Operational calculus in two variables and product of special functions

Frédéric Ayant
*Teacher in High School, France

ABSTRACT

In this paper, we establish few operational relations between the original and the image for two dimensional Laplace transform whose kernel involves the product of the general multivariable polynomials $S_{m_{1}, \ldots, m_{R}}^{l_{1}, \ldots, l_{R}}\left(x_{1}, \cdots, x_{R}\right)$, a general class of multivariable polynomials $S_{N_{1}}^{M_{r+1}, \cdots, M_{r^{\prime}}}\left(-y_{r+1}, \cdots,-y_{r^{\prime}}\right)$, A-function of one variable and the multivariable Aleph-function. The importance of the present document lies in the fact that it unifies and extends the results of a large number of authors. At the end we shall see several corollaries.

KEYWORDS : Aleph-function of several variables, A-function, general classes of multivariable polynomials, Bivariate Laplace transform, generalized Lauricella function, Aleph-function.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1 .Introduction and preliminaries.

Chaurasia and Godika [3] have studied several relations between the original and the image for two dimensional Laplace tranforms whose kernel involves the product of classes of multivariable polynomials, Fox's H-function [5] and the multivariable H -function defined by Srivastava and Panda [20,21]. The aim of this paper is evaluated several relations between the original and the image for two dimensional Laplace tranforms whose kernel involves the product of classes of multivariable polynomials, A-function [6] and the multivariable Aleph-function defined by Ayant [1].

The integral equation (Ditkin and Prudnikov [4]) is defined by

$$
\begin{equation*}
F(w, v)=w v \int_{0}^{\infty} \int_{0}^{\infty} \exp (-w x-v y) f(x, y) \mathrm{d} x \mathrm{~d} y, \operatorname{Re}(w, v)>0 \tag{1.1}
\end{equation*}
$$

The formula (1.1) represents the Laplace-Carson tranforms of a function $f(x, y)$.
$F(w, v)$ and $f(x, y)$ are said to be operationally related to each other, $F(w, v)$ is called the image and $f(x, y)$ the original.

Symbolically we can write
$F(w, v)=L^{2}\{f(x, y)\}$ or $f(x, y)=L^{-2}\{F(w, v)\}$.
The A- function , introduced by Gautam et al [6], however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integral :

$$
A(z)=A_{P, Q}^{M, N}\left(\begin{array}{l|l}
\mathrm{z} & \begin{array}{l}
\left(\mathrm{a}_{j}, A_{j}^{\prime}\right)_{N, N+1},\left(a_{j}, A_{j}^{\prime}\right)_{P} \\
\left(\mathrm{~b}_{j}, B_{j}^{\prime}\right)_{M, M+1},\left(b_{j}, B_{j}^{\prime}\right)_{Q}
\end{array} \tag{1.3}
\end{array}\right)=\frac{1}{2 \pi \omega} \int_{L} \quad \Omega_{P, Q}^{M, N}(s) z^{s} \mathrm{~d} s
$$

for all z different to 0 and

$$
\begin{equation*}
\Omega_{P, Q}^{M, N}(s)=\frac{\left.\prod_{j=1}^{M} \Gamma^{(} b_{j}-B_{j}^{\prime} s\right) \prod_{j=1}^{N} \Gamma\left(1-a_{j}+A_{j}^{\prime} s\right)}{\prod_{j=N+1}^{p} \Gamma\left(a_{j}-A_{j}^{\prime} s\right) \prod_{j=M+1}^{q} \Gamma\left(1-b_{j}+B_{j}^{\prime} s\right)} \tag{1.4}
\end{equation*}
$$

The serie representation of A-function is obtained by Gautam and Asgar [6].
$A(z)=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \Omega_{P, Q}^{M, N}\left(\eta_{G, g}\right) \frac{z^{\eta_{G, g}}(-)^{g}}{\delta_{G} g!}$
where
$\eta_{G, g}=\frac{b_{g}+G}{\beta_{g}}$
The Aleph-function of several variables is an extension the multivariable I-function defined by Sharma and Ahmad [14] , itself is a generalisation of G and H-functions of several variables defined by Srivastava et Panda [20,21]. The multiple Mellin-Barnes integral occurring in this paper will be referred to as the multivariables Aleph-function of $r-$ variables throughout our present study and will be defined and represented as follows (see Ayant [1]).

$\left.\left[\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]:\left[\left(\mathrm{c}_{j}^{(1)}\right), \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i(1)}^{(1)}, \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ;$
$\left.\left[\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right]:\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i(1)}^{(1)}, \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;$
$\left.\left[\left(c_{j}^{(r)}\right), \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\begin{array}{c}{\left[\tau_{i^{(r)}}\left(c_{j i(r)}^{(r)}, \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right]} \\ \left.\left[\left(\mathrm{d}_{j}^{(r)}\right), \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i(r)}^{(r)}, \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]\end{array}\right)=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$.
with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i(k)} \prod_{j=m_{k}+1}^{q_{i}(k)} \Gamma\left(1-d_{j i(k)}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=n_{k}+1}^{p_{i}(k)} \Gamma\left(c_{j i^{(k)}}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$

