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Abstract —In[1]we have built aHQFT from the universal graduation of a spherical category. In the present 

paper, we show that every graduation (G, p) of a spherical category C defines a Turaev-Viro HQFT. 

Furthermore we show that the Turaev-Viro TQFT will be split into blocks coming from this HQFT. We show 

that this decomposition is maximal for the universal graduation of the category, which means that for every 

graduation (G, p) we define a HQFT which will be split into blocks coming from the HQFT obtained from the 

universal graduation. 
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I. INTRODUCTION 

The Turaev-Viro invariant[2]is a quantum invariant of 3-manifold with boundary. In the original construction, 

Turaev and Viro used the quantum group 𝑼𝒒 𝖘𝖑𝟐  to build this invariant. In [3]and[4]the authors generalize this 

construction to spherical categories with invertible dimension. A spherical category is a semisimple sovereign 

category over a commutative ring k such that the left and right traces coincide. The dimension of a spherical 

category is the sum of squares of dimensions of simple objects. The Turaev-Viro invariant of a closed 3-

manifold M is a state-sum indexed by the colorings of a triangulation of M. The colorings of a triangulation T 

are maps from the set of oriented 1-simplices to the set of scalar objects (up to isomorphism) of a spherical 

category C. The set of colorings of a triangulation T is denoted Col(T). The Turaev-Viro invariant is:  

𝑇𝑉𝐶 M = Δ𝐶
−𝑛0(𝑇)  𝑤𝑐𝑊𝑐

𝑐∈𝐶𝑜𝑙 (𝑇)

∈ 𝒌, 

where Δ𝐶 is the dimension of the category, 𝑛0(𝑇) is the number of 0-simplices of T, 𝑤𝑐 is a scalar obtained 

from the coloring of the 1-simplices and the trace of the category and 𝑊𝑐  is a scalar obtained from the 6j-

symbols of the category. 

 

The Turaev-Viro invariant extends to a Topological Quantum Field Theory (TQFT) [5]called Turaev-Viro 

TQFT. In dimension 2+1, a TQFT assigns to every closed surface a finite dimensional vector space and to every 

cobordism a linear map. In [1], we show that the Turaev-Viro TQFT can decomposed as a sum of HQFT [6]. A 

Homotopy Quantum Field Theory (HQFT)[6] is a TQFT for surfaces and cobordims endowed with homotopy 

classes of continuous map to target spaceX.To obtain this decomposition, we use the universal graduation 

 Γ𝐶 , |? | of the spherical categoryCin order to build a homotopy invariant and then obtain a HQFT. A 

graduation of a semisimple tensor category is a pair (G, p) whereG is a group and p is a map from G to the set 

of isomorphism classes of scalar objects such that p(Z)=p(X)p(Y) if Z is a scalar subobject of 𝑋⊗ 𝑌. Using the 

group 𝚪𝑪we define ahomotopy invariant  𝐻𝑇𝑉𝐶  calledthe homotopyTuraev-Viro invariant. The Turaev-Viro 

invariant will be a sum of this invariant. More precisely, we observe that for every coloring c of a triangulation 

T of a closed 3-manifold M leads to ahomotopyclass𝑥𝑐 ∈ [𝑀,𝐵Γ], where 𝐁𝚪𝑪is the classifying space of the 

group 𝚪𝑪and[M,𝐁𝚪𝑪] is the set of homotopy classes of continuous map from M to 𝐁𝚪𝑪. These remarks lead to 

the following homotopy invariant of closed 3-manifolds:  

𝐻𝑇𝑉𝐶
(Γ𝐶 ,|?|) 𝑀, 𝑥 = Δ𝐶

−𝑛0(𝑇)
 𝑤𝑐𝑊𝑐

𝑐∈𝐶𝑜𝑙  𝑇 
𝑥𝑐=𝑥

 

with𝑥 ∈ [𝑀,𝐁𝚪𝑪].   In [1], we show that the homotopyTuraev-Viro extends to an HQFT with target space 

𝐁𝚪𝑪 denoted ℋ𝐶
(Γ𝐶 ,|?|)

 and we obtain the following decomposition of the Turaev-Viro TQFT𝒱𝐶: 

𝒱𝐶 Σ =  ℋ𝐶
(Γ𝐶 ,|?|) Σ, 𝑥 

𝑥∈ Σ,𝐵Γ 

 

for every closed and oriented surfaceΣ. 
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The motivation for this paper is to study other decomposition of the Turaev-Viro TQFT and compare them. 

To fulfill this objective, for every graduation (G, p) of Cwe build ahomotopyTuraev-Viro invariant and we 

express the Turaev-Viro invariant with this invariant: 

Theorem5.3 

Let Cbe a spherical category with an invertible dimension, Mbe 3-manifold, Σ be the boundary of Mand T0 

be a triangulation of𝛴. For every coloring 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 and for every homotopyclass𝑥 ∈  𝑀,𝐵𝐺 𝛴,𝑥0
, where 

𝑥𝑐0
∈ [𝑀,𝐵𝐺] is obtained from𝑐0, the vector: 

𝐻𝑇𝑉𝐶
 𝐺,𝑝  𝑀, 𝑐0 , 𝑥 = 𝛥

𝐶

−𝑛0 𝑇 +
𝑛0 𝑇0 

2  𝑤𝑐𝑊𝑐

𝑐∈𝐶𝑜𝑙𝑐0,𝑥 (𝑇)

∈ 𝑉𝐶 𝛴,𝑇0 , 𝑐0  

is an invariant of the triple 𝑀, 𝑐0 ,𝑥 . We have the following equality: 

𝑇𝑉𝐶 𝑀, 𝑐0 =  𝐻𝑇𝑉𝐶
 𝐺,𝑝  𝑀, 𝑐0 , 𝑐 

𝑥∈ 𝑀,𝐵𝐺 𝛴 ,𝑥𝑐0

 

Using the universal property of the universal graduation, we can compare the decompositions of the Turaev-

Viro invariant obtained from a graduation (G,p)and from the universal graduation. The universal property of the 

universal graduation induces a map 𝐹 ∶ [𝑀,𝑩𝚪𝑪] → [𝑀,𝑩𝑮], using this map we show that for every graduation 

(G,p) the homotopy Turaev-Viro invariant 𝐻𝑇𝑉𝐶
 𝐺,𝑝 

comes from the homotopy Turaev-Viro invariant 𝐻𝑇𝑉𝐶
 Γ,|?| 

: 

Corollary6.3 

Let Cbe a spherical category with an invertible dimension, Mbe a 3-manifold, Σ be the boundary of Mand T0 

be a triangulation of Σ. For every graduation (G,p) ofC, one gets: 

𝑇𝑉𝐶 𝑀, 𝑐0 =  𝐻𝑇𝑉𝐶
 𝐺,𝑝  𝑀, 𝑐0 , 𝑐 

𝑥∈ 𝑀,𝐵𝐺 𝛴 ,𝑥𝑐0

∈ 𝑉𝐶 𝛴,𝑇0 , 𝑐0 , 

with 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 , and  

𝐻𝑇𝑉𝐶
 𝐺 ,𝑝  𝑀, 𝑐0 ,𝑥 =   𝐻𝑇𝑉𝐶

 𝛤𝐶 ,|?|  𝑀, 𝑐0 ,𝑦 

𝑦∈𝐹−1 𝑥 

, 

whereF is the map induced by the universal graduation  𝛤𝐶 , |? | . 

