New Structures of Fuzzy Soft R-Ideal and R-Idealistic Soft Bci-Algebra

S. Thiruveni¹ and A. Solairaju²

¹Research Scholar (PT) in Mathematics, PG & Research Department of Mathematics, Mother Teresa Women's University, Kodaikanal - 624 102.
²PG & Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-620020

India,

Abstract: Molodtsov [1999] discussed Soft set theory, and introduced the concept of soft set as a new mathematical tool for dealing with uncertainties. Aygünoglu, and Aygün [2009] introduced fuzzy soft group, and verified few algebraic properties. Ahmad and Athar Kharal [2009] found some results on fuzzy soft sets. Aktas and Cagman [2007] investigated usual properties on soft sets and soft group. Kim and Yuan [1995] gave an application on fuzzy soft theory in decision making problems. Jun [2008] analyzed soft BCK/BCI-algebras. In this paper we introduce the notion of soft R-ideals and a-idealistic soft BCI-algebras, and then investigate their basic properties. Using soft sets, we give characterizations of (fuzzy) R-ideals in BCI algebras. We provide relations between fuzzy R-ideals and R-idealistic soft BCI-algebras.

Keywords: Soft set (R-idealistic) soft BCI-algebra, Soft ideal, soft R-ideal

Section - 1 Introduction:Ghosh [1998] introduced fuzzy k-ideals of semi-rings. Mukherjee and Sen [1991] discussed rings with chain conditions for ideals as subrings. Kim and Park [1996] studied on *k*-fuzzy ideals in semi-rings. Molodtsov [1999] and Maji et al. [2002] suggested that one reason for these difficulties may be due to the inadequacy of the parameterization tool of the theory. Maji et al. [2002] described the application of soft set theory to a decision making problem. Maji et al. [2003] also studied several operations on the theory of soft sets. Jun [2008] applied the notion of soft sets by Molodtsov to the theory of BCK/BCI-algebras. He introduced the notion of soft BCK/BCI-algebras and soft sub algebras, and then derived their basic properties.

Jun and Park [2008] dealt with the algebraic structure of BCK/BCI-algebras by applying soft set theory. They discussed the algebraic properties of soft sets in BCK/BCI-algebras. They introduced the notion of soft ideals and idealistic soft BCK/BCI-algebras, and gave several examples. They investigated relations between soft BCK/BCI-algebras and idealistic soft BCK/BCI-algebras.

Tang and Zhang [2001] got results on Q-fuzzy R-submodule by a given arbitrary Q-fuzzy set. They also proved the lattice of all Q-fuzzy R-submodule of a module can be embedded into a lattice of Q-fuzzy R-submodule of the given module, and gave characterization of Q-fuzzy left R-submodule with respect to t-norm.

Kim and Yun [2000] discussed basic algebraic properties on fuzzy R-subgroup of near ring. They further found its homomorphic image & preimage, union, intersection, its power and its primary decomposition. Kim and Jun [2001] studied on the basic algebraic properties of normal fuzzy R-subgroup in near ring. They also explained its normalizer, its conjugate classes, its memberships, the intersection of finite number of fuzzy normal R-subgroups, direct product of two fuzzy normal R-subgroups, Q-fuzzy normal R-subgroup, Q-fuzzy normalizer, and homomorphic images and preimages of all such above fuzzy normal R-subgroups.

In this paper, the notion of soft sets by Molodtsov is applied to R-ideals in BCI-algebras. The notion of soft R-ideals and R-idealistic are introduced in soft BCI-algebras, and then derived their basic properties. Using soft sets, few characterizations of (fuzzy) a-ideals in BCI-algebras are given. Relations between fuzzy R-ideals and R-idealistic soft BCI-algebras are provided.

Section 2 -Basic results on BCI-algebra

A **BCK-algebra** is an algebra (X; *, 0) of type (2, 0) satisfying the following axioms:(1) ((x * y) *(x*z)*(z*y))=0; (2) (x*(x*y))*y) =0; (3) x*x =0; (4) x*y = 0 and y*x = 0 imply x = y for all x, y, z X.

If a BCI-algebra X satisfies the following identity: (5) 0 * x = 0 for all in X, then X is called a **BCK-algebra**. In any BCK/BCI-algebra X one can define a partial order by putting $x \le y$ if and only if x * y = 0. Every BCK/BCI-algebra's Xsatisfies(x * y) * z = (x * z) * y for all x, y, z in X

A non-empty subset S of a BCI-algebra X is called **sub algebra** of X if x * y in S, for all x, y in S.

A subset H of a BCI-algebra X is called **an ideal of X** if it satisfies the following axioms: (I1) $0 \in H$, (I2) $\forall x \in X, y \in H$ and $x * y \in H \rightarrow x \in H$.