For more details, see Ayant [1]. The condition for absolute convergence of multiple Mellin-Barnes type contour can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{equation*}
A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}+\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0, \tag{1.10}
\end{equation*}
$$

with $k=1, \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

The generalized polynomials of multivariables defined by Srivastava [17, p.185, Eq.(7)]], is given in the following manner :
$S_{m_{1}, \cdots, m_{R}}^{l_{1}, \cdots, l_{R}}\left[x_{1}, \cdots, x_{R}\right]=\sum_{K_{1}=0}^{\left[m_{1} / l_{1}\right]} \cdots \sum_{K_{R}=0}^{\left[m_{R} / l_{R}\right]} \frac{\left(-m_{1}\right)_{l_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-m_{R}\right)_{l_{R} K_{R}}}{K_{R}!} A\left[m_{1}, K_{1} ; \cdots ; m_{R}, K_{R}\right] x_{1}^{K_{1}} \cdots x_{R}^{K_{R}}$
where l_{1}, \cdots, l_{R} are arbitrary positive integers and the coefficients $A\left[m_{1}, K_{1} ; \cdots ; m_{R}, K_{R}\right]$ are arbitrary constants,
real or complex.
We shall note
$a_{R}=\frac{\left(-m_{1}\right)_{l_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-m_{R}\right)_{l_{R} K_{R}}}{K_{R}!} A\left[m_{1}, K_{1} ; \cdots ; m_{R}, K_{R}\right]$
A general class of multivariable polynomials defined by Srivastava and Garg [19] are defined as follows
$S_{N_{1}}^{M_{r+1}, \cdots, M_{r^{\prime}}}\left(-y_{r+1}, \cdots,-y_{r^{\prime}}\right)=\sum_{\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}=0}^{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j} \leqslant N_{1}}\left(-N_{1}\right)_{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j}} B\left(\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}\right) \prod_{j=r+1}^{r^{\prime}} \frac{\left(-y_{j}\right)^{\alpha_{j}}}{\alpha_{j}!}$
where $M_{r+1}, \cdots, M_{r^{\prime}}$ are arbitrary positive integers and the coefficients $B\left(\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}\right)$ are arbitrary constants, real or complex, where $\alpha_{j} \geqslant 0$ for $j=r+1, \cdots, r^{\prime}$.

We shall note
$b_{r^{\prime}}=\frac{\left(-N_{1}\right)_{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j}} B\left(\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}\right)}{\prod_{j=r+1}^{r^{\prime}} \alpha_{j}!}$
If we take $R=1$ in the equation (1.11), the class of multivariable polynomials $S_{m_{1}, \ldots, m_{R}}^{\mathrm{L}_{\mathrm{L}}, \ldots, \mathrm{l}_{\mathfrak{F}_{\mathrm{F}}}}[\cdot]$ reduces to the general class of polynomials $S_{m_{1}}^{l_{1}}[$.$] defined by Srivastava [16].$

By suitably specializing the parameters, the polynomials $S_{m_{1}}^{l_{1}}[$.$] can be reduced to other classical orthogonal$ polynomials. Similarly, we obtain a special cases of a general class of multivariable polynomials by specializing the parameters.

For convenience, we shall use the following notations in this paper.
$V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)},}, \tau_{\left.i^{(r)}\right)} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right\}:\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}$,
$\left\{\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i(1)}}\right\} ; \cdots ;\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\},\left\{\tau_{i^{(r)}}\left(c_{j i^{(r)}}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\},\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\},\left\{\tau_{i^{(1)}}\left(d_{\left.j i^{1}\right)}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{(1)}}\right\} ; \cdots ;$
$\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\},\left\{\tau_{i(r)}\left(d_{j i(r)}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}(r)}\right\}$

2. Main formula.

The following theorem of this paper provides a key formula from which we get many other theorems by specializing the parameters. We have

Theorem

$w^{-\frac{1}{2}}(w v)^{\frac{\beta}{2}-\gamma^{\prime}+1} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[m_{1} / l_{1}\right]} \cdots \sum_{K_{R}=0}^{\left[m_{R} / l_{R}\right]} \sum_{\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}=0}^{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j} \leqslant N_{1}} \Omega_{P, Q}^{M, N}\left(\eta_{G, g}\right) \frac{z^{\eta_{G, g}}(-)^{g}}{\delta_{G} g!} a_{R} b_{r^{\prime}}(-)^{\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}}$
$(v w)^{h \eta_{G, s}+\sum_{i=1}^{R} K_{i} H_{i}+\sum_{j=r+1}^{r_{j}^{\prime}} h_{j} \alpha_{j}} \aleph\left(z_{1}(\sqrt{w v})^{h_{1}}, \cdots, z_{r}(\sqrt{w v})^{h_{r}}\right)=$
$L^{2}\left[\frac{(4 x y)^{\gamma^{\prime}}-\frac{\beta+1}{2}}{\sqrt{\pi y}} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[m_{1} / l_{1}\right]} \cdots \sum_{K_{R}=0}^{\left[m_{R} / l_{R}\right]} \sum_{\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}=0}^{\sum_{j=r+1}^{\prime} M_{j} \alpha_{j} \leqslant N_{1}} \Omega_{P, Q}^{M, N}\left(\eta_{G, g}\right) \frac{z^{\eta_{G}, g}(-)^{g}}{\delta_{G} g!}\right.$
$a_{R} b_{r^{\prime}}(-)^{\sum_{j=r+1}^{\prime^{\prime}} h_{j} \alpha_{j}}(4 x y)^{\frac{-h \eta_{G, g}-\sum_{i=1}^{R} K_{i} H_{i}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}}{2}}$
$\aleph_{p_{i}+1, q_{i}, \tau_{i} ; R: W}^{0, \mathrm{n}:}\left(\begin{array}{c|c}\mathrm{z}_{1}(2 \sqrt{x y})^{-h_{1}} & \left(2 \gamma^{\prime}-b \eta-h \eta_{G, g}-\sum_{i=1}^{R} K_{i} H_{i}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j} ; h_{1}, \cdots, h_{r}\right), A \\ \cdot \\ \cdot & \dot{b} \\ \mathrm{z}_{r}(2 \sqrt{x y})^{-h_{r}} & \dot{B}\end{array}\right)$