For every graduation (G,p)of C we prove that the homotopy invariant 𝐻𝑇𝑉𝐶
 𝐺,𝑝 

 extends to an HQFT 

ℋ𝐶

 𝐺,𝑝 
with target space BGsuch: 

𝒱𝐶 Σ =  ℋ𝐶

 𝐺,𝑝  Σ, x 

𝑥∈[Σ,𝐵𝐺]

, 

for every closed and oriented surface Σ. Using Theorem 5.3andCorollary6.3, we show that the 

decomposition of the Turaev-Viro TQFT is given by the universal graduation is maximal: 

Theorem 8.1 

Let Cbe a spherical category, (G,p) be a graduation of C. The Turaev-Viro HQFT obtained from the 

graduation (G,p) is decomposed in the following way: 

ℋ𝐶

 𝐺,𝑝  𝑀,𝑥 =   ℋ𝐶

 𝛤𝐶 ,|?|  𝑀,𝑦 

𝑦∈𝐹−1 𝑥 

, 

for every closed surface Σ, for every 𝑥 ∈  𝑀,𝑩𝑮  and with 𝐹 ∶ [𝑀,𝑩𝜞𝑪] → [𝑀,𝑩𝑮] the map obtained from 

the universal graduation (Lemma 6.1). 
The rest of the paper is organized as follows. In Section III, we review several facts aboutmonoidal categories 

and we define the universal graduation of semisimple tensor categories. In Section IV, we recall the construction 

of the Turaev-Viro invariant. In Section V, we build ahomotopy Turaev-Viro invariant for every graduation 

(G,p) of  a spherical category C. Furthermore we show that the Turaev-Viro is obtained from the 

homotopyTuraev-Viro invariant 𝐻𝑇𝑉𝐶
 𝐺,𝑝 

 (Theorem 4.3). In Section VI, we compare the different splitting of 

the Turaev-Viro invariant. We show that The Turaev-Viro invariant and the invariant𝐻𝑇𝑉𝐶
 𝐺,𝑝 

 are obtained 

from the homotopy Turaev-Viro invariant 𝐻𝑇𝑉𝐶
 Γ𝐶 ,|?| 

 (Corollary 6.3). In Section VII, we use the homotopy 

invariant to build an HQFT. The target of this HQFT will be the classifying space of the graduation. In Section 

VIII, we prove Theorem 7.1, it follows that the Turaev-Viro TQFT and the Turaev-Viro HQFT obtained from 

any graduation of Care decomposed into blocks which come from the Turaev-Viro HQFT obtained from the 

universal graduation. 

 

II. NOTATIONS AND CONVENTIONS 
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Throughout this paper, kwill be a commutative, algebraically closed and characteristic zero field. Unless 

otherwise specified, categories are assumed to be small and monoidal categories are assumed to be strict and 

spherical categories are assumed to be strict. 

Throughout this paper, we use the following notation. For an oriented manifold M, we denote by M thesame 

manifold with the opposite orientation. 

III. GRADUATIONS OF TENSOR CATEGORIES 

In the present section, we review a few general facts about categories with structure, which we use 

intensively throughout this text. 

Let Cbe a monoidal category. A dualityof Cis a data (X,Y,eh), where X and Y are objects of C and  

𝑒 ∶  𝑋 ⊗𝑌 ↪ 𝐼 (evaluation) and   ∶  𝐼 ↪ 𝑌⊗ 𝑋(coevaluation) are morphisms of C, satisfying: 
 𝑒 ⊗ 𝑖𝑑𝑋  𝑖𝑑𝑋 ⊗ = 𝑖𝑑𝑋  and  𝑖𝑑𝑌 ⊗𝑒   ⊗ 𝑖𝑑𝑌 = 𝑖𝑑𝑌  

If (X,Y,eh)is a duality, we say that (Y,eh) is a right dual of X, and (X,eh) is a left dual of Y. If a right or left 

dual of an object exists, it is unique up to unique isomorphism. 

A right autonomous (resp. left autonomous, resp. autonomous) category is a monoidal category for which 

every object admits a right dual (resp. a left dual, resp. both a left and a right dual). 

If C has right duals, we may pick a right dual (𝑋∨ ,eX,hX) for each object X. This defines a monoidal 

functor?∨∨ ∶ 𝑪 → 𝑪defined by 𝑋 ↦ 𝑋∨∨and 𝑓 ↦ 𝑓∨∨, called the double right dual functor. 

 

A. Sovereign categories 
A sovereign structure on a right autonomous category Cconsists in the choice of a right dual for each object 

of Ctogether with a monoidal isomorphism 𝜙 ∶ 1𝐶 →?∨∨, where 1𝐶  is the identity functor of C. Two sovereign 

structures are equivalent if the corresponding monoidal isomorphism coincides via the canonical identification 

of the double dual functor. 

A sovereign category is a right autonomous category endowed with an equivalence class of sovereign 

structures. 

Let C be a sovereign category, with chosen right duals (𝑋∨ ,eX,hX) and sovereign isomorphism𝜙𝑋 : 𝑋 ↦ 𝑋∨∨. 

For each object X of C, we set : 

𝜖𝑋 = 𝑒X∨ 𝑖𝑑X∨⨂𝜙𝑋 and𝜂𝑋 =  𝜙𝑋
−1⨂𝑖𝑑𝑋∨ 𝑋∨ 

Then (𝑋∨,εX,ηX) is a left dual of X. Therefore Cis autonomous. Moreover the right left functor ?∨  defined by 

this choice of left duals coincides with ?∨ as a monoidal functor. From now on, for each sovereigncategory Cwe 

will make this choice of duals. 

The sovereign categories are an appropriate categorical setting for a good notion of trace. Let Cbe a sovereign 

category and X be an object ofC. For each endomorphism𝑓 ∈ 𝐻𝑜𝑚𝐶 𝑋,𝑋 , we have : 

 𝑡𝑟𝑙 𝑓 = 𝜖𝑋 𝑖𝑑𝑋^⨂𝑓 𝑋 ∈ 𝐻𝑜𝑚𝐶 𝐼, 𝐼 = 𝒌is the left trace of f 

 𝑡𝑟𝑟 𝑓 = 𝑒𝑋 𝑓⨂𝑖𝑑𝑋^ 𝜂𝑋 ∈ 𝐻𝑜𝑚𝐶 𝐼, 𝐼 = 𝒌is the right trace of f.  
We denote by dimr(X)=trr(idX) (resp. diml(X)=trl(idX)) the right dimension (resp.left dimension) of X. 

 

B. Tensor categories 

By a k-linear category, we shall mean a category for which the set of morphisms are k-spaces, the 

composition is k-bilinear there exists a null object and for every objects X, Y the direct sum 𝑋⊕𝑌 exists in C. 

A k-linear category is abelian if it admits finite direct sums, every morphism has a kernel and a cokernel, 

every monomorphism is the kernel of its cokernel, every epimorphism is the cokernel of its kernel, and every 

morphism is expressible as the composite of an epimorphism followed by a monomorphism. 

An object X of an abelian k-category C is scalar if 𝐻𝑜𝑚𝐶 𝑋,𝑋 ≅ 𝒌. 

A tensor category over k is an autonomous category endowed with a structure of k-linear abelian category 

such that the tensor product is k-bilinear and the unit object is a scalar object. 

A k-linear category is semisimple if : 

 every object of C is a finite direct sum of scalar objects, 

 for every scalar objects X and Y, we have : 𝑋 ≅ 𝑌 or 𝐻𝑜𝑚𝐶 𝑋,𝑌 =  𝟎. 

C. Graduations 

Let Cbe semisimple tensor k-category and G be a group. A G-graduation of Cis a map ∶ 𝐺 → Λ𝐶 : 

 p(Z)=p(X)p(Y), for every scalar objects X,Y,Z such that Z is a subobject of𝑋 ⨂𝑌. 

A graduation of C is a pair (G,p), where G is group and p is a G-graduation of C.By induction, the 

multiplicity property of a graduation can be extended to n-terms.In [1], we prove that every semisimple tensor 
k-category admits a universal graduation: 

Proposition 3.1 
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Let Cbe a semisimple tensor k-category. There exists a graduation  ΓC , |? |  of Csatisfying the following 

universal property: for every graduation (G,p) of C, there exists unique group morphism 𝑓 ∶ Γ𝐶 → 𝐺 such that 

the diagram: 

 
commutes. 

 

Let  Cbe a semisimple tensor k-category, the group ΓCwhich defines the universal graduation  ΓC , |? |  is 

called the graduator of C. The graduator can be used to describe the sovereign (resp. spherical) structures of a 

sovereign (resp. spherical) category [1]. 

Examples :The graduator of the category of representations of finite dimension of𝑈𝑞(𝖘𝖑𝒏) is ℤ𝑛 . 

D. Spherical categories 

A spherical category is a sovereign, finitely semisimple tensor k-category satisfying: 

 for every object X of C and for every morphism 𝑓 ∶ 𝑋 → 𝑋 trr(f)=trl(f). 
A spherical structure on Cis a sovereign structure on Csuch that Cis a spherical category. 

From now on, for every spherical category the left and right trace (resp. dimension) will be denoted by tr 

(resp. dim).The dimension of a spherical category is the scalar: Δ𝐶 =  dim 𝑋 2
𝑋∈Λ𝐶

∈ 𝒌. From now on, unless 

otherwise specified, spherical categories are assumed to have an invertible dimension. 

IV. THE TURAEV-VIRO INVARIANT 

In this Section, we recall the construction of the Turaev-Viro invariant. For further reading on the Turaev-
Viro invariant, we refer the reader to [2] (the original construction), [3] (the construction using a spherical 

category), [4]and [5]. Throughout this Section, Cwill be a spherical category. 

