# ALTERNATIVE METHODS OF ORDINARY DIFFERENTIAL EQUATIONS 

## AUTHOR'S INTRODUCTION

K. SELVAM, M.Sc., M.Phil., B.Ed.,

Assistant Professor,
Department of Maths,
Jairupaa College of Engineering, Tirupur.

## Abstract

In this paper we study about alternative method's by which we can solve the problem of ordinary differential equation. In this method very useful to Engineering students, we can easily solve any ordinary differential equation problem in this method.

## Keywords

Differentiation, Integration.
Solve :

$$
\begin{equation*}
y^{\prime \prime}+3 y^{\prime}+2 y=x^{2} \tag{1}
\end{equation*}
$$

## To Solve Previous Method

$$
\left(D^{2}+3 D^{\prime}+2\right) y=x^{2}
$$

The Auxiliary equation is $m^{2}+3 m+2=0$

$$
\begin{aligned}
& (m+2)(m+1)=0 \\
& m=-1,-2
\end{aligned}
$$

$\therefore$ C.F is $\quad A e^{-x}+B e^{-2 x}$

$$
\begin{aligned}
\mathrm{PI} & =\frac{1}{\mathrm{D}^{2}+3 \mathrm{D}+2} x^{2} \\
& =\frac{1}{2\left[1+\frac{\mathrm{D}^{2}+3 \mathrm{D}}{2}\right]} x^{2} \\
& =\frac{1}{2}\left[1+\frac{\mathrm{D}^{2}+3 \mathrm{D}}{2}\right]^{-1} \\
& =(1-x)^{-1}=1-x+x^{2} \\
& =\frac{1}{2}\left[1-\left(\frac{\mathrm{D}^{2}+3 \mathrm{D}}{2}\right)+\left(\frac{\mathrm{D}^{2}+3 \mathrm{D}}{2}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{array}{ll} 
& =\quad \frac{1}{2}\left[1-\frac{\mathrm{D}^{2}}{2}-\frac{3 \mathrm{D}}{2}+\frac{\mathrm{D}^{4}+6 \mathrm{D}^{4}+9 \mathrm{D}^{2}}{4}\right] x^{2} \\
& =\frac{1}{2}\left[x^{2}-\frac{2}{2}-\frac{6 x}{2}\right]+\frac{9}{2} \\
& =\frac{x^{2}}{2}-\frac{1}{2}-\frac{3 x}{2}+\frac{9}{4} \\
& =\frac{x^{2}}{2}-\frac{3}{2} x-\frac{1}{2}+\frac{9}{4} \\
& =x^{2}=\frac{x^{2}}{2}-\frac{3}{2} x+\frac{7}{4} \\
\mathrm{y} & =\quad \text { C.F. }+ \text { P.I } \\
& =\mathrm{Ae}^{-x}+\mathrm{Be}^{-2 x}+\frac{x^{2}}{2}-\frac{3}{2} x+\frac{7}{4}
\end{array}
$$

The same problem to solve by new methods

$$
\begin{align*}
& y^{\prime \prime}+3 y^{\prime}+2 y=x^{2}  \tag{1}\\
& \left(D^{2}+3 D^{\prime}+2\right) y=x^{2} \\
& m=-1,-2 \\
& \therefore \text { C.F is } \quad A e^{-x}+B e^{-2 x} \\
& \text { PI }=\left[C_{0}+C_{1} x+C_{2} x^{2}\right] \\
& =\quad\left(\mathrm{D}^{2}+3 \mathrm{D}+2\right)\left(C_{0}+C_{1} x+C_{2} x^{2}\right)=x^{2} \\
& =\quad D^{2} C_{0}+D^{2} C_{1} x+D^{2} C_{2} x^{2}+3 D C_{0}+3 D C_{1} x+3 D C_{2} x^{2} \\
& +2 C_{0}+2 C_{1} x+2 C_{2} x^{2}=x^{2} \\
& =0+0+2 C_{2}+0+3 C_{1}+6 C_{2} x+2 C_{0}+2 C_{1} x \\
& +2 C_{2} x^{2}=x^{2}
\end{align*}
$$

Equating Co-efficient of $x^{2}, x \&$ constant

| $2 C_{2}$ | $=$ | 1 |  | $6 C_{2}+2 C_{1}$ |  | $=$ | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C_{2}$ | $=$ | $\frac{1}{2}$ |  | $3+2 C_{1}=$ |  | 0 |  |  |
|  |  |  |  | $2 C_{1}$ |  | $=$ | -3 |  |
|  |  |  |  | $C_{1}$ |  | $=$ | $-\frac{3}{2}$ |  |
| $2 C_{2}+3 C_{1}+2 C_{0}$ |  |  |  | $=$ | 0 | $C_{0}$ | $=$ | $\frac{7}{2 x 2}$ |
| $2 x \frac{1}{2}$ | $3 x$ | $+2 C_{0}$ | $=$ | 0 | $C_{0}$ | $=$ | $\frac{7}{4}$ |  |

$$
\begin{array}{rlll}
1-\frac{9}{2}+2 C_{0} & & = & 0 \\
-\frac{7}{2}+2 C_{0} & & 0 \\
\therefore \text { P.I. }=\frac{7}{4}-\frac{3}{2} x+\frac{1}{2} x^{2} & & & \\
& & A e^{-x}+B e^{-2 x}+\frac{7}{4}-\frac{3 x}{2}+\frac{x^{2}}{2}
\end{array}
$$

Solve

$$
\left(D^{2}-2 D+5\right) y=e^{x} \sin 2 x
$$

## To Solve P.I. of previous method

P.I.