Provided
$h>0, H_{i}>0, h_{j}>0$ for $i=1, \cdots, R ; j=r+1, \cdots, r^{\prime} . \operatorname{Re}\left(\gamma^{\prime}\right)>0 ; \operatorname{Re}(w) \geqslant 0 ; h_{k}>0$ for $k=1, \cdots, r$
$\operatorname{Re}\left(\beta+h \eta_{G, g}\right)+\sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)>0$ and $\operatorname{Re}\left(\gamma^{\prime}-\beta-h \eta_{G, g}\right)-\sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{1-c_{j}^{(i)}}{\gamma_{j}^{(i)}}\right)<\frac{3}{4}$
$|\arg z|<|\arg (\Omega) z|<\frac{1}{2} \eta \pi, \xi^{*}=0, \eta>0$
where $\Omega=\prod_{j=1}^{P}\left\{A_{j}^{\prime}\right\}^{A_{j}^{\prime}} \prod_{j=1}^{Q}\left\{B_{j}^{\prime}\right\}^{-B_{j}^{\prime}} \quad$ and $\xi^{*}=\operatorname{Im}\left(\sum_{j=1}^{P} A_{j}^{\prime}-\sum_{j=1}^{Q} B_{j}^{\prime}\right)$
and $\eta=\operatorname{Re}\left(\sum_{j=1}^{N} A_{j}^{\prime}-\sum_{j=N+1}^{P} A_{j}^{\prime}+\sum_{j=1}^{M} B_{j}^{\prime}-\sum_{j=M+1}^{Q} B_{j}^{\prime}\right)$
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi, \quad k=1, \cdots, r$ where $A_{i}^{(k)}$ is given in (1.10) and the multiple series in the left-hand side of (2.1) converge absolutely.

Proof
The Laplace transform of the product of classes of multivariable polynomials, A-function and the multivariable Alephfunction is given by.
$L\left\{\begin{array}{l}t^{b^{-1}} A_{P, Q}^{M, N}\end{array}\left(\begin{array}{l|l}\mathrm{t}^{h} & \begin{array}{l}\left(\mathrm{a}_{j}, A_{j}^{\prime}\right)_{N, N+1},\left(a_{j}, A_{j}^{\prime}\right)_{P} \\ \left(\mathrm{~b}_{j}, B_{j}^{\prime}\right)_{M, M+1},\left(b_{j}, B_{j}^{\prime}\right)_{Q}\end{array}\end{array}\right) S_{m_{1}, \cdots, m_{R}}^{l_{1}, \cdots, l_{R}}\left[t_{1}^{H_{1}}, \cdots, t_{R}^{H_{R}}\right] S_{N_{1}}^{M_{r+1}, \cdots, M_{r^{\prime}}}\left(-t_{r+1}^{h_{r+1}}, \cdots,-t_{r^{\prime}}^{h_{r^{\prime}}}\right)\right.$
$\left.\aleph_{p_{i}, q_{i}+1, \pi_{i} ; R: W}^{0, \mathrm{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} t^{h_{1}} & \mathrm{~A} \\ \cdot & \cdot \\ \cdot & \cdot \\ z_{r} t^{h_{r}} & \left(1-\beta-h \eta_{G, g}-\sum_{i=1}^{R} K_{i} H_{i}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j} ; h_{1}, \cdots, h_{r}\right), B\end{array}\right)\right\}$
$w^{-\beta} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[m_{1} / l_{1}\right]} \cdots \sum_{K_{R}=0}^{\left[m_{R} / l_{R}\right]} \sum_{\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}=0}^{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j} \leqslant N_{1}} \Omega_{P, Q}^{M, N}\left(\eta_{G, g} \frac{z^{\eta_{G, g}}(-)^{g}}{\delta_{G} g!} a_{R} b_{r^{\prime}}(-)^{\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}}\right.$
$w^{-h \eta_{G, g}-\sum_{i=1}^{R} K_{i} H_{i}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}} \aleph\left(z_{1} w^{-h_{1}}, \cdots, z_{r} w^{-h_{r}}\right)$
Provided that
$h>0, H_{i}>0, h_{j}>0$ for $i=1, \cdots, R ; j=r+1, \cdots, r^{\prime} . \operatorname{Re}\left(\gamma^{\prime}\right)>0 ; \operatorname{Re}(w) \geqslant 0 ; h_{k}>0$ for $k=1, \cdots, r$
$\operatorname{Re}\left(\beta+h \eta_{G, g}\right)+\sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)>0$ and $\operatorname{Re}\left(\underline{\eta}+h \eta_{G, g}\right)+\sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{1-c_{j}^{(i)}}{\gamma_{j}^{(i)}}\right)<0$
$|\arg z|<|\arg (\Omega) z|<\frac{1}{2} \eta \pi, \xi^{*}=0, \eta>0$
where $\Omega=\prod_{j=1}^{P}\left\{A_{j}^{\prime}\right\}^{A_{j}^{\prime}} \prod_{j=1}^{Q}\left\{B_{j}^{\prime}\right\}^{-B_{j}^{\prime}} \quad$ and $\xi^{*}=\operatorname{Im}\left(\sum_{j=1}^{P} A_{j}^{\prime}-\sum_{j=1}^{Q} B_{j}^{\prime}\right)$
and $\eta=R e\left(\sum_{j=1}^{N} A_{j}^{\prime}-\sum_{j=N+1}^{P} A_{j}^{\prime}+\sum_{j=1}^{M} B_{j}^{\prime}-\sum_{j=M+1}^{Q} B_{j}^{\prime}\right)$
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi, \quad k=1, \cdots, r$ where $A_{i}^{(k)}$ is given in (1.10) and the multiple series in the left-hand side of (2.2) converge absolutely.