Any ideal H of a BCI-algebra X satisfies the following implication: $\forall x \in X, \forall y \in H \& x \le y \rightarrow x \in H$. A subset H of a BCI-algebra X is called an **a-ideal** of X if it satisfies (I1) and (I3), $\forall x \in X, z \in X, y \in H$ and $(x * z) *(0 * y) \in H \rightarrow x * y \in H$. It knows that every a-ideal of a BCI-algebra X is also an ideal of X.

Section 3 – Basic definitions on soft sets

Definition 3.1: Let U is an initial universe set and E is a set of parameters. Let P (U) denotes the power set of U and A subset E. A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A \rightarrow P$ (U). In other words, a soft set over U is a parameterized family of subsets of the universe U. For $\varepsilon \in A$, F (ε) may be considered as the set of ε -approximate elements of the soft set (F, A). Clearly, a soft set is not a set. For illustration, Molodtsov considered several examples in [1].

Definition 3.2: Let (F, A) and (G, B) be two soft sets over a common universe U. The intersection of (F, A) and (G, B) is defined to be the soft set (H, C) satisfying the following conditions: (i)C = A \cap B, (ii) for alle \in C, H (e)=F (e) or G (e), (as both are same sets). In this case, we write (F, A) \cap (G, B) = (H, C).

Definition 3.3: Let (F, A) and (G, B) be two soft sets over a common universe U. The intersection of (F, A) and (G, B) is defined to be the soft set (H, C) satisfying the following conditions: (i) $C = A \cup B$, (ii) $\forall e \in C$, H (e) = F (e), if $e \in A \setminus B$, G (e), if $e \in B \setminus A$, F (e) \cup G (e), if $e \in A \cap B$. In this case, write this as (F, A) \cup (G, B) = (H, C).

Definition 3.4: If (F, A) and (G, B) are two soft sets over a common universe U, then (F, A) AND (G, B), denoted by (F, A)v^(G, B) is defined by (F, A)v^(G, B) = (H, (A × B), where H(α, β) = F(α) \cap G(β), \forall (α, β) \in A × B.

Definition 3.5: If (F, A) and (G, B) are two soft sets over a common universe U, then ``(F, A) OR (G, B)" denoted by (F, A)v^(G,) is defined by (F, A)v^(G, B)= (H, A × B), where $H(\alpha, \beta) = F(\alpha) \cup G(\beta), \forall (\alpha, \beta) \in A × B$.

Definition 3.6: For two soft sets (F, A) and (G, B) over a common universe U, we say that (F, A) is a soft subset of (G, B) denoted by (F, A) \subset (G, B), if it satisfies: (i) A \subset B, (ii) for every " $\varepsilon \in A$, F (ε) and G(ε) are identical approximations.

Section 4 - Soft R-ideal

Let X and A be a BCI-algebra and a nonempty set, respectively, and R will refer to an arbitrary binary relation between an element of A and an element of X, that is, a is a subset of $A \times X$ without otherwise specified. A set valued function F: $A \rightarrow P(U)$ can be defined as $F(x) = \{y \text{ in } X : (x, y) \text{ in } R\}$ for all $x \in A$. The pair (F, A) then a soft set over X

Definition 4.1: Let S is sub algebra of X. A subset I of X is called an ideal of X related to S (S-ideal of X), denoted by I \triangle S, if it satisfies: (i) $0 \in I$, (ii) $\forall x \in S, \forall y \in I, (x * y) \in I \rightarrow x \in I$.

Definition4.2: Let S is sub algebra of X. A subset I of X is called a R-ideal of X related to S denoted by $I\Delta_R$ S, if it satisfies: (i) $0 \in I$, (ii) $\forall x, z \in S, \forall y$ in I, (x * z) * (z* y)in I implies $x*z \in I$.

Example4.3(R-ideal related S):Let X= {0,1,2, a, b} be a BCI-algebra with the following Cayley table:

*	0	1	2	а	b
0	0	1	2	а	b
1	1	0	2	a	b
2	2	1	0	b	b
а	a	b	b	0	0
b	b	b	а	0	0

Then $S = \{0, a, b\}$ is sub-algebra of X, and $I_1 = \{0\}$ and $I_2 = \{0, 1\}$ are R-ideal of X related to S. They are also S-ideals of X. Note that every R-ideal of X related to S is an S-ideal of X in BCK-algebra.

Definition 4.4: Let (F, A) be a soft set over X. Then (F, A) is called a soft BCI-algebra over X if F(x) is sub algebra of X for all x in A.

Definition 4.5: Let (F, A) be a soft BCI-algebra over X. A soft set (G,I) over X is called a soft ideal of (F,A) denoted by (G,I) Δ (F,A), if it satisfies: (i)I \subset A, (ii) For all x in I, G(x) Δ F(x).

