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Abstract: The present paper encompasses the analytical solution for axisymmetric one dimensional thermomechanical response 

of an annular disk. The basic equations have been written in the form of a vectormatrix differential equation in the Laplace 

transform domain and solved by eigenvalue approach. The solutions for displacement, temperature, radial and hoop stresses 

are obtained in closed form in the Laplace transform domain. Numerical inversions for these field variables in the space-time 

domain have been made and presented in graphical form. 
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 I. INTRODUCTION  

The unrealistic prediction that the thermal disturbances propagate at infinite speed as given in the classical theory of 

thermoelasticity based on conventional heat conduction equation, some modified dynamic thermoelastic models are proposed 

by some researchers which encompasses the notion that not only the equations of motion but also the heat conduction equation 

must be of hyperbolic type and as such the elastic wave and heat wave propagate in finite speed. This modified thermoelastic 

theory is known as Generalized theory of thermoelasticity. Lord and Shulman [1], based on a modified Fourier law, developed a 

generalized theory (L-S theory) where they used a relaxation time parameter. Green and Lindsay [2], based on an entropy 

production inequality, which was put forwarded  by Green and Laws [3], developed a temperature rate dependent 

thermoelasticity (G-L theory) that includes the temperature-rate among constitutive variables also predicts a finite speed for heat 

propagation where they have used two time relaxation parameters. Another theoretical model on this area is due to Green and 

Nagdhi [4, 5] (G-N theory) who provide sufficient basic modifications in the constitutive equations that permit treatment of a 

much wider class of heat flow problems. The applications of these theories have been examined extensively by a host of 

researchers and to name a few vide, [6-12]. The problems of generalized thermoelasticity with phase-lag effects are also being 

considered by the researchers, vide, [13-16]. 

Bagri and Eslami [17] applied the finite element method to solve the problem of generalized coupled thermoelastic disk based 

on LS model [1]. Taheri, et.al [18] presented the thermoelastic analysis of an annulus using GN-model. Kar and Kanoria [19] 

considered the thermoelastic response in a fiber reinforced   thin annular disk with three phase-lag effect. Following Bagri and 

Eslami [17], we have considered the thermoelastic interactions in an annular disk using eigenvalue approach to achieve the 

solution. Finally, the displacement, temperature, radial and hoop stresses are inverted from the transform domain to the space 

time domain by numerical method and presented graphically. The results are also compared with the corresponding results as in 

[17]. 

 

  

II. BASIC EQUATIONS AND CONSTITUTIVE RELATIONS 

We consider an isotropic homogeneous annular disk of inner radius  and outer radius  having initially at a uniform 

temperature , under axisymmetric thermal shock load applied into its inner boundary. The disk is assumed to be in plane 

stress condition and the origin in plane polar coordinates   is taken at the centre of the hole. 
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Following L-S model [1], the linear coupled equations of motion and generalized heat conduction equation in terms of 

displacement    and temperature   and in absence of heat source and body forces can be written in plane-stress condition as  
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The stress-strain-temperature relations can be written as  
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where   are the Lame constants and  are the density, stress tensor, reference 

temperature, stress temperature module, thermal conductivity, specific heat and relaxation time parameter respectively. 

We now consider an annular disk under axisymmetric thermal shock load applied to its inner boundary   of the disk. 

Writing the equations (1) - (3) in plane coordinates and assuming that  

( , ),   0   and   ( , )u u r t v w T T r t     

we write these equations (1) - (3) as 
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    In order to make the above equations in dimensionless form, we introduce the dimensionless parameters as  
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Employing these dimensionless parameters and neglecting the prime notation for convenience, equations 

 (5) – (7) become 
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where      is the thermoelastic coupling coefficient. It may be noted from the equations (9) and (10) that the 

elastic wave propagates with the speed to unity and the thermal disturbance propagates with the speed of     .  Since      

finite speed is predicted for the generalized L-S model. Otherwise when    , infinite speed of thermal disturbance is 

estimated for classical thermoelastic case. 

The mechanical and thermal boundary conditions for the annular disk may be taken as  
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Using the relations (8), the dimensionless forms of the equation (12) may be written as  
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 where    ,   is a constant and  is the Heaviside unit step function of t for the heat flux input at the 

inner boundary and a, b are the dimensionless inner and outer radii respectively. 