The result in (2.2) can be obtained by the help of (1.5), (1.11) and (1.13) respectively and a result obtained by Chaurasia [2].

Now we replace w by $(v w)^{-\frac{1}{2}}$ and multiply both sides of (2.2) by $w^{-\frac{1}{2}}(v w)^{1-\gamma^{\prime}}$ and interpreting it with the help of a known result of Ditkin [4], we obtain
$(4 x y)^{\frac{\gamma^{\prime}}{2}-\frac{1}{4}} \int_{0}^{\infty} t^{\beta-\gamma^{\prime}-\frac{1}{2}} J_{2 \gamma^{\prime}-1}\left[64\left(x y t^{2}\right)\right]^{\frac{1}{4}} A_{P, Q}^{M, N}\left(\begin{array}{l|l}\mathrm{t}^{h} & \begin{array}{c}\left(\mathrm{a}_{j}, A_{j}^{\prime}\right)_{N, N+1},\left(a_{j}, A_{j}^{\prime}\right)_{P} \\ \left(\mathrm{~b}_{j}, B_{j}^{\prime}\right)_{M, M+1},\left(b_{j}, B_{j}^{\prime}\right)_{Q}\end{array}\end{array}\right)$
$S_{m_{1}, \cdots, m_{R}}^{l_{1}, \cdots, l_{R}}\left[t_{1}^{H_{1}}, \cdots, t_{R}^{H_{R}}\right] S_{N_{1}}^{M_{r+1}, \cdots, M_{r^{\prime}}}\left(-t_{r+1}^{h_{r+1}}, \cdots,-t_{r^{\prime}}^{h_{r^{\prime}}}\right)$
$\aleph_{p_{i}, q_{i}+1, \tau_{i} ; R: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} t^{h_{1}} & \mathrm{~A} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \left(1-\sigma-\beta-h \eta_{G, g}-\sum_{i=1}^{R} K_{i} H_{i}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j} ; h_{1}, \cdots, h_{r}\right), B\end{array}\right) \mathrm{d} t=$
$w^{-\frac{1}{2}}(w v)^{\frac{\beta}{2}-\gamma^{\prime}+1} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[m_{1} / l_{1}\right]} \cdots \sum_{K_{R}=0}^{\left[m_{R} / l_{R}\right]} \sum_{\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}=0}^{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j} \leqslant N_{1}} \Omega_{P, Q}^{M, N}\left(\eta_{G, g}\right) \frac{z^{\eta_{G, g}}(-)^{g}}{\delta_{G} g!} a_{R} b_{r^{\prime}}(-)^{\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}}$
$(v w)^{\frac{h \eta_{G, g}+\sum_{i=1}^{R} K_{i} H_{i}+\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}}{2}} \aleph\left(z_{1}(\sqrt{w v})^{h_{1}}, \cdots, z_{r}(\sqrt{w v})^{h_{r}}\right)$

Now, evaluating the left-hand side of (2.3) by the process mentioned in (2.2), we obtain the desired result (2.1).