Definition4.6: Let (F,A) be a soft BCI-algebra over X. A soft set (G,I) over X is called a soft R-ideal of (F,A), denoted by (G,I) Δ_R (F,A) if it satisfies: (i)I \subset A, (ii)forall x in I, G (x) Δ_R F (x).

Let us illustrate this definition using the following example.

Example 4.7 (soft R-ideal): Consider a BCI-algebra $X = \{0, 1, 2, a, b\}$ which is given in (4.3). Let (F,A) be a soft set over X, where A = {0, 1, 2, a} \subset X and F: A \rightarrow P (U) is a set-valued function defined by F(x) = {yin X: $y^*(y^*x)$ in $\{0, 1\}$ for all x in A.

Then F (0) = F (1) = X, F (2) = $\{0, 1, a, b\}$ and F (a) = f (0), which are sub algebras of X. Hence (F, A) is as oft BCI-algebra over X. Let I = $\{0, 1, 2\} \subset$ A and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and G: I \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and C \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and C \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and C \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and C \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and C \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and C \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and C \rightarrow P (U) be a set-valued function defined by G (x) = Z [$\{0, 1, 2\} \subset A$ and C \rightarrow P (U) be a set-valued function defined by G (x) = Z [\{0, 1, 2\} \subset A and C \rightarrow P (U) be a set-valued function defined by G (x) = Z [\{0, 1, 2\} \subset A and C \rightarrow P (U) be a set-valued function defined by G (x) = Z [\{0, 1, 2\} \subset A and C \rightarrow P (U) be a set-valued function defined function d 1}], & if x = 2,[0] if x in {0, 1} where $Z(0, 1) = \{x \text{ in } X : 0^*(0 * x) \text{ in } \{0, 1\}\}$ Then G(0) Δ_R F(0), G(1) Δ_R F(1) and G(2) Δ_R F(2). Hence (G, I) is a soft R-ideal of (F, A).

Note that every soft R-ideal is a soft ideal. But the converse is not true as seen in the following example.

Example 4.8 (Soft ideal but nor soft R-ideal): Let $X = \{0, a, b, c, d\}$ be a BCK-algebra, and hence a BCI-algebra, with the following Cayley table:

с	0	а	b	с	d
0	0	0	0	0	0
a	а	0	а	a	0
b	b	b	0	b	0
с	с	с	с	0	0
d	d	d	d	d	0

for

For A = X, define a set-valued function F: A \rightarrow P(X) by F(x) = {y \in X: y * (y*x) \in {a, 0}}, all $x \in A$. Then (F, A) is a soft BCI-algebra over X (see [16]). (1)Let (G, I) be a soft set over X, where I = {a, b, c, d} and G: I \rightarrow P(X) is a set-value function defined by G(x) = {y \in X: y*(y*x) \in {0, d}}, for all x \in I. Then G(a)= $\{0, b, c, d\} \quad \Delta X = F(a), G(b) = \{0, a, c, d\} \quad \Delta \{0, a, c, d\} = F(b) \text{ and } G(c) = \{0, a, b, d\} \quad \Delta \{0, a, b, d\} = F(c), G(d) = \{0, a, b, d\} \quad \Delta \{0, a, b, d\} \quad \Delta \{0, a, b, d\} = F(c), G(d) = \{0, a, b, d\} \quad \Delta \{0, a, b,$ a, b, d} Δ {0, a, b, c} F(d). Hence (G, I) is a soft ideal of (F,A). But (G,I) is not a soft R-ideal of (F,A), since (a $(a^*a)^*(a^*a) = 0$ in G (a) and $a \notin G(a)$.

(2) For I = {a, b, c, d}, let H: I \rightarrow P(X) be a set-valued function defined by H(x) = {0} \cup {y \in X: x \leq y}, for all $x \in I$. Then H(a)= {0, a} $\Delta X = F(a),H(b)=\{0, b\}\Delta\{0, a, c, d\} = F(b)$ and H(c)={0, c} $\Delta\{0, a, b, d\} = F(c)$ $H(d)=\{0, d\} \Delta \{0, a, b, c\} = F(d)$. Therefore (H, I) is a soft ideal of (F, A). But. (H, I) is not a soft R-ideal of (F, A) since. Since (b *b)*(b*b) = 0 in H (a) and $b \notin H$ (a).

Theorem 4.9: Let (F, A) be a soft BCI-algebra over X. Then $(G_1, I_1) \Delta_R$ (F, A), $(G_2, I_2) \Delta R(F, A) \Rightarrow (G_1, I_1) \cap (G_2, I_2) \Delta R(F, A) \Rightarrow (G_1, I_2) \cap (G_2, I_2) \wedge ($ I_2) Δ_R (F, A) For any soft sets (G₁, I) and (G₂, I) over X.