An orientation of a n-simplex F is a map𝑜 ∶ 𝑁𝑢𝑚 𝐹 → {±1}, where Num(F) is the set of numberings of F, 

invariant under the action of the alternated group𝔘𝑁+1 ⊂ 𝔖𝑁+1. 

LetTbe an oriented simplicial complex, we denote the set of oriented p-simplices by 𝑇𝑜
𝑝
. A coloring of Tis a 

map 𝑐 ∶ 𝑇0
1 → Λ𝐶satisfying: 

 c(x1x2) = c x2x1  ∨, for every oriented 1-simplex (x1x2), 

 the unit object Iis a subobject of 𝑐 𝑥1𝑥2 ⨂𝑐(𝑥2𝑥3)⨂𝑐(𝑥3𝑥1) for every oriented 2-simplex (x1x2x3). 
We denote by Col(T)the set of colorings of T. 

Let f be an oriented 2-simplex, c be a coloring of Tand ν=(x1x2x3) be a numbering of f compatible with the 

orientation of f. Set : 

𝑉𝐶 𝑓, 𝑐 𝜈 = 𝐻𝑜𝑚𝐶 𝑰, 𝑐 𝑥1𝑥2 ⊗ 𝑐 𝑥2𝑥3 ⊗ 𝑐 𝑥3𝑥1   

The vector space 𝑉𝐶 𝑓, 𝑐 𝜈  does not depend on the choice of the numbering compatible with the orientation 

(e.g. [3], [4], [5]). From now on, the vector space𝑉𝐶 𝑓, 𝑐 𝜈 , with ν=(x1x2x3) will be denoted by𝑉𝐶 𝑥1𝑥2𝑥3, 𝑐 . 

If there is no ambiguity on the choice of the coloring c, then 𝑉𝐶 𝑥1𝑥2𝑥3 ,𝑐 will be denoted by 𝑉𝐶 𝑥1𝑥2𝑥3 . 

Let us recall some properties of the vector space defined above. For every scalar objects X, Y andZ, we set: 

𝜔𝐶 :  𝐻𝑜𝑚𝑐 𝐼,𝑋⊗ 𝑌 ⊗𝑍 ⊗𝒌 𝐻𝑜𝑚𝑐 𝐼,𝑍∧ ⊗𝑌∧ ⊗𝑋∧ → 𝒌∗ 

𝑓 ⊗𝑔 ↦ 𝑡𝑟(𝑓 ∨𝑔) 

For every spherical category C, the bilinear form𝜔𝐶  is non degenerate (e.g. [3], [4], [5]). Let f be an oriented 

2-simplex, we denote by 𝒇 the 2-simplex f endowed with the opposite orientation. Let c be a coloring off, the 

bilinear form 𝜔𝐶  induces: 𝑉𝐶 𝒇, 𝑐 ∗ ≅ 𝑉 𝒇 , 𝑐 . 
In the construction of the Turaev-Viro invariant, we assign to every oriented 3-simplex of a colored 3-

manifold M, a vector which lies in the vector space defined by the faces of the 3-simplex. The vector assigned to 

each 3-simplex is obtained by the 6j-symbols of the category. A contraction of these vectors along the 2-

simplices contained inside the 3-manifold M leads to a scalar if the manifold M is without boundary or to a 

vector in 

 𝑉𝐶 𝑓, 𝑐 

𝑓∈𝑇𝜕𝑀
2

 

if the manifold M has a boundary 𝜕𝑀. We denote this vector (or scalar)  by Wc, for every coloring c. 

  We introduce some notations. Let Σ be an oriented closed surface endowed with a triangulation T0. For 

every coloring C0  ofT0, we set : 

𝑉𝐶 Σ,𝑇0 , 𝑐0 =  𝑉𝐶 𝑓, 𝑐0 

𝑓∈𝑇𝜕𝑀
2
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𝑉𝐶 Σ,𝑇0 =  𝑉𝐶(Σ,𝑇0 , 𝑐)

𝑐∈𝐶𝑜𝑙  𝑇0 

 

 Let Mbe 3-manifold with boundary Σ and T be a triangulation of M such that its restriction to Σ is T0. For 

every coloring 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 , we denote by 𝐶𝑜𝑙𝑐0
 𝑇  the set of colorings of T such that the restriction to T0 is c0. 

With this notation, for every coloring 𝑐 ∈ 𝐶𝑜𝑙𝑐0
 𝑇 , we have: 𝑊𝑐 ∈ 𝑉𝐶 Σ,𝑇0 , 𝑐0 . Furthermore we choose a 

square rootΔ𝐶
1/2

of Δ𝐶. 

For every scalar object X of C, we set dim 𝑋 1/2 a square root of dim(X). The equalities dim 𝑋 1/2 =
dim 𝑋∨ 1/2and dim(X) = dim(𝑋∨) ensure for every coloring c the independence for dim(c(e)) and dim(c(e))1/2 

of the choice of the orientation of e. 

Theorem 4.1[Turaev-Viroinvariant [3], [4], [5], [2]] 

Let Cbe a spherical category with an invertible dimension, M be a compact oriented 3-manifold and ∂M be 

the boundary of M endowed with a triangulation T0. For every coloring 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 , we set : 

𝑇𝑉𝐶 𝑀, 𝑐0 = 𝛥
𝐶

−𝑛0 𝑇 +𝑛0 𝑇0 
/2

  𝑑𝑖𝑚 𝑐0 𝑒  
1/2

𝑒∈𝑇0
1

 𝑑𝑖𝑚 𝑐 𝑒  𝑊𝑐 ∈ 𝑉 𝜕𝑀, 𝑐0 ,𝑇0 

𝑒∈𝑇1 \𝑇0
1𝑐∈𝐶𝑜𝑙𝑐0

 𝑇 

 

where n0(T) (resp. n0(T0)) is the number of 0-simplices of T (resp. T0) and T1\T1
0 is the set of 1-simplices 

ofM\∂M. 

For every coloring 𝑐 ∈ 𝐶𝑜𝑙𝑐0
 𝑇0 , the vector 𝑇𝑉𝐶 𝑀, 𝑐0 is independent on the choice of the triangulation of 

M which extends T0. The Turaev-Viro invariant is the vector: 

𝑇𝑉𝐶 𝑀 =  𝑇𝑉𝑐 𝑀, 𝑐0 ∈ 𝑉𝐶 𝜕𝑀,𝑇0 

𝑐0∈𝐶𝑜𝑙  𝑇0 

=  𝑉(𝜕𝑀,𝑇0 , 𝑐0)
𝑐∈𝐶𝑜𝑙  𝑇0 

 

From now on, for every coloring 𝑐 ∈ 𝐶𝑜𝑙𝑐0
 𝑇  we denote by wc the scalar: 

 𝑑𝑖𝑚 𝑐0 𝑒  
1/2

 𝑑𝑖𝑚 𝑐 𝑒  𝑒∈𝑇1\𝑇0
1𝑒∈𝑇0

1 . 

V. THE HOMOTOPY TURAEV-VIRO INVARIANT 

In this section, we will extend the construction of the homotopy turaev-viro invariant defined in [1]. Thus we 

will obtain ahomotopyTuraev-Viro invariant for every graduation of a spherical category with an invertible 

dimension. 

1. G-colorings 

Throughout this paragraph C will be a finitely semisimple tensor k-category and G will be a group. Let T be 

a simplicial complex. A  G-coloringc of t is a map : 

𝑐 ∶ 𝑇𝑂
1 → 𝐺 

𝑒 ⟼ 𝑐 𝑒  

Satisfying: 

 for every  oriented 1-simplex (x1x2) of T:  c(x1x2)=c(x2x1)
-1

 

 for every oriented 2-simplex  (x1x2x3)  ofT: c(x1x2)c(x2x3)c(x3x1)=1,  

We denote by 𝐶𝑜𝑙𝐺 𝑇  the set of G-colorings of T. 