3. Corollaries.

If we take
$B\left(\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}\right)=\frac{\prod_{j=1}^{E_{1}}\left(e_{j}\right)_{\alpha_{r+1} \theta_{j}^{(r+1)}+\cdots+\alpha_{r^{\prime}} \theta_{j}^{\left(r^{\prime}\right)}} \prod_{j=1}^{U U_{j}^{r+1}}\left(u_{j}^{(r+1)}\right)_{\alpha_{r+1} \phi_{j}^{(r+1)}} \cdots \prod_{j=1}^{U_{1}^{\prime}}\left(u_{j}^{\left(r^{\prime}\right)}\right)_{\alpha_{r^{\prime}} \phi_{j}^{\left(r^{\prime}\right)}}}{\prod_{j=1}^{G_{1}}\left(g_{j}\right)_{\alpha_{r+1} \psi_{j}^{(r+1)}+\cdots+\alpha_{r^{\prime}} \psi_{j}^{\left(r^{\prime}\right)}} \prod_{j=1}^{V_{1}^{r+1}\left(v_{j}^{(r+1)}\right)_{\alpha_{r+1}} \tau_{j}^{(r+1)} \cdots \prod_{j=1}^{V_{1}^{r^{\prime}}}\left(v_{j}^{\left(r^{\prime}\right)}\right)_{\alpha_{r^{\prime}}\left(\tau_{j}^{\left(r^{\prime}\right)}\right.}}, ~}$
in (2.2), $S_{N_{1}}^{M_{r+1}, \cdots, M_{r^{\prime}}}\left(-t_{r+1}^{h_{r+1}}, \cdots,-t_{r^{\prime}}^{h_{r^{\prime}}}\right)$ reduces to the generalized Lauricella function defined by Srivastava-Daoust [18] as follows :
$S_{N_{1}}^{M_{r+1}, \cdots, M_{r^{\prime}}}\left(-t_{r+1}^{h_{r+1}}, \cdots,-t_{r^{\prime}}^{h^{\prime}}\right)=F_{G_{1}: V_{1}^{r+1}, \ldots, V_{1}^{r_{1}^{\prime}}}^{1+E_{1}: U_{1}^{r+1}, \ldots, U^{r^{\prime}}}$
$\left(\begin{array}{c|c}-\mathrm{t}^{h_{r+1}} & \left(-\mathrm{N}_{1}: M_{r+1}, \cdots, M_{r^{\prime}}\right),\left[(e) ; \psi^{(r+1)}, \cdots, \theta^{\left(r^{\prime}\right)}\right]:\left[\left(u^{(r+1)}\right) ; \phi^{(r+1)}\right] ; \cdots ;\left[\left(u^{\left(r^{\prime}\right)}\right) ; \phi^{\left(r^{\prime}\right)}\right] \\ \cdot \dot{\mathrm{h}}^{{ }^{r^{\prime}}} & {\left[(\mathrm{g}) ; \psi^{(r+1)}, \cdots, \psi^{\left(r^{\prime}\right)}\right]:\left[\left(v^{(r+1)}\right) ; \tau^{(r+1)}\right] ; \cdots ;\left[\left(v^{\left(r^{\prime}\right)}\right) ; \tau^{(r)}\right]}\end{array}\right)$

We have the following corollaries

Corollary 1

$w^{-\frac{1}{2}}(w v)^{\frac{\beta}{2}-\gamma^{\prime}+1} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[m_{1} / l_{1}\right]} \cdots \sum_{K_{R}=0}^{\left[m_{R} / l_{R}\right]} \sum_{\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}=0}^{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j} \leqslant N_{1}} \Omega_{P, Q}^{M, N}\left(\eta_{G, g}\right) \frac{z^{\eta_{G, g}}(-)^{g}}{\delta_{G} g!} a_{R} b_{r^{\prime}}(-)^{\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}}$
$(v w)^{h \eta_{G, g}+\sum_{i=1}^{R} K_{i} H_{i}+\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}} \aleph\left(z_{1}(\sqrt{w v})^{h_{1}}, \cdots, z_{r}(\sqrt{w v})^{h_{r}}\right)=$
$L^{2}\left[\frac{(4 x y)^{\gamma^{\prime}-\frac{\beta+1}{2}}}{\sqrt{\pi y}} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[m_{1} / l_{1}\right]} \cdots \sum_{K_{R}=0}^{\left[m_{R} / l_{R}\right]} \sum_{\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}=0}^{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j} \leqslant N_{1}} \Omega_{P, Q}^{M, N}\left(\eta_{G, g}\right) \frac{z^{\eta_{G, g}}(-)^{g}}{\delta_{G} g!}\right.$
$a_{R} b_{r^{\prime}}(-)^{\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}}(4 x y)^{\frac{-h \eta_{G, g}-\sum_{i=1}^{R} K_{i} H_{i}-\sum_{j=r+1}^{r_{j}^{\prime}} h_{j} \alpha_{j}}{2}}$
$\aleph_{p_{i}+1, q_{i}, \tau_{i} ; R: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1}(2 \sqrt{x y})^{-h_{1}} & \left(2 \gamma^{\prime}-b \eta-h \eta_{G, g}-\sum_{i=1}^{R} K_{i} H_{i}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j} ; h_{1}, \cdots, h_{r}\right), A \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}(2 \sqrt{x y})^{-h_{r}} & \cdot \\ \cdot \\ \mathrm{~B}\end{array}\right)$
where $b_{r^{\prime}}$ is defined by (1.14) and $B\left(\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}\right)$ is defined by (3.1), under the same conditions that (2.1).