Proof: Using (3.2), write thus as $(G_1, I_1)\Delta(G_2, I_2) = (G, I)$, where $I = I_1\Delta I_2$ and $G(x) = G_1(x)$ or $G_2(x)$ for all $x \in I$. Obviously, I \subset A and G : I \rightarrow P(X) is a mapping. Hence (G, I) is a soft set over X. Since (G₁, I₁) $\Delta_{R}(F, A)$ and (G₂, I₂) Δ_R (F, A), it knows that G (x) = G₁(x) Δ_R F(x) or G (x) = G₂(x) Δ_R F(x) for all $x \in I$. Hence (G₁, I₁) Δ (G₂, I₂) = (G, I) Δ_{R} (F, A). This completes the proof.

Corollary 4.10: Let (F, A) be a soft BCI-algebra over X. For any soft sets (G, I) and (H, I) over X, it follows that $(G, I) \Delta_{\mathbb{R}}$ (F,A), (H, I) $\Delta_{\mathbb{R}}$ (F, A) \rightarrow (G, I) \cap (H, I) $\Delta_{\mathbb{R}}$ (F, A) **Proof:** Straightforward.

Theorem4.11: Let (F, A) be a soft BCI-algebra over X, for any soft sets (G, I) and (H, J) over X in which I and J are disjoint, we have (G, I) $\Delta_R(F, A)$, (H, J) $\Delta_R(F, A) \rightarrow (G, I)$ (H, J) $\Delta_R(F, A)$.

Proof: Assume that (G, I) Δ_R (F, A) and (H, J) Δ_R (F, A). By (3.3), write thus as (G, I) \cup (H, J) = (K, U), where U = $I \cup J$ and for every $x \in U.K(x) = G(x)$, if $x \in I \setminus J$; H(x), if $x \in J \setminus I$; $G(x) \cup H(x)$, if $x \in I \cap J$. Since $I \cap J = 0$; either $x \in I \setminus J$ or $x \in J \setminus I$ for all $x \in U$.

If $x \in I \setminus J$, then $H(x) = G(x) \Delta_R = F(x)$ since $(G,I)\Delta_R(F,A)$. If $x \in J \setminus I$, then $K(x) = H(x) \Delta_R F(x)$, since. (H, $J \setminus \Delta_R(F, A)$. Thus $H(x)\Delta_R F(x)$ for all $x \in U$, and (G, I) Δ (H, J)=(H, U) $\Delta_R(F, A)$.

Example 4.12: If I and J are not disjoint in (4.11), the conclusion of the result (4.11) is not true. Let (F, A) be a soft BCI-algebra over X, for any soft sets (G, I) and (H, J) over X in which I and J are not disjoint, then (G, I) Δ_R (F, A), (H, J) Δ_R (F, A) does not imply (G, I) \cup (H, J) Δ_R (F, A) explained in the following example. Let X = {0, 1, a, b, c} be a BCI-algebra with the following Cayley table:

*	0	1	a	b	c
0	0	0	а	b	c
1	1	0	а	b	c
а	а	а	0	a	a
b	b	b	a	0	a
c	с	с	a	a	0

For $A = \{0, 1\} \subset X$, let F: $A \to P(X)$ be a set-valued function defined by $F(x) = \{y \in x: y * x = y\}$, for all $x \in A$. Then F (0) = X and F (1) = $\{0, a, b, c\}$, which are sub algebras of X, and hence (F, A) is a soft BCI-algebra over X. If we take I = A and define a set-valued function G: $I \to P(X)$ by $G(x) = \{y \in X: x * (x * y) \in \{0, b\}\}$, for all $x \in I$, then we obtain that $G(0) = \{0, 1, b\} \Delta_R F(0)$ and $G(1) = \{0, 1, b\} \Delta_R F(1)$, This means that (G, I) $\Delta_R(F, A)$.

Now, consider $J = \{0\}$ which is not disjoint with I, and let H: $J \rightarrow P(X)$ be a set-valued function defined by $H(x) = \{y \in X: x * (x * y) \in \{0, c\}\}$, for all $x \in J$. Then $H(0) = \{0, 1, c\} \Delta_R = F(0)$, and so $(H, J) \Delta_R$ (F, A). But if $(H, U) = (G, I) \cup (H, J)$, then $H(0) = G(0) \cup H(0) = \{0, 1, b, c\}$, which is not a R-ideal of X related to F(0) since (a *0)*(b*0) = c in H(0) and $a \in H(0)$. Thus $(H, U) = (G, I) \cup (H, J)$ is not a soft R-ideal of (F, A).

Section 5 -R-idealistic soft BCI-algebra:

Definition 5.1: Let (F, A) be a soft set over X. Then (F, A) is called an idealistic soft BCI-algebra over X if F(x) is an ideal of X for all $x \in A$.