In [1], we define an action on the set of G-colorings of T using the gauge group of T. A gauge of T with value 

in G  is a map 𝛿:𝑇0 → 𝐺 and we denote ℊ𝑇
𝐺  the gauge group of T with value in G. The action of the gauge 

group on Tis defined in the following way: 

ℊ𝑇
𝐺 × 𝐶𝑜𝑙𝐺 𝑇 → 𝐶𝑜𝑙𝐺 𝑇  

 𝛿, 𝑐 ↦ 𝑐𝛿  

Where𝑐𝛿  is the G-coloring:𝑐𝛿  𝑥, 𝑦 = 𝛿 𝑥 𝑐 𝑥𝑦 𝛿 𝑦 −1, for every oriented 1-simplex (xy). We denote by 

𝐶𝑜𝑙𝐺 𝑇 /ℊ𝑇
𝐺 the quotient set of   𝐶𝑜𝑙𝐺 𝑇  by the action of the gauge group ℊ𝑇

𝐺 . We have the following 

topological interpretation of 𝐶𝑜𝑙𝐺 𝑇 /ℊ𝑇
𝐺 : 

Proposition 5.1 

Let T be a simplicial complex, c be a semisimple tensor k-category and G be a group and 𝓖the associated 

groupoid. Themap : 
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𝐶𝑜𝑙𝐺 𝑇 → 𝐹𝑢𝑛 𝜋1 𝑇 ,𝓖  

𝑐 ↦ 𝐹𝑐  

Where Fc is the functor which sends every 0-simplex of T to the unique object of the groupoid𝓖 and sends 
every oriented 1-simplex (xy) to c(xy), induces the following isomorphism : 

𝐶𝑜𝑙𝐺 𝑇 /ℊ𝑇
𝐺  ≅ 𝐹𝑢𝑛(𝜋1(𝑇),𝐺)/(𝑖𝑠𝑜) ≅ [ 𝑇 ,𝐵𝐺] 

Where [ 𝑇 ,𝐵𝐺] is the set of homotopy classes of continuous maps from the topological space 𝑇 , to the 

classifying space BG. 

Let us recall the topological interpretation of the G-colorings, in the case of manifolds with boundary. 

Let M be a 3-manifold, Σ be the boundary of M and T0 be a triangulation of Σ. We set𝐶𝑜𝑙𝐺,𝑐0
 𝑇 the set of G-

colorings of T such that the restriction to T0 is c0. In this case we consider the gauge action which does not 

change the G-coloring on the boundary, i.ethe restriction of 𝑐𝛿 to T0 is c0. 

From now we denote by G the groupoid build from the group G. For every functor𝐹0: 𝜋1 𝑇0 → 𝑮 , 

𝐹𝑢𝑛 𝜋1 𝑇 ,𝑮 𝐹0
 is the set of functors F from 𝜋1 𝑇  to the groupoidGsuch that the diagram : 

 

commutes, with i is the inclusion functor. We denote by 𝐹𝑢𝑛 𝜋1 𝑇 ,𝐺 𝐹0
/(𝑖𝑠𝑜) the set of isomorphisms 

classes of functors such that the restriction of the natural isomorphisms to 𝜋1 𝑇   is𝑖𝑑𝐹0
. 

Proposition 5.2[1] 

Let C be a semisimple tensor k-category, T be a simplicial complex and T0 be a subcomplex of T. For 

every coloring𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 , the map: 

𝐶𝑜𝑙𝐺,𝑐0
 𝑇 → 𝐹𝑢𝑛 𝜋1 𝑇 ,𝐺 𝐹𝑐0

 

𝑐 ↦ 𝐹𝑐  

Where the functor𝐹𝑐  sends every 0-simplex of T to the unique object of the groupoid G and every oriented 

1-simplex (xy) to c(xy), induces the following isomorphism : 

𝐶𝑜𝑙𝐺,𝑐0
(𝑇)/ℊ𝑇

𝐺 ≅ 𝐹𝑢𝑛 𝜋1 𝑇 ,𝐺 𝐹𝑐0
/(𝑖𝑠𝑜) (𝟏) 

From now on, C is a spherical category and (G,p)  is a graduation on C. 

Let us introduce some notations.  Let M be a 3-manifold and T be a triangulation of M. By definition of the 

graduation,  for every coloring 𝑐 ∈ 𝐶𝑜𝑙 𝑇 , pc is a G-coloring of T. Then for every𝑥 ∈ [𝑀,𝐵𝐺], we denote by 

𝐶𝑜𝑙 𝐺 ,𝑝 ,𝑥 𝑇  the set of colorings c of T such that the equivalence class [pc] in 𝐶𝑜𝑙𝐺 𝑇 /ℊ𝑇
𝐺 corresponds to x  

(bijection (1)). We obtain a partition of the set 𝐶𝑜𝑙 𝑇 =   𝐶𝑜𝑙 𝐺,𝑝 ,𝑥 𝑇 𝑥∈ 𝑀,𝐵𝐺 . If 𝑐 ∈ 𝐶𝑜𝑙 𝑇 , we denote 

by𝑥𝑐 ∈ [𝑀,𝐵𝐺] the homotopy class associated to pc. 

LetM be a 3-manifold,Σ be the boundary of M and T0 be a triangulation ofΣ. For every homotopy class 

𝑥0 ∈ [Σ,𝐵𝐺], we denote by  𝑀,𝐵𝐺 Σ,𝑥0
the set of homotopy classes of maps from M to the classifying space BG 

such that the homotopy class of the restriction to Σ is x0. Thus for every coloring 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 and for every 

triangulation T of M such that its restriction to ΣisT0, we have: 

𝐶𝑜𝑙𝐺 ,𝑐0
(𝑇)/ℊ𝑇

𝐺 ≅ 𝐹𝑢𝑛 𝜋1 𝑇 ,𝐺 𝐹𝑐0
/(𝑖𝑠𝑜) ≅  𝑀,𝐵𝐺 Σ,𝑥𝐶0

(𝟐) 

For every coloring 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 and for every homotopyclass 𝑦 ∈  𝑀,𝐵𝐺 Σ,𝑥𝐶0
, we denote 

by𝐶𝑜𝑙 𝐺,𝑝 ,𝑐0 ,𝑦 𝑇  the set of colorings 𝑐 ∈ 𝐶𝑜𝑙 𝑇 satisfying: 
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 𝑐𝑇0
= 𝑐0 

 the equivalent class 𝑝𝑐 ∈ 𝐶𝑜𝑙𝐺,𝑐0
/ℊ𝑇

𝐺corresponds to𝑦 ∈  𝑀,𝐵𝐺 Σ,𝑥𝐶0
 by the bijections (2) 

Let us define the homotopy turaev-viro invariant obtained from the graduation (G,p). 

Let M be a 3-manifold, Σ be the boundary of m, T0be a triangulation of Σ and 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 . We can break 

up the Turaev-Viro state sum in the following way: 

𝑇𝑉𝐶 𝑀, 𝑐0 = Δ𝑐
−𝑛0 𝑇 +𝑛0(𝑇0)/2  𝑤𝑐𝑊𝑐

𝑐∈𝐶𝑜𝑙𝑐0
 𝑇 

 

= Δ𝑐
−𝑛0 𝑇 +𝑛0(𝑇0)/2   𝑤𝑐𝑊𝑐

𝑐∈𝐶𝑜𝑙 𝐺 ,𝑝 ,𝑐0,𝑥 𝑇 𝑥∈ 𝑀 ,𝐵𝐺  Σ,𝑥𝑐0 

 

We set: 𝐻𝑇𝑉𝐶
 𝐺 ,𝑝  𝑀,𝑥, 𝑐0 = Δ𝑐

−𝑛0 𝑇 +𝑛0(𝑇0)/2  𝑤𝑐𝑊𝑐𝑐∈𝐶𝑜𝑙 𝐺 ,𝑝 ,𝑐0,𝑥  𝑇 
.The vector 𝐻𝑇𝑉𝐶

 𝐺,𝑝  𝑀, 𝑥, 𝑐0 is an 

invariant for the triple (M,x,c0). The proof of the invariance is similar to the proof given in [1] (theorem 4.6). 

Theorem 5.3 

Let C be a spherical category with an invertible dimension, M be 3-manifold, 𝛴 be the boundary of M and T0 

be a triangulation of 𝛴 . For every coloring 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0  and for every homotopy class𝑥 ∈  𝑀,𝐵𝐺  𝛴,𝑥𝑐0  
, 

where 𝑥𝑐0
∈  𝑀,𝐵𝐺 is obtained from c0, the vector : 

𝐻𝑇𝑉𝐶
 𝐺 ,𝑝  𝑀,𝑥, 𝑐0 = 𝛥𝑐

−𝑛0 𝑇 +𝑛0(𝑇0)/2  𝑤𝑐𝑊𝑐

𝑐∈𝐶𝑜𝑙 𝐺 ,𝑝 ,𝑐0,𝑥  𝑇 

∈ 𝑉𝐶 𝛴,𝑇0 , 𝑐0  

is an invariant of the triple (M,x,c0). We have the following equality: 

𝑇𝑉𝐶 𝑀, 𝑐0 =  𝐻𝑇𝑉𝐶
 𝐺,𝑝  𝑀,𝑥, 𝑐0 

𝑥∈ 𝑀 ,𝐵𝐺 𝛴 ,𝑥𝑐0

 

The vector 𝐻𝑇𝑉𝐶
 𝐺 ,𝑝 

 is  the (G,p)-homotopy Turaev-Viro invariant. The homotopy invariant defined in [1] is 

the  ΓC , |? | -homotopy turaev-viro invariant. 