 

 

III. SOLUTION OF THE PROBLEM 

We now apply Laplace transform of the function  with parameter  defined by  
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Equations (14) can be written as 
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Differentiating (15) with respect to „ r ‟ and using the equation (16) we get 

 

SSRG
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 54 Number 6 - February 2018


SSRG
Text Box
ISSN: 2231-5373                              http://www.ijmttjournal.org                             Page 487




 
 

   2

01 1
dT dT

L p t p Cp u C
dr dr

   
      

   
                                                                                                                   (17) 

where the operator  L   is given by 
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 Equations (16) and (17) may be combined to write in the vector-matrix differential equation form as  
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In order to solve the equation (18), we follow the procedure as in [20]. 

Let     be the eigenvectors corresponding to the eigenvalues     of the matrix   and let  
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Equation (18) becomes 
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Premultiplying  by   , equation (20) may be written as   
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Writing     (say), we get from (19) and (21) 
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Writing     (say),                                                                                                                                                       (24)  

the solution of equation (23) can be written as 
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where  are the modified Bessel functions of the second kind and  are constants.  

The eigenvalues  of the matrix A can be determined from the characteristic equation:  
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Using (25), we now write down     as   
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Hence, we get the displacement and temperature in the Laplace transform domain as  
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Using (30) and (31), we calculate the radial and hoop stresses as  
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We now use the boundary conditions (13) to determine the constants   . The resulting equations are as follows: 
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Solving this system of equations for the constants  and substituting them in the equations (30) – (33) we get 

the displacement, temperature and stresses in the Laplace transform domain as 
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IV. FOR SOLID DISK 

Instead of choosing an annular disk, we now choose a solid disk of radius    with centre at the origin.  

In this case, the boundary conditions may be taken as   

0,     on  rr

dT
q r b

dr
                                                                                                                                                  (39) 

Since     is undefined for  , we write the solution for displacement    and temperature    in the Laplace 

transform domain as  
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Applying the boundary conditions (39), we calculate the constants   and  which when substituted in (40) – (43), give 

,  ,   and rru T    for the solid disk as 

   1 1 1 2 1 2

1
, ( ) ( )u r p I r I r    


                                                                                                                              (44) 

 
2 2 2 2

1 2

1 0 1 2 0 2

1 2

1
, ( ) + ( ) 

p p
T r p I r I r

 
 

 

     
       

      

                                                                      (45) 

 
2 2

1 0 1 1 1 2 0 2 1 2

1 2

1 1 2 1 2
, ( ) ( ) ( ) ( )

2 2

                      

rr

p p
r p I r I r I r I r

r r

 
    

     

       
           
          

              (46) 

         

 
2 2

1

1 1 0 1 1 1

1

2 2

2

2 2 0 2 1 2

2

1 1 2
, ( ) ( )

2 2

1 2
                       ( ) ( )

2 2

p
r p I r I r

r

p
I r I r

r



  
   

    

  
  

    

      
        
       

     
       

     

                                     (47) 

 where    
11 12 0 12 11 0

11 22 12 21 0 22 0 21

21 22 22 21

 ,   ,   
0 0

C C H C C H
C C C C H C H C

C C C C
                 

 

       2 2 2 2

11 1 1 1 12 2 1 2,          ,  C p p I b C p p I b        

2 2

21 0 1 1 1 22 0 2 1 2

1 2

1 2 1 2
( ) ( ),  ( ) ( )

2 2

p p
C I b I b C I b I b

b b

 
   

     

   
      

    
            

 

 

 ,          , 

   ,      V. NUMERICAL RESULTS 

In order to illustrate the preceding results graphically, we have chosen the material aluminium for numerical evaluation. 

As in [17] the material constants are taken as 
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The first four figures represent the wave propagation of temperature, radial displacement, radial stress and hoop stress along the 

radial direction where we have considered the numerical values of the relaxation time  and coupling parameter  as 0.64 and 

0.02 respectively. 

Figure 1 predicts the wave propagation of temperature along the radial direction for different values of time . It is noticed that 

the temperature at   assume the maximum value of 0.2181, 0.3863, 0.519, 0.6268, 0.7168 and 0.7926 at  = 0.2, 0.4, 0.6, 

0.8, 1.0 and 1.2 respectively. The maximum temperature occurs for  = 1.2 at . The figure shows that at time   = 0.2, 

0.4, 0.6 the thermal wave propagates through the radius of the disk and it is reflected from the outer boundary of the disk at 

times  = 0.8, 1.0 and 1.2 respectively.  

Figure 2 represents the radial displacement  when  increases. At the stipulated values of time    as mentioned in Figure1, it 

is seen that the maximum displacement for   = 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 are 0.005625 at   = 1.09, 0.02011 at  = 1.21, 

0.04101 at   = 1.3, 0.06651 at   = 1.39, 0.09524 at   = 1.49 and 0.1608 at   = 1.98 respectively. It is also noticed that the 

curves related to times  = 0.2, 0.4, 0.6 and 0.8 show the propagation of displacement waves whereas those related to  = 1.0 

and 1.2 show the reflection of same waves from the outer boundary of the disk. 