Definition 5.2: Let (F,A) be a soft set over X. Then (F, A) is called an a-idealistic soft BCI-algebra over X if F(x) is a R-ideal of X for all $x \in A$.

Example 5.3 (R-idealistic soft BCI-algebra): Consider a BCI-algebra $X = \{0, 1, 2, a, b\}$ which is given in Example 4.3. Let (F, A) be a soft set over X, where A = X and F: A \rightarrow P(X) is a set-valued function defined byF(x) = Z {0, 1}, if x $\in \{2, a, b\}$, X, if x $\in \{0, 1\}$, where Z {0, 1} ={x $\in X$: 0 *(0 *x) $\in \{0, 1\}$ }. Then (F, A) is an R-idealistic soft BCI-algebra over X. For any element x of a BCI-algebra X, we define the order of x is o(x)=min { $n \in N : 0^*x^{n} = 0$ }, where $0^*x^{n} = (\dots \{0^*x\}^*x \dots)^*x$ in which x appear n-times

Example 5.4 (not R-idealistic soft BCI-algebra): Let $X = \{0, a, b, c, d, e, f, g\}$ and consider the following Cayley table:

*	0	a	В	с	d	e	f	g
0	0	0	0	0	e	e	e	e
а	а	0	0	0	f	e	e	e
b	b	b	0	0	g	f	e	e
с	с	b	Α	0	d	g	f	e
d	d	e	E	e	0	0	0	0
e	e	f	E	e	а	0	0	0
f	f	g	С	e	b	a	0	0
g	g	f	D	e	с	b	a	0

Then $(x;^*, 0)$ is a BCI-algebra. Let (F, A) be a soft set over X, where $A = \{a, b, c\} \subset X$ and $F: A \to P(X)$ is a set-valued function defined as follows. $F(x) = \{y \in X: o(x) = o(y)\}$, for all $x \in A$. Then $F(a) = F(b) = F(c) = \{0, a, b, c\}$ is an R-ideal of X. Hence (F, A) is an R-idealistic soft BCI-algebra over X. But, if we take $B = \{a, b, d, f\} \subset X$

and define a set-valued function G: $B \rightarrow P(X)$ by G (x)= $\{0\} \cup \{y \in X: o(x)=o(y)\}, \forall x \in B$, then (G, B) is not a R-idealistic soft BCI-algebra over X since G (d)= $\{0, d, e, f, g\}$ is not a R-ideal of X.

Example 5.5 (R-idealistic soft BCI-algebra): Consider a BCI-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	А	b	с
0	0	А	b	с
a	a	0	с	b
b	b	С	0	a
с	с	В	a	0

Let A=X and F: A \rightarrow P(X) is a set-valued function defined as follows F(x) = {0, x}, for all x in A. Then F(0)=(0);F(a)={0, a};F(b)= {0, b} and F(c)={0, c} which are ideals of X. Hence (F, A) is an idealistic soft BCIalgebra over X (see [17]). Note that F(x) is a a-ideal of X for all x \in A. Hence (F, A) is a R-idealistic soft-BCIalgebra over X. Obviously, every R-idealistic soft BCI-algebra over X is an idealistic soft BCI-algebra over X, but the converse is not true in general as seen in the following example

Example 5.6 (idealistic soft BCI-algebra, but not R-idealistic soft BCI-algebra): Consider a BCI-algebra $X = Y \times Z$, where $\{Y, *, 0\}$ is a BCI-algebra and (Z, -, 0) is the adjoint BCI-algebra of the additive group (Z, +, 0) of integers. Let F: $X \to P(X)$ be a set-valued function defined as follows $f\{y, n\} = Y \times N_0$, if n in $N_0, \{0, 0\}$, otherwise, $\forall (y, n) \in X$, where N_0 is the set of all non-negative integers. Then (F, X) is an idealistic soft BCI-algebra over X (see [17]).But it is not an R-idealistic soft BCI-algebra over X since $\{(0,0)\}$ may not be an R-ideal of X.

Theorem 5.7: Let (F, A) and (F, B) be soft sets over X where $B \subset A \subset X$. If (F, A) is an R-idealistic soft BCIalgebra over X, then so is (F, B).

Proof: Straightforward.

The converse of (5.7) is not true in general as seen in the following example.

Example 5.8: Let (F, A) and (F, B) be soft sets over X where $B \subset A \subset X$. If (F, B) is an R-idealistic soft BCI-algebra over X, then so is not (F, A).Consider anR-idealistic soft BCI-algebra (F, A) over X which is described in(5.4). If we take $B = \{a, b, c, d\} \supseteq A$, then (F, B) is not a R-idealistic soft BCI-algebra over X since F (d) = {d, e, f, g} is not a R-ideal of X.