VI. MAXIMAL DECOMPOSITION OF THE TURAEV-VIRO INVARIANT 

Every graduation of a spherical category defines an homotopy Turaev-Viro invariant and a splitting of the 

Turaev-Viro invariant. We will compare these homotopy invariants. Throughout this Section, Cwill be a 

spherical category. 

Let (G,p)  and (H, q) be two graduations of C. A morphism of graduation f from (G,p)  to (H, q)} is group 

morphism 𝑓 ∶ 𝑮 → 𝑯 such that the diagram: 

 

commutes. Notice that in the category of graduations of C, where objects are the graduations of Cand 

morphisms are the morphisms of graduation, the universal graduation is the unique initial object (up to 

isomorphism) 

Lemma6.1 

Let Tbe a simplicial complex, Cbe a finitely semisimple tensor category, (G,p) and (H, q) be two 

graduations of Cand 𝑓 ∶ 𝑮 → 𝑯 be a morphism of graduation. The morphism of graduation f induces the 
following map: 

𝐹 ∶ 𝐶𝑜𝑙𝐺 𝑇 /ℊ𝑇
𝐺 → 𝐶𝑜𝑙𝐻(𝑇)/ℊ𝑇

𝐻(𝟑) 
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 𝑐 ↦ [𝑓 ∘ 𝑐] 

Proof: 

Let us show that the map (3)is well defined. First since 𝑓 ∶ 𝑮 → 𝑯is group morphism then for every G-

coloring c, fc is a H-coloring. Let us show that 𝐹  does not depend on the choice of the representative. Let 

𝑐 ∈ 𝐶𝑜𝑙𝐺 𝑇  and 𝛿 ∈ ℊ𝑇
𝐺 ,  for every oriented 1-simplex (xy), one gets: 

𝑓 𝑐𝛿  𝑥𝑦 = 𝑓(𝛿 𝑥 𝑐 𝑥𝑦 𝛿 𝑦 −1) 

= 𝑓𝛿 𝑥 𝑓𝑐 𝑥𝑦  𝑓𝛿 𝑦  
−1

 

=  𝑓𝑐 𝑓𝛿  𝑥𝑦  

Thus the map𝐹  is well defined. 

The lemma 6.1 asserts that if there is a groupmorphism between two graduation then we can relate the set of 

colorings (up to gauge actions) and since the homotopy Turaev-Viro invariants are state-sum invariants indexed 

by the set of colorings, we can relate those invariants. 

Theorem 6.2 

Let C be a spherical category with an invertible dimension, M be a 3-manifold, Σ be the boundary of M 

and T0 be a triangulation of Σ. For every graduation(G,p) and (H,q)  of Csuch that there exists a morphism 

of graduation 𝑓 ∶ (𝑮,𝑝) → (𝑯,𝑞), we have: 

𝐻𝑇𝑉𝐶
 𝐻,𝑞  𝑀,𝑥, 𝑐0 =  𝐻𝑇𝑉𝐶

 𝐺 ,𝑝  𝑀, 𝑦, 𝑐0 

𝑦∈𝐹 −1 𝑥 

 

where𝐹 ∶  𝑀,𝐵𝐺 → [𝑀,𝐵𝐻] is the map induced by f (Lemma 6.1). 

Proof 

Let us recall that for every coloring 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 and for every homotopy class 𝑥 ∈  𝑀,𝐵𝐻 Σ,𝑥0
where 

𝑥0 ∈  Σ,𝐵𝐻  is the homotopy class obtained from c0 the vector 𝐻𝑇𝑉𝐶
 𝐻 ,𝑞  𝑀,𝑥, 𝑐0 is the state sum: 

𝐻𝑇𝑉𝐶
 𝐻 ,𝑞  𝑀, 𝑥, 𝑐0 = Δ𝑐

−𝑛0 𝑇 +𝑛0(𝑇0)/2  𝑤𝑐𝑊𝑐

𝑐∈𝐶𝑜𝑙 𝐻 ,𝑞 ,𝑐0,𝑥  𝑇 

 

 

Using Lemma 6.1, we have the map: 

𝐹 ∶ 𝐶𝑜𝑙𝐺 𝑇 /ℊ𝑇
𝐺 → 𝐶𝑜𝑙𝐻(𝑇)/ℊ𝑇

𝐻 

 𝑐 ↦ [𝑓 ∘ 𝑐] 

the map 𝐹 induces a map 𝐹 ∶  𝑀 ∶ 𝐵𝐺 → [𝑀,𝐵𝐻]  (Proposition 5.1). It follows that for every 𝑐 ∈
𝐶𝑜𝑙 𝐻 ,𝑞 ,𝑥 ,𝑐0

 𝑇 , we have : 𝑐 ∈ 𝐶𝑜𝑙𝑐0
 𝑇  and 𝐹   𝑝𝑐  =  𝑓𝑝𝑐 =  𝑞𝑐 thus the homotopy class 𝑦 ∈  𝑀,𝐵𝐺  

defined by [pc] belongs to the set 𝐹−1(𝑥). We have shown that :  

𝐶𝑜𝑙 𝐻 ,𝑞 ,𝑥 ,𝑐0
 𝑇 ⊂  𝐶𝑜𝑙 𝐺 ,𝑝 ,𝑦 ,𝑐0

 𝑇 

𝑦∈𝐹−1 𝑥 

 

Let us show that for every 𝑦 ∈ 𝐹−1(𝑥) and for every 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 , we have : 𝐶𝑜𝑙 𝐺 ,𝑝 ,𝑦 ,𝑐0
 𝑇 ⊂

𝐶𝑜𝑙 𝐻 ,𝑞 ,𝑥 ,𝑐0
 𝑇 . Let 𝑐 ∈ 𝐶𝑜𝑙 𝐺,𝑝 ,𝑦 ,𝑐0

 𝑇 , it follows that𝑐 ∈ 𝐶𝑜𝑙𝑐0
 𝑇  and  𝑞𝑐 =  𝑓𝑝𝑐 = 𝐹 ( 𝑝𝑐 ) , since 

𝑦 ∈ 𝐹−1(𝑥) one gets that the homotopy classes defined from the class [qc] is X. It follows: 

𝐻𝑇𝑉𝐶
 𝐻 ,𝑞  𝑀, 𝑥, 𝑐0 = Δ𝑐

−𝑛0 𝑇 +𝑛0(𝑇0)/2  𝑤𝑐𝑊𝑐

𝑐∈𝐶𝑜𝑙 𝐻 ,𝑞 ,𝑐0,𝑥  𝑇 
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= Δ𝑐

−𝑛0 𝑇 +
𝑛0 𝑇0 

2   𝑤𝑐𝑊𝑐

𝑐∈𝐶𝑜𝑙 𝐺 ,𝑝 ,𝑐0,𝑝𝑦∈𝐹−1 𝑥 

 

=  𝐻𝑇𝑉𝐶

(𝐺,𝑝) 𝑀, 𝑦, 𝑐0 

𝑦∈𝐹−1 𝑥 

 

Notice that if we consider the trivial graduation we obtain the Turaev-Viro invariant. 

By definition of the universal graduation and using Theorem 5.2, we can conclude that the splitting given by 

𝐻𝑇𝑉𝐶
(Γ𝐶 ,|?|)

 is maximal. 

Corollary6.3 

Let Cbe a spherical category with an invertible dimension, M be a 3-manifold, Σ be the boundary of M 

and T0 be a triangulation of Σ. For every graduation (G,p)  ofC, one gets: 

𝑇𝑉𝐶 𝑀, 𝑐0 =  𝐻𝑇𝑉𝐶
 𝐺,𝑝  𝑀, 𝑥, 𝑐0 

𝑥∈ 𝑀 ,𝐵𝐺 

∈ 𝑉𝐶 𝛴,𝑇0, 𝑐0  

with 𝑐0 ∈ 𝐶𝑜𝑙 𝑇0 , and 

𝐻𝑇𝑉𝐶
 𝐺,𝑝  𝑀,𝑥, 𝑐0 =   𝐻𝑇𝑉𝐶

(𝛤𝐶 ,|?|) 𝑀,𝑦, 𝑐0 

𝑦∈𝐹−1 𝑥 

 

whereF is the map induced by the universal graduation  𝛤𝐶 , |? | . 