The natures of the radial stress and hoop stress have been presented in Figure 3 and Figure 4 respectively. For both the figures it 

is noticed that the reflection of waves change from contraction to tensile at the outer boundary of the disk since the outer 

boundary is stress free. 

Figure 3 and Figure 4 represent the radial and hoop stress distribution along the radial direction for different values of time. As 

time increases the magnitude of the stress at the wave front also increases whereas the gradient decreases. 

Figure 5 – Figure 8 gives the time variation of temperature, displacement, radial stress and hoop stress at the middle of the disk 

for different values of relaxation time with coupling coefficient taken as 0.02. 

From Figure5 it is observed that as relaxation time increases from 0.64 to 1.5625 the peak value of temperature also increases in 

the range , thereafter the temperature decreases to the minimum 0.278 at  = 2.68 for  = 0.64. The curve for 

temperature for   = 1.5625 predicts the minimum value of 0.2509 at   = 4.31. 

Graphs of similar nature as in Figure5 have been exhibited by the displacement as presented in Figure6. 

From Figure7 it is seen that for the relaxation time  = 0.64, the minimum values are -0.3211, 0.06008, -0.209 at   = 1.05, 

1.95 and 4.03 respectively and maximum values of 0.06118, 0.1075, 0.5739 are attained at   = 0.12, 1.66 and 2.68. For   = 

1.5625, the minimum values are -0.2631, 0.03827 and -0.2475 at  = 1.31, 2.28 and 4.77 respectively whereas the maximum 

values are 0.006349, 0.07122, 0.5397 at  = 0.36, 2.01 and 3.18. 

Hoop stress as presented in Figure8 shows the graphs of similar nature as in Figure 7. 

In order to compare our results for temperature, displacement and stresses as presented by graphs in Figure 5 – Figure 8 with the 

corresponding field variables for the classical case, we have presented curves by dashed lines in each of the figure. 

We now consider the case of the solid disk in which we have deduced the equations for displacement, temperature, radial stress 

and hoop stress in equations (44) – (47).  

In the present paper we would present the graph of the radial stress versus variation of radial distance  for some stipulated time 

. In this case the coupling coefficient and the relaxation time are assumed to be 0.02 and 0.64 respectively. It is noticed from 

Figure 9 that the radial stress in each case first increases nearly from zero to a maximum value and then decreases to zero as  

increases. The peak values of  are respectively 0.466 at  = 1.24 for  = 0.8, 0.3497 at  = 1.43 for  = 0.6, 0.2374 at  = 

1.62 for  = 0.4, 0.1229 at  = 1.82 for  = 0.2. 

Our graphs of temperature, displacement, radial stress and hoop stress in figures (1) to (8) are in complete agreement in nature 

with the corresponding figures (1) to (8) of Bagri and Eslami [17] who obtained the solution of the problem through finite 

element method. 
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Figure1. The temperature distribution along the radius of the disk 
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Figure2. The displacement distribution along the radius of the disk 
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Figure3. The radial stress distribution along the radius of the disk 
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Figure 4. The hoop stress distribution along the radius of the disk 
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Figure 5. The temperature variation at middle of disk for different values of relaxation time 
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Figure 6. The displacement variation at middle of disk for different values of relaxation time 
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Figure 7. The radial stress variation at middle of disk for different values of relaxation time 
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Figure 8. The hoop stress variation at middle of disk for different values of relaxation time 
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Figure 9. The radial stress distribution along the radius of the solid disk 

 

 

 

 VI. CONCLUSIONS  

In this paper, we consider generalized theory of thermoelasticity with one relaxation time parameter (Lord Shulman model) to 

investigate the thermomechanical response of an annular disk as well as solid disk. In order to invert the field variables 

( , ),  ( , ),  ( , ),  ( , ) rru r p T r p r p r p  as in equations (35) to (38) and (44) to (47) from Laplace transform domain to 

space-time domain, we consider Zakian‟s algorithm [21] technique. The distributions of temperature, displacement, radial and 

hoop stresses are plotted along the radial direction for different values of time. Also the effects of relaxation time on the field 

variables are exhibited. The wave front for temperature is detected from Fig.1 and the elastic wave fronts are detected from 

Fig.3 and Fig.4. Also the effects of relaxation time on the field variables are exhibited. Finally, the radial stress along the radial 

direction for different values of time for solid disk is presented graphically. 
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