Theorem 5.9: Let (F, A) and (G, B) be two R-idealistic soft BCI-algebras over X. If $A \cap B \neq 0$, then the intersection (F, A) \cap (G, B) is an R-idealistic soft BCI-algebra over X.

Proof: Using (3.2), we can write (F, A) \cap (G, B) = (H, C), where C = A \cap B and H (x) = F(x) or G (x) for all $x \in C$. Note that H: C \rightarrow P(X) is a mapping, and therefore (H, C) is a soft set over X. Since (F, A) and (G, B) are aidealistic soft BCI-algebras over X, it follows that H (x) = F(x) is an R-ideal of X, or H (x) = G (x) is an R-ideal of X for all $x \in C$. Hence (H, C) = (F, A) \cap (G, B) isR-idealistic soft BCI-algebra over X.

Corollary 5.10: Let (F, A) and (G, A) be two R-idealistic soft BCI-algebras over X. Then their intersection (F, A) \cap (G, A) is an R-idealistic soft BCI-algebra over X. **Proof:** Straightforward.

Theorem 5.11: Let (F, A) and (G, B) be two R-idealistic soft BCI-algebras over X. If A and B are disjoint, then the union (F, A) \cup (G, B) is an R-idealistic soft BCI-algebra over X.

Proof: Using (3.3), write this as $(F, A) \cup (G, B) = (H, C)$, where $C = A \cup B$ and for every $x \in C$,

H (x) = F(x), if $x \in A \setminus B$, G(x), if $x \in B \setminus A$, F(x) \cup G (x), if $x \in A \cap B$

Since $A \cap B = 0$; either $x \in A \setminus B$ or $x \in B \setminus A$ for all $x \in C$. If $x \in A \setminus B$, then H(x) = F(x) is an R-ideal of X since (F, A) is an R-idealistic soft BCI-algebra over X. If $x \in B \setminus A$, then H(x) = G(x) is an R-ideal of X since (G, B) is an R-idealistic soft BCI-algebra over X. Hence. (H, C) = (F, A) \cup (G, B) is an R-idealistic soft BCI-algebra over X.

Theorem 5.12: If (F, A) and (G, B) are R-idealistic soft BCI-algebras over X, then (F, A) \cap (G, B) is an R-idealistic soft BCI-algebra over X.

Proof:By (3.4), it knows that (F, A) Λ (G, B) = {H, A x B}, where H (x, y) = F(x) \cap G (y) for all (x, y) \in A x B. Since F(x) and G (y) are R-ideals of X, the intersection F(x) \cap G (y) is also an R-ideal of X. Hence H (x, y) is an R-ideal of X for all (x, y) \in Ax B, and therefore (F, A) Λ (G, B) =(H, Ax B) is an R-idealistic soft BCI-algebra over X.

Definition 5.13: A R-idealistic soft BCI-algebra (F, A) over X is said to be trivial (resp., whole) if $F(x) = \{0\}$ (resp., F(x) = X) for all $x \in A$.

Example 5.14(Trivial R-idealistic soft BCI-algebra and whole R-idealistic soft BCI-algebra):Let X be a BCI-algebra which is given in (5.5), and let F: $X \rightarrow P(X)$ be a set-valued function defined by $F(x) = \{0\} \cup \{y \in X: o(x) = o(y)\}$; for all $x \in X$. Then F (0) = $\{0\}$ and F (a) = F (b) = F(c) = X. We can check that $\{0\} \Delta_R X$ and $X \Delta_R X$. Hence $(F, \{0\})$ is a trivial R-idealistic soft BCI-algebra over X and(F, X \ {0} is a whole R-idealistic soft BCI-algebra over X. The proofs of the following three lemmas are straight forward, so they are omitted.

Lemma 5.15: Let $f: X \to Y$ is an onto homomorphism of BCI-algebras. If I is an ideal of X, then f (I) is an ideal of Y.

Lemma 5.16: Let f: $X \rightarrow Y$ is an isomorphism of BCI-algebras. If I is an R-ideal of X, then f (I) is an R-ideal of Y. Let f: $X \rightarrow Y$ is a mapping of BCI-algebras. For a soft set (F, A) over X, (f (F), A) is a soft set over Y where f (F): A $\rightarrow P(Y)$ is defined by f (F) (x) = f (F(x)) for all $x \in A$.

Lemma 5.17: Let f: $X \rightarrow Y$ is an isomorphism of BCI-algebras. If (F, A) is an R-idealistic soft BCI-algebra µover X, then (f (F), A) is an R-idealistic soft BCI-algebra over Y.

Theorem 5.18: Let f: $X \rightarrow Y$ is an isomorphism of BCI-algebras and let (F, A) be an R-idealistic soft BCI-algebra over X.(1) If $F(x) \subseteq \text{kern}$ (f) for all $x \in A$, then (f (F), A) is a trivial R-idealistic soft BCI-algebra over Y.(2) If (F, A) is whole, then (f (F), A) is a whole R-idealistic soft BCI-algebra over Y.