Corollary 2

$$
\begin{gathered}
L\left\{t^{\beta-1} A_{P, Q}^{M, N}\left(\mathrm{t}^{h} \left\lvert\, \begin{array}{c}
\left(\mathrm{a}_{j}, A_{j}^{\prime}\right)_{N, N+1},\left(a_{j}, A_{j}^{\prime}\right)_{P} \\
\left(\mathrm{~b}_{j}, B_{j}^{\prime}\right)_{M, M+1},\left(b_{j}, B_{j}^{\prime}\right)_{Q}
\end{array}\right.\right) S_{m_{1}, \cdots, m_{R}}^{l_{1}, \cdots, l_{R}}\left[t_{1}^{H_{1}}, \cdots, t_{R}^{H_{R}}\right] F_{G_{1}: V_{1}^{r+1}, \cdots, V_{1}^{r^{\prime}}}^{1+E_{1}: U_{1}^{r+1}, \cdots, U_{1}^{r^{\prime}}}\right. \\
\left(\begin{array}{c}
-\mathrm{t}^{h_{r+1}} \\
\cdot \\
\cdot \dot{\mathrm{t}}^{r_{r^{\prime}}}
\end{array}\right. \\
\left(-\mathrm{N}_{1}: M_{r+1}, \cdots, M_{r^{\prime}}\right),\left[(e) ; \theta^{(r+1)}, \cdots, \theta^{\left(r^{\prime}\right)}\right]:\left[\left(u^{(r+1)}\right) ; \phi^{(r+1)}\right] ; \cdots ;\left[\left(u^{\left(r^{\prime}\right)}\right) ; \phi^{\left(r^{\prime}\right)}\right] \\
\\
{\left[(\mathrm{g}) ; \psi^{(r+1)}, \cdots, \psi^{\left(r^{\prime}\right)}\right]:\left[\left(v^{(r+1)}\right) ; \tau^{(r+1)}\right] ; \cdots ;\left[\left(v^{\left(r^{\prime}\right)}\right) ; \tau^{(r)}\right]}
\end{gathered}
$$

$$
\aleph_{p_{i}, q_{i}+1, \tau_{i} ; R: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}
\mathrm{z}_{1} t^{h_{1}} & \mathrm{~A} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \left(1-\beta-h \eta_{G, g}-\sum_{i=1}^{R} K_{i} H_{i}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j} ; h_{1}, \cdots, h_{r}\right), B \\
\mathrm{z}_{r} t^{h_{r}} & (1)
\end{array}\right\}=
$$

$$
w^{-\beta} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[m_{1} / l_{1}\right]} \cdots \sum_{K_{R}=0}^{\left[m_{R} / l_{R}\right]} \sum_{\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}=0}^{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j} \leqslant N_{1}} \Omega_{P, Q}^{M, N}\left(\eta_{G, g}\right) \frac{z^{\eta_{G, g}}(-)^{g}}{\delta_{G} g!} a_{R}(-)^{\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}}
$$

$$
\begin{equation*}
b_{r^{\prime}} w^{-h \eta_{G, g}-\sum_{i=1}^{R} K_{i} H_{i}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j} \aleph\left(z_{1} w^{-h_{1}}, \cdots, z_{r} w^{-h_{r}}\right) . .} \tag{3.4}
\end{equation*}
$$

where $b_{r^{\prime}}$ is defined by (1.14) and $B\left(\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}\right)$ is defined by (3.1), under the same conditions that (2.2).
Consider the above corollary but the multivariable polynomials $S_{m_{1}, \cdots, m_{R}}^{l_{1}, \cdots, l_{R}}[$.$] vanishes, we obtain the following result.$

Corollary 3

$L\left\{\begin{array}{l}t^{\beta-1} A_{P, Q}^{M, N}\end{array}\left(\begin{array}{l|l}\mathrm{t}^{h} & \begin{array}{l}\left(\mathrm{a}_{j}, A_{j}^{\prime}\right)_{N, N+1},\left(a_{j}, A_{j}^{\prime}\right)_{P} \\ \left(\mathrm{~b}_{j}, B_{j}^{\prime}\right)_{M, M+1},\left(b_{j}, B_{j}^{\prime}\right)_{Q}\end{array}\end{array}\right) F_{G_{1}: V_{1}^{r+1}, \ldots, V_{1}^{r^{\prime}}}^{1+E_{1}: U_{1}^{r+1}, \ldots, r^{r^{\prime}}}\right.$
$\left(\begin{array}{c|c}-\mathrm{t}^{h_{r+1}} & \left(-\mathrm{N}_{1}: M_{r+1}, \cdots, M_{r^{\prime}}\right),\left[(e) ; \theta^{(r+1)}, \cdots, \theta^{\left(r^{\prime}\right)}\right]:\left[\left(u^{(r+1)}\right) ; \phi^{(r+1)}\right] ; \cdots ;\left[\left(u^{\left(r^{\prime}\right)}\right) ; \phi^{\left(r^{\prime}\right)}\right] \\ \cdot & {\left[(\mathrm{g}) ; \psi^{(r+1)}, \cdots, \psi^{\left(r^{\prime}\right)}\right]:\left[\left(v^{(r+1)}\right) ; \tau^{(r+1)}\right] ; \cdots ;\left[\left(v^{\left(r^{\prime}\right)}\right) ; \tau^{(r)}\right]} \\ -\mathrm{t}^{h_{r^{\prime}}} & \end{array}\right)$
$\aleph_{p_{i}, q_{i}+1, \tau_{i} ; R: W}^{0, n}\left(\begin{array}{c|c}\mathrm{z}_{1} t^{h_{1}} & \mathrm{~A} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \left(1-\beta-h \eta_{G, g}-\sum_{j=r+1}^{r^{\prime}} \cdot h_{j} \alpha_{j} ; h_{1}, \cdots, h_{r}\right), B \\ \mathrm{z}_{r} t^{h_{r}} & (1-2)\end{array}\right)=$
$w^{-\beta} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}=0}^{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j} \leqslant N_{1}} \Omega_{P, Q}^{M, N}\left(\eta_{G, g}\right) \frac{z^{\eta_{G, g}}(-)^{g}}{\delta_{G} g!}(-)^{\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}}$
$b_{r^{\prime}} w^{-h \eta_{G, g}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}} \aleph\left(z_{1} w^{-h_{1}}, \cdots, z_{r} w^{-h_{r}}\right)$
under the same notations and conditions that (2.2).
Now, the multivariable Aleph-function reduces to Aleph-function of one variable defined by Sudland [22,23], we have