Example.Lens spaces L(p,q), with 0<q<p and (p,q)=1, are oriented compact 3-manifolds, which result 

from identifying on the sphere𝑆3 =   𝑥,𝑦 ∈ ℂ2|  𝑥 2 +  𝑦 2 = 1   the points which belong to the same 

orbit under the action of the cyclic group ℤ𝑝  defined by  𝑥, 𝑦 ↦  𝑤𝑥,𝑤𝑞𝑦  with𝑤 = exp(2𝑖𝜋/𝑝). 

A singular triangulation of L(p,q) is obtained by gluing together p tetrahedra (ai,bi,ci,di), i=0,...,p-1 

according to the following identification of faces (i+1 and i+q are understood modulo p): 

 𝑎𝑖𝑏𝑖 , 𝑐𝑖 =  𝑎𝑖+1𝑏𝑖+1 , 𝑐𝑖+1 (𝟒) 

 𝑎𝑖𝑏𝑖 , 𝑐𝑖 =  𝑏𝑖+𝑞 , 𝑐𝑖+𝑞 , 𝑑𝑖+𝑞 (𝟓) 

The identification of (4) can be realized by embedding the p tetrahedra in Euclidean three-space, leading 
to a prismatic solid with p+2 0-simplices a,b,ci, 2p external faces,3p external edges and one internal axis 

(a,b). Then formula (5) is interpreted as the identification of the surface triangles (a,ci,ci+1) and (b,ci+q,ci+1+q). 

A coloring of L(p,q) is determined by the colors of the edges : (ab), (cici+1) and (bci) such that the triple is 

admissible. From now on, a coloring c of L(p,q) will be denoted by (c(ab),c(cici+1),c(bci)). 

In [1], we have shown that for the category of representation of 𝑈𝑞(𝖘𝖑𝟐) with q root of unity, there are two 

homotopy classes in [𝐿 𝑝,𝑞 ,𝐵ℤ2] and we have: 

𝑇𝑉𝑈𝑞  𝒔𝒍𝟐 
 𝐿 𝑝, 𝑞  = Δ𝑈𝑞 𝒔𝒍𝟐 

−2  𝑤𝑐𝑊𝑐

𝑥= 𝑋 ,𝑍,𝑌𝑖 

 

= Δ𝑈𝑞  𝒔𝒍𝟐 
−2

 

 
 

 𝑤𝑐𝑊𝑐

𝑥= 𝑋 ,𝑍 ,𝑌𝑖 

 𝑋 =1 

+  𝑤𝑐𝑊𝑐

𝑥= 𝑋 ,𝑍 ,𝑌𝑖 

 𝑋 =−1  

 
 

 

= 𝐻𝑇𝑉0 𝐿 𝑝, 𝑞  + 𝐻𝑇𝑉1 𝐿 𝑝,𝑞   
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where 𝐻𝑇𝑉0 𝐿 𝑝, 𝑞  (resp. 𝐻𝑇𝑉1 𝐿 𝑝,𝑞  ) is the state sum Δ𝑈𝑞  𝒔𝒍𝟐 
−2  𝑤𝑐𝑊𝑐𝑥= 𝑋 ,𝑍 ,𝑌𝑖 

 𝑋 =1 

 (resp. 

Δ𝑈𝑞  𝒔𝒍𝟐 
−2  𝑤𝑐𝑊𝑐𝑥= 𝑋 ,𝑍,𝑌𝑖 

 𝑋 =−1 

) . The state sum 𝐻𝑇𝑉0  is the homotopy Turaev-Viro invariant for the trivial 

homotopy class, and 𝐻𝑇𝑉1is the homotopy Turaev-Viro obtained for the other homotopy class. 

 Let us describe the decomposition of the homotopy Turaev-Viro invariant defined for a graduation (G,p)  

of 𝑈𝑞 𝖘𝖑𝟐 . Using the universal property of the graduator, one gets a morphism of graduation: 𝑓 ∶  𝐺, 𝑝 →

(ℤ2 , |? |). This morphism induces a map: 𝐹 ∶  𝐿 𝑝, 𝑞 ,𝐵ℤ2 →  𝐿 𝑝,𝑞 ,𝐵𝐺  and Corollary 6.3 gives the 

following equality: 

 

𝐻𝑇𝑉𝑈𝑞  𝒔𝒍𝟐 
 𝐺,𝑝  𝑀, 𝑥, 𝑐0 =   𝐻𝑇𝑉𝑈𝑞  𝒔𝒍𝟐 

(Γ𝐶 ,|?|) 𝑀, 𝑦, 𝑐0 

𝑦∈𝐹−1 𝑥 

 

VII. THE TURAEV-VIROHQFT 

In the present Section, we recall the construction of the Turaev-Viro TQFT and we will show that for every 

graduation of a spherical category, we can obtain a Turaev-Viro HQFT which splits the Turaev-Viro TQFT. 

Furthermore we will show that the splitting obtained using the universal graduation is maximal. Throughout this 

Section Cwill be a spherical category. 

1. The Turaev-Viro TQFT 

a. Cobordisms category   

Let Σ and Σ′ be two oriented closed surfaces, a cobordism from Σ to Σ’ is a 3-manifold whose boundary is the 

disjoint union : Σ  Σ. Let M and M' be two cobordisms from Σ to Σ', M and M’ are equivalents if there exists 
an isomorphism between M and M’ such that it preserves the orientation and its restriction to the boundary is the 

identity. 

The cobordism category is the category where objects are closed and oriented surfaces and morphisms are 

equivalent classes of cobordisms. The cobordism category is denoted by Cob1+2. The disjoint union and the 

empty manifold ∅define a strict monoidal structure on Cob1+2. 

b. TQFT 

A TQFT is a monoidal functor from the cobordism category to the category of finite dimensional vector 

spaces. 

Let us recall the construction of the Turaev-Viro TQFT. Let Σ be an oriented closed surface and T be a 

triangulation of Σ. We associate to the pair ( Σ,T) a vector space :  

𝑉𝐶 Σ,𝑇 =   𝑉 𝑓, 𝑐 

𝑓∈𝑇0
2𝑐∈𝐶𝑜𝑙  𝑇 

 

Where 𝑉 𝑓, 𝑐 = 𝐻𝑜𝑚𝐶 𝑰, 𝑐 01 ⊗ 𝑐 12 ⊗ 𝑐 20    for every f=(012). The vector space V(f,c) does not 

depend on the choice of a numbering which respects the orientation. Since the category Cis the semi-simple, the 

vector space 𝑉𝐶 Σ,𝑇  is dual to 𝑉𝐶 Σ ,𝑇 ,the duality is induced by the trace of the category ([5], [4]and [1]). 

Let Σ (resp. Σ‘) be an oriented surface endowed with a triangulation T (resp.T’) and M be a cobordism from 

Σto  Σ‘, for every colorings 𝑐 ∈ 𝐶𝑜𝑙 𝑇 and 𝑐′ ∈ 𝐶𝑜𝑙 𝑇′  we have the following vector : 

𝑇𝑉𝐶 𝑀, 𝑐, 𝑐′ ∈ 𝑉𝐶 Σ ,𝑇, 𝑐 ⊗ 𝑉𝐶 Σ′,𝑇 ′ , 𝑐′ ≅ 𝑉𝐶 Σ,𝑇, 𝑐 ∗ ⊗𝑉𝐶 Σ′,𝑇 ′, 𝑐′  

 The vector spaces𝑉𝐶 Σ,𝑇, 𝑐  and 𝑉𝐶 Σ′,𝑇 ′ , 𝑐′  are finite dimensional vector spaces, thus we can build the 

following linearmap: 𝑇𝑉𝐶      𝑀 𝑐 ,𝑐 ′ ∶ 𝑉𝐶 Σ,𝑇, 𝑐 → 𝑉𝐶 Σ′,𝑇 ′ , 𝑐′ . It follows that the matrix 

 𝑇𝑉𝐶      𝑀 𝑐,𝑐 ′ 
𝑐∈𝐶𝑜𝑙  𝑇 ,𝑐 ′∈𝐶𝑜𝑙 (𝑇 ′)

 defines the following linear map : 

 𝑀 =   𝑇𝑉𝐶      𝑀 𝑐,𝑐 ′ 
𝑐∈𝐶𝑜𝑙  𝑇 ,𝑐 ′∈𝐶𝑜𝑙 (𝑇 ′)

∶ 𝑉𝐶 Σ,𝑇 → 𝑉𝐶 Σ′, 𝑇 ′  
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By construction of the Turaev-Viro invariant (Theorem 1.8 [5]), we have the following relation : 

 𝑀′ ∪Σ′ 𝑀 =  𝑀′ ∘ [𝑀]  and the map  Σ × 𝐼 :𝑉𝐶 Σ,𝑇 → 𝑉𝐶 Σ,𝑇 is an idempotent denoted by 𝑝Σ,𝑇 . We set 

𝒱𝐶 Σ,𝑇 = 𝑖𝑚(𝑝Σ,𝑇) and for every cobordism 𝑀 ∶ Σ → Σ′ we denote by 𝒱𝑐 𝑀 =  𝑀 𝑖𝑚 𝑝Σ,𝑇  
the restriction of 

[M] to𝑖𝑚(𝑝Σ,𝑇). It follows that the vector space 𝒱𝐶 Σ,𝑇 is independent on the choice of the triangulation T.  