Proof: (1) Assume that $F(x) \subseteq kern$ (f) for all $x \in A$. Then f (F) (x) = f (F(x)) = {0y} for all $x \in A$. Hence (f (F), A) is a trivial R-idealistic soft BCI-algebra over Y by (5.17)and (5.13); (2) Suppose that (F, A) is whole. Then $F(x) = X, \forall x \in A$, and so {f (F) x) = f (F(x)) = f(X) = Y, \forall x \in A. It follows from (5.17) and (5.13) that (f (F), A) is a whole R-idealistic soft BCI-algebra over Y.

Definition 5.19: A fuzzyµin X is a fuzzy R-ideal of X if it satisfies the following assertions: (i)($\forall x \in X$) (µ(0) ≥µ(x), (ii) ($\forall x, y, z \in X$) (µ(x *z) ≥min {µ{(x * z)*(z *y)), µ(y)}}

Lemma 5.20: A fuzzy set μ in X is a fuzzy R-ideal of X if and only if it satisfies: $(\forall t \in [0, 1])(U(\mu; t) \neq 0 \Rightarrow U(\mu; t)$ is a R-ideal of X)

Theorem 5.21: There exists an R-idealistic soft BCI-algebra (F,A) over X for every fuzzy a-ideal μ of X. **Proof:** Letµbe a fuzzy R-ideal of X. Then U(μ ; t)={ $x \in X : \mu(x) \ge t$ } is an R-ideal of X for all t∈Im(μ). If we take A = Im (μ) and consider a set-valued function F: A → P(X) given by\$ F (t) = U (μ ; t) for all t∈A, then F (f,A) isan R-idealistic soft BCI-algebra over X.

Conversely, the following theorem is straightforward.

Theorem 5.22: For any fuzzy set μ in X, if a a-idealistic soft BCI-algebra (F, A) over X is given by A = Im (μ) and F (t) = U (μ ; t), $\forall t \in A$, then is a fuzzy R-ideal of X.

Proof: Let μ be a fuzzy set in X and (F, A) be a soft set over X in which A = Im (μ) and F: A \rightarrow P(X) is a setvalued function defined by ($\forall t \in A$) (F (t) ={x \in X: | $\mu(x) + t > 1$ }. Then there exists t \in A such that F (t) is not an Rideal of X as seen in the following example.

Example 5.23 (non - R-ideal): For any BCI-algebra X, define a fuzzy set μ in X by $\mu(0) = t_0 < 0.5$ and $\mu(x) = 1 - t_0$ for all $x \neq 0$. Let A = Im (μ) and F: A \rightarrow P(X) is a set-valued function given by (5.2). Then F(1 - t_0) = X \{0\}, which is not R-ideal of X.

Theorem 5.24: Let μ be a fuzzy set in X and let (F, A) be a soft set over X in which A = [0, 1] and F: A \rightarrow P(X) is given by (5.2). Then the following assertions are equivalent:(1) μ is a fuzzy R-ideal of X,(2) For every t \in A with F (t) \neq 0, F (t) is an R-ideal of X.

Proof: Assume that μ is a fuzzy R-ideal of X. Let $t \in A$ be such that $F(t) \neq 0$. If we select $x \in F(t)$, then $\mu(0) + t \geq \mu(x) + t > 1$ and so $0 \in F(t)$. Let $t \in A$ and x, y, $z \in A$ be such that $y \in F(t)$ and $(x^*z)^*(z^*y) \in F(t)$. Then $\mu(y) + t > 1$

and μ ((x *z) *(z *y)) t > 1. Since μ is a fuzzy R-ideal of X, it follows that μ (x) + t ≥ min { μ ((x *z)*(z *y)), μ (y)} + t= min { μ ((x *z)*(z *y)) +t, μ (y) + t}>1.

So that $x \in F(t)$, Hence F(t) is an R-ideal of X for all $t \in A$ with $F(t) \neq 0$.

Conversely, suppose that (2) is valid. If there exists $an \in X$ such that $\mu(0) < \mu(a)$, then we can select $t_a \in A$ such that $\mu(0) + t_a \le 1 < \mu(a) + t_a$. It follows that $a \in F(t_a)$ and $0 \neq F(t_a)$, which is a contradiction. Hence $\mu(0) \ge \mu(x)$, $\forall x \in X$. Now, assume that $\mu(a) < \min \{\mu((a * c)*(b * c)), \mu(b)\}$, for some a, b, c in X. Then $\mu(a) + S_0 \le 1 < \min \mu((a * c)*(c * b)), \mu(b)\} + S_0$ for some $S_0 \in A$, which implies that $(a * c)*(c * b) \in F(S_0)$ and $b \in F(S_0)$, but $a \notin F(S_0)$. This is a contradiction. Therefore $\mu(x*c) \ge \min \{\mu((x * z)*(z * y)), \mu(y)\}$, for all x, y, $z \in X$, and thus μ is a fuzzy R-ideal of X.