$$
\begin{array}{rlr} 
& =\frac{1}{D^{2}-2 D+5} e^{x} \sin 2 x \\
& =e^{x} \frac{1}{(D+1)^{2}-2(D+1)+5} \sin 2 x \\
& =e^{x} \frac{1}{D^{2}+2 D+1-2 D-2+5} \sin 2 x & \\
& =\frac{e^{x}}{D^{2}+4} \operatorname{Sin} 2 x & D^{2}=-4 \\
& =\frac{e^{x}}{-4+4} \operatorname{Sin} 2 x & \\
& =\frac{1}{D}=\text { intergration } \\
& =\frac{x e^{x}}{2 D} \operatorname{Sin} 2 x & \\
& \frac{x e^{x}}{2} \frac{1}{D} \operatorname{Sin} 2 x & \\
& \frac{x e^{x}}{2}\left(-\frac{\operatorname{Cos} 2 x}{2}\right) & \\
& \\
& \frac{-x e^{x} \operatorname{Cos} 2 x}{4}
\end{array}
$$

## To Solve New method

$$
\text { P.I. } \quad \begin{aligned}
& =\frac{1}{D^{2}-2 D+5} e^{x} \sin 2 x \\
& =\frac{1}{D^{2}-2 D+5} e^{x} e^{i 2 x} \\
& =\frac{1}{D^{2}-2 D+5} e^{(1+i 2) x} \\
& =\frac{1}{(1+2 i)^{2}-2(1+2 i)+5} e^{(1+i 2) x} \\
& =\frac{1}{1+4 i-4-2-4 i+5} e^{(1+i 2) x} \\
& =\frac{1}{0} e^{(1+i 2) x} \\
& \text { Differentiate with respect to } \mathrm{D} \\
& =\frac{x}{2 D-2} e^{(1+i 2) x}
\end{aligned}
$$

$$
\begin{array}{rlr} 
& =\frac{x}{2(D-1)} e^{(1+i 2) x} & \\
& =\frac{x}{2(1+i 2)-1)} e^{(1+i 2) x} & \\
& =\frac{x}{2+4 i-2} e^{(1+i 2) x} & \mathrm{i}=1 / \mathrm{n} * \mathrm{~d}(\operatorname{Cos} n x \text { or } \operatorname{sinn} x) \\
& =\frac{x}{4 i} e^{x} \sin 2 x & 1 / \mathrm{i}=\mathrm{n} * \text { intergeral }(\operatorname{Cos} n x \text { or } \sin n x) \\
& =\frac{x}{4} e^{x} \int 2 \sin 2 x & \\
& =\frac{x}{4} e^{x}\left(-\frac{2 \cos 2 x}{2}\right) & \\
\text { P.I. } \quad & =-\frac{x}{4} e^{x} \operatorname{Cos} 2 x &
\end{array}
$$

To Solve previous method of variation of parameters


$$
\begin{array}{ll} 
& =\int \frac{\cos x \sec x}{1} d x \\
& =\int \frac{\cos x}{\cos x} d x \\
& =\int d x \\
& =x \\
\text { P.I. } & =\mathrm{P} f_{1}+\mathrm{Q} f_{2} \\
\text { y } & =(\log \cos x) \cos x+x \sin x \\
\text { y } & =\mathrm{C} . \mathrm{F} .+\mathrm{P} . \mathrm{I} .
\end{array}
$$

To solve above problem by new method

```
Solve \(=y^{\prime \prime}+y=\sec x\)
                    \(=\quad\left(D^{2}+1\right) y=0\)
                    \(=\quad m^{2}=-1\)
                    \(=\quad m=i^{2} \quad m= \pm i\)
C.F. \(\quad=\quad\left(C_{1} \cos x+C_{2} \sin x\right)\)
```

By wronskian method

$$
\begin{array}{rll}
W\left(y_{1}, y_{2}\right) & =\quad y_{1} y_{2}^{1}-y_{2} y_{1}^{1} \\
y_{1}=\operatorname{Cos} x & & y_{2}=\sin x \\
y_{1}^{1}=-\operatorname{Sin} x & & y_{2}^{1}=\cos x \\
W\left(y_{1}, y_{2}\right) & = & y_{1} y_{2}^{1}-y_{2} y_{1}^{1} \\
& = & \cos ^{2} x+\sin ^{2} x=1 \\
& = & -\int \frac{y_{2} x}{W\left(y_{1}, y_{2}\right)} d x \\
\mathrm{P} & =-\int \frac{\sin x \sec x}{1} d x \\
& =\int \frac{\sin x}{\cos x} d x=\log \cos x \\
& =\int \frac{y_{1} x}{W\left(y_{1} y_{2}\right)} d x \\
& =\int \frac{\cos x \sec x}{1} d x \\
& =\int \frac{\cos x}{\cos x} d x=x
\end{array}
$$

```
y = C.F.+ P.I.
y = (C1 cosx+ C C sin}x)+\operatorname{log}\operatorname{cos}x+x\operatorname{sin}
```


## CONCLUSION

In this method is very easily solve to ordinary differentially equations. It is easily understanding to students.

> Thanking You,

## References

1. "Mr.Erwin Kreyszig" - Advanced Engineering Mathematics, $8^{\text {th }}$ Edition Wiley India Private Limited, New Delhi.
2. "Mr.Grewel" Engineering Mathematics Khanna Publications Pvt Limited", New Delhi.
3. "R.K.Jain and S.R.K.Iyengar" Advanced Engineering Mathematics, Narosa Publishing House Third Edition,New Delhi.
4. "Mr.Dennish, G.Zill, Michael R.Cullen" Advanced Engineering Mathematics, Narosa Publishing House Third Edition,New Delhi.

Thanking You,