From now on, we will denote by 𝒱𝐶 the Turaev-Viro TQFT. 

c. The Turaev-Viro HQFT 

i. B-manifolds 

Let B be a d-dimensional manifold, a d-dimensionalB-manifold is a pair (X,g) where X is closed d-manifold 

and 𝑔 ∶ 𝑋 → 𝐵 is a continuous map called characteristic map. 

A B-cobordism from (X,g) to (Y,h) is a pair (W,F) where W is a cobordism from X to Y and f is a relative 

homotopy class of a map from W to B such that the restriction to X (resp. Y) is g (resp. h). From now on, we 

make no notational distinction between a homotopy class and any of its representatives. 

Let  𝑊,𝐹 :  𝑀,𝑔 → (𝑁,)  and  𝑊′,𝐹′ :  𝑁′,′ → (𝑃,𝑘)  be two B-cobordisms and Ψ ∶ 𝑁 → 𝑁′   be a 

diffeomorphism such that ′Ψ =  . The composition of  B-cobordisms is defined in the following 

way: 𝑊 ′,𝐹 ′ ∘  𝑊,𝐹 = (𝑊 ′ ∪𝑊,𝐹.𝐹 ′), where F.F' is the following homotopy class : 

𝐹.𝐹 ′ 𝑥 =  
𝐹 𝑥 𝑥 ∈ 𝑊

𝐹 ′ 𝑥 𝑥′ ∈ 𝑊′
  

Since ′Ψ =  the map F.F' is well defined. 

The identity of (X,g) is the B-cobordism  𝑋 × 𝐼, 1𝑔 , with  1𝑔 the homotopy class of the map: 

𝑋 × 𝐼 → 𝐵 

 𝑥, 𝑡 ↦ 𝑔(𝑥) 

The disjoint union of B-cobordisms is defined in the same way that disjoint union of cobordisms is. 

The category of d+1 B-cobordisms isthe category whose objects are d-dimensional B-manifolds and 

morphisms are isomorphism classes of B-cobordisms. The category of d+1B-cobordism is denoted by 

Hcob(B,d+1), this is a strict monoidal category. 

ii. HQFTs 

A d+1 dimensional HQFT with target space B is a monoidal functor from the category Hcob(d+1,B) to the 

category of finite dimensional vector spaces. 

The vector space obtained from a B-manifold only depends (up to isomorphism) on the manifold and the 

homotopy class of the characteristic map ([1]). 

d. The construction of the Turaev-Viro HQFT   

In [1], we have built the Turaev-Viro HQFT using the universal graduation. To build this HQFT we use the 

homotopy Turaev-Viro invariant 𝐻𝑇𝑉𝐶
(Γ𝑐 ,|?)

. Since we have built ahomotopy Turaev-Viro invariant for every 

graduation (G,p)  of a spherical category C, we will obtain in the same way a Turaev-Viro HQFT. In this case 
the target space will be the classifying space of the group of the graduation. Throughout this Section, (G, p) will 

be a graduation C. 

From now on, for every homotopy classes [𝑥 ∈ [Σ, BG] and 𝑥′ ∈ [Σ′, BG] we denote by  𝑀,𝐵𝐺 (Σ,𝑥), Σ′,𝑥 ′ the 

set of homotopy classes of [M,BG] such that the homotopy class of the restriction to Σ (resp.  Σ‘) is x (resp. x'). 

For every oriented surface Σ endowed with a triangulation T, we have the following decomposition: 

𝑉𝐶 Σ,𝑇 =   𝑉𝐶 Σ,𝑇, 𝑐 

𝑥∈ Σ,𝐵𝐺 𝑐∈𝐶𝑜𝑙 𝐺 ,𝑝 ,𝑥  𝑇 

=  𝑉𝐶 Σ,𝑇,𝑥 

𝑥∈ Σ,𝐵𝐺 
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With 

𝑉𝐶 Σ,𝑇,𝑥 =  𝑉𝐶 Σ,𝑇, 𝑐 

𝑐∈𝐶𝑜𝑙 𝐺 ,𝑝 ,𝑥  𝑇 

 

Let M be a cobordism from ( Σ,T) to ( Σ',T'), c be a coloring of T and c’ be a coloring of T’. For every 

homotopy class 𝑦 ∈  𝑀,𝐵𝐺  Σ,𝑥𝑐 , Σ′,𝑥
𝑐′ 

, the vector 𝐻𝑇𝑉𝐶
 𝐺,𝑝  𝑀,𝑦, 𝑐, 𝑐′ ∈ 𝑉𝐶 Σ,𝑇, 𝑐 ∗ ⊗𝑉𝐶 Σ′,𝑇 ′, 𝑐′ induces 

the following linear map : 

𝐻𝑇𝑉𝐶
 𝐺,𝑝            

 𝑀,𝑦, 𝑐, 𝑐′ ∈ 𝑉𝐶 Σ,𝑇, 𝑐 → 𝑉𝐶 Σ′,𝑇 ′ , 𝑐′  

Let 𝑥 ∈ [Σ, BG]  and 𝑥′ ∈ [Σ, BG] , for every 𝑦 ∈  𝑀,𝐵𝐺  Σ,𝑥 , Σ′,𝑥 ′  the matrix 

 𝐻𝑇𝑉𝐶
((𝐺 ,𝑝)             𝑀,𝑦, 𝑐, 𝑐′  

𝑐∈𝐶𝑜𝑙𝑥  𝑇 ,𝑐 ′∈𝐶𝑜𝑙𝑥  𝑇
′ 

 defines a map from 𝑉𝐶 Σ,𝑇, 𝑥  to 𝑉𝐶 Σ′,𝑇′,𝑥′ : 

This map is denoted by𝐻𝑇𝑉𝐶
 𝐺 ,𝑝  

 𝑀,𝑦 𝑥 ,𝑥′. 

Let Σ be a closed and oriented surface, the inclusion Σ ↪ Σ × 𝐼 is a deformation retract, thus there exists a 

unique homotopy class 𝑦 ∈  Σ × 𝐼,𝐵𝐺 such that the homotopy class of the restriction to Σ ×  0  is X. More 
precisely, y is the homotopy class of the following map : 

Σ × I → BG 

 z, t ↦ 𝑥(𝑧) 

and  we have:  Σ × 𝐼  Σ,𝑥 , Σ′,𝑥 ′ =  
1𝑥 𝑖𝑓 𝑥 = 𝑥′ 
∅ 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

We denoted by 𝑝Σ,𝑇,𝑥

 𝐺 ,𝑝 
 the idempotent𝐻𝑇𝑉𝐶

 𝐺 ,𝑝  
 Σ × 𝐼, 1𝑥 𝑥 ,𝑥′. 

For every closed surface Σ endowed with a triangulation T,  we set 𝒲𝐶

 𝐺,𝑝  Σ,𝑇, 𝑥 = 𝑖𝑚  𝑝Σ,𝑇,𝑥

 𝐺,𝑝  . Let M be a 

cobordism from  Σ,𝑇 to  Σ′,𝑇 ′ , for every 𝑥 ∈ [Σ,𝐵𝐺] , 𝑥′ ∈ [Σ′, 𝐵𝐺]  and 𝑦 ∈  𝑀,𝐵𝐺  Σ,𝑥 ,(Σ′,𝑥 ′) , we denote 

𝒲𝐶

 𝐺 ,𝑝  𝑀,𝑦 𝑥 ,𝑥′ the restriction of 𝐻𝑇𝑉𝐶
 𝐺,𝑝  

 𝑀, 𝑦 𝑥,𝑥′ to the vector spaces 𝒲𝐶

 𝐺,𝑝  Σ,𝑇,𝑥  and 𝒲𝐶

 𝐺 ,𝑝  Σ′,𝑇′, 𝑥′ . 