Corollary 4

$L\left\{\begin{array}{ll}t^{\beta-1} A_{P, Q}^{M, N}\end{array}\left(\begin{array}{l|l}\mathrm{t}^{h} & \begin{array}{l}\left(\mathrm{a}_{j}, A_{j}^{\prime}\right)_{N, N+1},\left(a_{j}, A_{j}^{\prime}\right)_{P} \\ \left(\mathrm{~b}_{j}, B_{j}^{\prime}\right)_{M, M+1},\left(b_{j}, B_{j}^{\prime}\right)_{Q}\end{array}\end{array}\right) F_{G_{1}: V_{1}^{r+1}, \ldots, V_{1}^{r^{\prime}}}^{1+E_{1}: U_{1}^{r+1}, \ldots, U_{1}^{r^{\prime}}}\right.$
$\left(\begin{array}{c|c}-\mathrm{t}^{h_{r+1}} & \left(-\mathrm{N}_{1}: M_{r+1}, \cdots, M_{r^{\prime}}\right),\left[(e) ; \theta^{(r+1)}, \cdots, \theta^{\left(r^{\prime}\right)}\right]:\left[\left(u^{(r+1)}\right) ; \phi^{(r+1)}\right] ; \cdots ;\left[\left(u^{\left(r^{\prime}\right)}\right) ; \phi^{\left(r^{\prime}\right)}\right] \\ \cdot & {\left[(\mathrm{g}) ; \psi^{(r+1)}, \cdots, \psi^{\left(r^{\prime}\right)}\right]:\left[\left(v^{(r+1)}\right) ; \tau^{(r+1)}\right] ; \cdots ;\left[\left(v^{\left(r^{\prime}\right)}\right) ; \tau^{(r)}\right]} \\ -\mathrm{t}^{h_{r^{\prime}}} & \end{array}\right)$
$\left.\aleph_{p_{i}(1), q_{i}(1)+1, \tau_{i(1)} ; R_{1}}^{m_{1}, n_{1}}\left({ }_{\mathrm{z}}^{1} t^{h_{1}} \left\lvert\, \begin{array}{c}\left(\left(\mathrm{c}_{j} ; \gamma_{j}\right)_{1, \mathfrak{n}},\left[\tau_{i}\left(c_{j i} ; \gamma_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; R}\right. \\ \left(1-\beta-h \eta_{G, g}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j} ; h_{1}\right),\left(d_{j} ; \delta_{j}\right)_{1, \mathfrak{n}},\left[\tau_{i}\left(d_{j i} ; \delta_{j i}\right)\right]_{m+1, q_{i} ; R}\end{array}\right.\right)\right\}=$
$w^{-\beta} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{\alpha_{r+1}, \cdots, \alpha_{r^{\prime}}=0}^{\sum_{j=r+1}^{r^{\prime}} M_{j} \alpha_{j} \leqslant N_{1}} \Omega_{P, Q}^{M, N}\left(\eta_{G, g}\right) \frac{z^{\eta_{G, g}}(-)^{g}}{\delta_{G} g!}(-)^{\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}} b_{r^{\prime}} w^{-h \eta_{G, g}-\sum_{j=r+1}^{r^{\prime}} h_{j} \alpha_{j}}$
$\aleph_{p_{i(1)}, q_{i(1)}, \tau_{i(1)} ; R_{1}}^{m_{1}, n_{1}}\left(\begin{array}{c|c}\mathrm{z}_{1} w^{-h_{1}} & \left(\left(\mathrm{c}_{j} ; \gamma_{j}\right)_{1, \mathfrak{n}},\left[\tau_{i}\left(c_{j i} ; \gamma_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; R}\right. \\ & \left(\mathrm{d}_{j} ; \delta_{j}\right)_{1, \mathfrak{n}},\left[\tau_{i}\left(\dot{d}_{j i} ; \delta_{j i}\right)\right]_{m+1, q_{i} ; R}\end{array}\right)$

