] S. S. Sandhya, E. Ebin Raja Merly and S. D. Deepa, "Heronian Mean Labeling of Graphs", communicated to International journal of Mathematical Form.
[5] V.L. Stella Arputha Mary S. Navaneetha Krishnan and A. Nagarajan " $Z_{4 p}$ Magic labeling on some special graphs", International journal of Mathematics and Soft Computing Vol. 3, No: 3 (2013) (61-70).
[6] V.L. Stella Arputha Mary S. Navaneetha Krishnan and A. Nagarajan " $Z_{4 p}$ Magic labeling for some more special graphs", International journal of Physical Sciences, Ultra Scientist Vol. 25, No: 3 (2013) (319-326).