For every closed surfaceΣ and for every triangulation T and T’of Σ, the linear map 𝒲𝐶

 𝐺,𝑝  Σ × I, 1𝑥 ∶

 𝒲𝐶

 𝐺 ,𝑝  Σ,𝑇, 𝑥 → 𝒲𝐶

 𝐺,𝑝  Σ,𝑇′,𝑥 is an isomorphism. Thus the space 𝒲𝐶

 𝐺 ,𝑝  Σ,𝑇, 𝑥 does not depend on the 

choice of the triangulation. Similarly to [1], where the HQFT is obtained from 𝐻𝑇𝑉𝐶
(Γ𝐶 ,|?|)

, we have the 

following HQFT :  

Theorem 7.1 

Let C be a spherical category and (G,p) be a graduation of C. Weset : 

ℋ𝐶
 𝐺,𝑝 

: 𝐻𝑐𝑜𝑏 𝐵𝐺, 2 + 1 → 𝑉𝑒𝑐𝑡𝒌 

 𝛴,𝑔 ↦ 𝒲𝐶
 𝐺,𝑝  𝛴,𝑔  

 𝑀,𝐹 ↦ 𝒲𝐶

 𝐺,𝑝  𝑀,𝐹  

Where the vector space 𝒲𝐶

 𝐺 ,𝑝  𝛴,𝑔  is defined for the homotopy class of g. The functor ℋ𝐶

 𝐺,𝑝 
 is a 2+1 

dimensional HQFT with target space the classifying space BG 

To obtain the decomposition of the Turaev-Viro TQFT, we will use the decomposition of the idempotent 
which defines the Turaev-Viro TQFT. 

Lemma7.2 

Let C be a spherical category, (G,p) be a graduation of C. For every surface Σ endowed with a triangulation 
T, we have : 
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𝑝Σ,𝑇 =  𝑝Σ,𝑇 ,𝑥
(𝐺,𝑝)

𝑥∈ Σ,𝐵𝐺 

 

 

Proof 

For every 3-manifold with boundary Σ, for every triangulation T of Σ and for every coloring 𝑐 ∈ 𝐶𝑜𝑙(𝑇) 

we have : 

𝑇𝑉𝐶 𝑀, 𝑐 =  𝐻𝑇𝑉𝐶
 𝐺,𝑝  𝑀, 𝑥, 𝑐 

𝑥∈ 𝑀 ,𝐵𝐺 Σ,𝑥𝑐

 

If  𝑀 = Σ × 𝐼 , then we have  Σ × 𝐼  Σ,𝑥 ,(Σ′,𝑥 ′) =  
1𝑥 𝑖𝑓 𝑥 = 𝑥′

∅ 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
 . It follows that 𝑐, 𝑐′ ∈ 𝐶𝑜𝑙𝑥

 𝐺,𝑝 
(𝑇) then 

𝑇𝑉𝐶 Σ × 𝐼, 𝑐, 𝑐′ = 𝐻𝑇𝑉𝐶
 𝐺,𝑝 

(Σ × 𝐼, 1𝑥 , 𝑐, 𝑐′)  and if 𝑐 ∈ 𝐶𝑜𝑙𝑥
 𝐺,𝑝  𝑇  and 𝑐′ ∈ 𝐶𝑜𝑙

𝑥 ′

 𝐺,𝑝  𝑇  with 𝑥 ≠ 𝑥′  then 

𝑇 𝑉 𝐶  Σ × 𝐼 , 𝑐 , 𝑐 ′ = 0. One gets 

𝑝 Σ,𝑇 =  𝑝 Σ,𝑇 ,𝑥
(𝐺 ,𝑝 )

𝑥 ∈ Σ,𝐵𝐺  

 

 

Using Lemma 7.2 and Theorem 7.1, one gets that every graduation of a spherical category gives a 

decomposition of the Turaev-Viro TQFT in terms of HQFT, whose target space is given by the classifying space 

ofthe graduation. 

Theorem 7.3 

Let Cbe a spherical category with an invertible dimension and (G,p)  be a graduation of C. The Turaev-Viro 

TQFT 𝒱𝐶  is obtained from the HQFT ℋ𝐶
 𝐺 ,𝑝  

 : 

𝒱𝐶  𝛴  =  ℋ𝐶
 𝐺 ,𝑝   𝛴 ,𝑥  𝑥 ∈ 𝛴 ,𝐵𝐺   

For every cobordism𝑀 ∶  𝛴 0 → 𝛴 1 and for every 𝑥 0 ∈ [𝛴 0,𝐵𝐺 ], 𝑥 1 ∈  𝛴 1,𝐵𝐺  , we denote by 𝒱𝐶  𝑀 𝑥 0,𝑥 1
 

the following restriction of the map 𝒱𝐶  𝑀 : 

 

We have the following splitting: 

𝒱𝐶  𝑀 𝑥 0,𝑥 1
=  ℋ𝐶  𝑀,𝑦  𝑥 0,𝑥 1

𝑦 ∈ 𝑀,𝐵𝐺   𝛴 0,𝑥 0 , 𝛴 1,𝑥 1 

 

VIII. MAXIMAL DECOMPOSITION OF THE TURAEV-VIRO TQFT 

In  this Section we will compare the different decompositions of the Turaev-Viro TQFT. The decomposition  

obtained from the universal graduation will be the  maximal decomposition. 

Let Cbe a spherical category, (G,p)  be a graduation on C, 𝑓 ∶ Γ𝐶 → 𝐺  the group morphism obtained form 

the universal property of the graduator (Proposition 3.1) and  Σ be a closed and oriented surface endowed with 

a triangulation T. For every homotopy class 𝑥 ∈ [𝑀,𝐵𝐺 ] the vector space 𝒱𝐶
 𝐺 ,𝑝   Σ  is the image of the 

idempotent 𝑝 Σ,𝑇 ,𝑥
(𝐺 ,𝑝 )

 and this idempotent is obtained from the vector 𝐻𝑇 𝑉 𝐶
 𝐺 ,𝑝  

(Σ × 𝐼 , 1𝑥 ). Using Theorem 6.2, 
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we have the following decomposition of thevector𝐻𝑇 𝑉 𝐶
 𝐺 ,𝑝  

(Σ × 𝐼 , 1𝑥 ), for every 𝑥 ∈ [Σ,𝐵𝐺 ] and for every 

𝑐 0 ∈ 𝐶𝑜 𝑙 𝑥
 𝐺 ,𝑝   𝑇 0 we have: 

𝐻𝑇 𝑉 𝐶
 𝐺 ,𝑝   Σ × 𝐼 , 𝑐 0, 1𝑥  =   𝐻𝑇 𝑉 𝐶

 Γ𝐶 ,|?|  Σ × 𝐼 , 𝑐 0,𝑦  

𝑦 ∈𝐹−1(𝑥 )

 

where𝐹 ∶  Σ × 𝐼 ,𝐵Γ𝐶  → [Σ × 𝐼  ,𝐵𝐺 ] is the map induced by f (Lemma 6.1). We have shown that 

𝐶𝑜 𝑙 𝑥
 𝐺 ,𝑝   𝑇 0 =   𝐶𝑜 𝑙 𝑦

Γ𝐶  𝑇 0 

𝑦 ∈𝐹−1(𝑥 )

 

, furthermore we have:  𝑀,𝐵Γ𝐶   Σ,𝑥  ,(Σ,𝑥 ′) =  
∅  𝑥 ≠ 𝑥 ′

1𝑥 𝑥 = 𝑥 ′
  

It follows that :  

𝐻𝑇 𝑉 𝐶
 𝐺 ,𝑝  

 Σ × 𝐼 , 𝑐 0,1𝑥
 =   𝐻𝑇 𝑉 𝐶

Γ𝐶  Σ, 𝑐 0,1𝑦
 

𝑦 ∈𝐹 Σ
−1(𝑥 )

. 

where 𝐹 Σ is the restriction of F to Σ. Let us  take the image of the induced idempotent, one gets:  

𝒱𝐶  Σ,𝑥  =  𝒱𝐶
(Γ𝐶 ,|?|) Σ,𝑦  

𝑦 ∈𝐹 Σ
−1(𝑥 )

 

We obtain in the same way a decomposition of linear map defined by the HQFT. It follows: 

Theorem8.1 

Let Cbe  a spherical category, (G,p)  be a graduation of C. The Turaev-Viro HQFT obtained from the 

graduation (G,p)  is decomposed in the following way: 

𝒱𝐶  𝛴 ,𝑥  =  𝒱𝐶
(𝛤 𝐶 ,|?|) 𝛴 ,𝑦  

𝑦 ∈𝐹 𝛴
−1(𝑥 )

 

for every closed surface Σ, and for every [𝑥 ∈ [𝛴 ,𝐵𝐺 ], the map 𝐹 ∶  𝛴 ,𝐵𝛤 𝐶  →  𝛴 ,𝐵𝐺  is the map 

obtained from the universal graduation (Lemma 6.1). 
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