Provided that
$h>0, h_{j}>0$ for $j=r+1, \cdots, r^{\prime} . \operatorname{Re}\left(\gamma^{\prime}\right)>0 ; \operatorname{Re}(w) \geqslant 0 ; h_{1}>0$
$\operatorname{Re}\left(\beta+h \eta_{G, g}\right)+h_{1} \min _{1 \leqslant j \leqslant m_{1}} \operatorname{Re}\left(\frac{d_{j}^{(1)}}{\delta_{j}^{(1)}}\right)>0$ and $\operatorname{Re}\left(\underline{\eta}+h \eta_{G, g}\right)+h_{1} \min _{1 \leqslant j \leqslant m_{1}} \operatorname{Re}\left(\frac{1-c_{j}^{(1)}}{\gamma_{j}^{(1)}}\right)<0$
$|\arg z|<|\arg (\Omega) z|<\frac{1}{2} \eta \pi, \xi^{*}=0, \eta>0$
where $\Omega=\prod_{j=1}^{P}\left\{A_{j}^{\prime}\right\}^{A_{j}^{\prime}} \prod_{j=1}^{Q}\left\{B_{j}^{\prime}\right\}^{-B_{j}^{\prime}} \quad$ and $\xi^{*}=\operatorname{Im}\left(\sum_{j=1}^{P} A_{j}^{\prime}-\sum_{j=1}^{Q} B_{j}^{\prime}\right)$
and $\eta=\operatorname{Re}\left(\sum_{j=1}^{N} A_{j}^{\prime}-\sum_{j=N+1}^{P} A_{j}^{\prime}+\sum_{j=1}^{M} B_{j}^{\prime}-\sum_{j=M+1}^{Q} B_{j}^{\prime}\right)$
$\left|\arg z_{1}\right|<\frac{1}{2} \pi\left(\sum_{j=1}^{n_{1}} \gamma_{j}^{(1)}-\tau_{i(1)} \sum_{j=n_{1}+1}^{p_{i(1)}} \gamma_{j i^{(1)}}^{(1)}+\sum_{j=1}^{m_{1}} \delta_{j}^{(1)}-\tau_{i^{(1)}} \sum_{j=m_{1}+1}^{q_{i(1)}} \delta_{j i^{(1)}}^{(1)}\right)>0$, and the multiple series in the left-hand side of (3.3) converge absolutely.

Remarks

By the similar methods, we obtain the same relations with the Aleph-function of two variables [13], the I-function of two variables ([8],[15]), the multivariable I-function ([9],[11]), the I-function of one variable [12], the multivariable Afunction [7], the A-function [6] and the modified multivariable H -function [10].
The formulae (2.1), (2.2) and (2.3) can be extended of any finite number of classes of multivariable polynomials and multivariable Aleph-functions.

4. Conclusion.

In this paper, we evaluate the image for two dimensional Laplace tranforms whose kernel involves the product of classes of multivariable polynomials, A-function and the multivariable Aleph-function. The formulae established in this paper is very general nature. Thus, the results established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions, the orthogonal polynomials of one and several variables can be obtained.

References

[1] F.Y. Ayant, An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT). 31 (3) (2016),142-154.
[2] V.B.L. Chaurasia, On simultaneous operational calculus involving a product of Fox's Hfunction and the multivariable H function. Jnanabha, 20 (1990), 19-24.
[3] V.B.L. Chaurasia and A. Godika, Operational calculus in two variables and special functions, Indian J. Pure Appl. Math. 31(6) (2000), 675-686.
[4] V.A. Ditkin and A.P. Prudnikov, Operational calculus in two variables and its applications, London Pergamon press (1962).
[5] C. Fox, The G and H-functions as symmetrical Fourier Kernels, Trans. Amer. Math, Soc. 98 (1961), 395-429.
[6] B.P. Gautam and A.S. Asgar. The A-function. Revista Mathematica. Tucuman (1980).
[7] B.P. Gautam and A.S. Asgar, On the multivariable A-function. Vijnana Parishas Anusandhan Patrika, 29(4) (1986), 67-81.
[8] K.S. Kumari, T.M. Vasudevan Nambisan and A.K. Rathie, A study of I-function of two variables, Le Matematiche, 69(1) (2014), 285-305.
[9] Y.N. Prasad, Multivariable I-function , Vijnana Parishad Anusandhan Patrika 29 (1986), 231-237
[10] Y.N. Prasad and A.K.Singh, Basic properties of the transform involving and H -function of r-variables as kernel, Indian Acad Math, (2) (1982), 109-115.
[11] J. Prathima, V. Nambisan and S.K. Kurumujji, A Study of I-function of Several Complex Variables, International Journalof Engineering Mathematics Vol (2014), 1-12.
[12] V.P. Saxena, Formal solution of certain new pair of dual integral equations involving H-function, Proc. Nat. Acad.Sci. IndiaSect., (2001), A51, 366-375.
[13] K. Sharma, On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences 3(1) (2014), 1-13.
[14] C.K. Sharma and S.S. Ahmad, On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, 113116.
[15] C.K. Sharma and P.L. Mishra, On the I-function of two variables and its properties. Acta Ciencia Indica Math,17 (1991), 667-672.
[16] H.M. Srivastava, A contour integral involving Fox's H-function. Indian. J. Math, (14) (1972), 1-6.
[17] H.M. Srivastava, A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177 (1985), 183-191.
[18] H.M. Srivastava and M.C. Daoust, Certain generalized Neumann expansions associated with the Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser. A 72 = Indag. Math. 31 (1969), 449-457.
[19] H.M. Srivastava and M. Garg, Some integral involving a general class of polynomials and multivariable Hfunction, Rev. Roumaine Phys. 32 (1987), 685-692.
[20] H.M.Srivastava and R. Panda, Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24 (1975),119-137.
[21] H.M.Srivastava and R.Panda, Some expansion theorems and generating relations for the H -function of several complex variables II. Comment. Math. Univ. St. Paul. 25 (1976), 167-197.
[22] N. Südland, B. Baumann and T.F. Nonnenmacher, Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998), 401-402.
[23] N.Sudland, B. Baumann and T.F. Nannenmacher, Fractional drift-less Fokker-Planck equation with power law diffusion coefficients, in V.G. Gangha, E.W. Mayr, W.G. Vorozhtsov (Eds.), Computer Algebra in Scientific Computing (CASC Konstanz 2001), Springer, Berlin, 2001, 513-525.