Corollary 5.25: Let μ be a fuzzy set in X such that $\mu(x) > 0.5$ for some $x \in X$, and let (F, A) be a soft set over X in which A= {t $\in Im(\mu)|t > 0.5$ } and F: A $\rightarrow P(X)$ \$ is given by (5.2). If μ is a fuzzy R-ideal of X, then (F, A) is anR-idealistic soft BCI-algebra over X. **Proof:** Straightforward

Theorem 5.26: Let μ be a fuzzy set in X and let (F, A) be a soft set over X in which A = (0.5, 1] and F: A \rightarrow P(X) is defined by ($\forall t \in$ A) (F (t) = U (μ ; t)). Then F (t) isanR-ideal of X for all t \in A with F (t) \neq 0 if and only if the following assertions are valid X.(1)($\forall x \in$ X)(Max { μ (0), 0.5} $\geq \mu$ (x)); and (2) ($\forall x, y, z \in$ X) (max { μ (x), 0.5} $\geq \min \{\mu \{(x^*z)^*(z^*y), \mu(y)\})$.

Proof: Assume that F (t) is anR-ideal of X for all $t \in A$ with F (t) $\neq 0$. If there exists $X_0 \in X$ such that max { $\mu(0), 0.5$ < $\mu(X_0)$, then we can select $t_0 \in A$ such that max { $\mu(0), 0.5$ < $t_0 \leq \mu(X_0)$. It follows that $\mu(0) < t_0$ so that $X_0 \in F(t_0)$ and $0 \notin F(t_0)$. This is a contradiction, and so (1) is valid. Suppose that there exist a, b, $c \in X$ such that max { $\mu(a), 0.5$ < $\min(\mu(a * c)*(b * c)), \mu(b)$ }. Thenmax { $\mu(a), 0.5$ < $u_0 \leq M$ in { $\mu((a * c)*(c * b)), \mu(b)$ }, forsome $u_0 \in A$. Thus $(a * c)*(c * b) \in F(u_0)$ and $b \in F(u_0)$ but $a \notin F(u_0)$. This is a contradiction, and so (2) is valid.

Conversely, suppose that (1) and (2) are valid. Let $t \in A$ with $F(t) \neq 0$, for any $x \in F(t)$, we have Max { $\mu(0), 0.5$ } $\geq \mu(x) \geq t > 0.5$ and so $\mu(0) \geq t$, (ie) $0 \in F(t)$. Let x, y, $z \in X$ be such that $y \in F(t)$ and $(x * z)*(z * y) \in F(t)$. Then $\mu(y) \geq t$ and $\mu(x * z)*(z * y))>t$. It follows from the second condition that 0.5} $= \min \{ \mu((x * z)*(z * y)), \mu(y) \} \geq t > 0.5$, so that $\mu(x) \geq t$, i.e., $x \in F(t)$. Therefore F(t) is an R-ideal of $X, \forall t \in A$ with $F(t) \neq 0$.

References:

01. Aygünoglu, A., Aygün, H., Introduction to fuzzy soft groups, Computers and Mathematics with Applications 58,(2009) 1279_1286

02. Ahmad, B., and Athar Kharal, On Fuzzy Soft Sets, Advances in Fuzzy Systems, (2009).

03. Aktas. H and Cagman, N., Soft sets and soft group, Information Science, Volume 177, (2007), 2726-2735.

04. Ghosh, S., Fuzzy k-ideals of semirings, Fuzzy sets and systems, 95(1998),103-108.

05. Jun, Y.B., Soft BCK/BCI-algebras, Compute. Math, Appl. 56 (2008) 1408-1413.

06. Jun, Y.B., and Park, C.H., Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform, Sci. 178 (2008) 2466-2475

07. Kim, C.B., and Park, M., k-fuzzy ideals in semirings, Fuzzy sets and systems, Volume 81, (1996),281-286.

08. Klir, G.J., and Yuan, B., Fuzzy sets and fuzzy logic theory and applications, PretticeHelltic, New Jersey (1995).

09. Maji, P.K., Roy, A.R., and Biswas, R., An application of soft sets in a decision making problem, Compute. Math. Appl. 44 (2002) 1077-1083 **10.** Maji, P.K., Roy, A.R., and Biswas, R., Soft set theory, Compute. Math. Appl. 45 (2003), 555-562.

10. Maji, P.K., Koy, A.K., and Biswas, K., Soft set theory, Compute. Math. Appl. 45 (2005), 5. 11. Molodtsov, D., Soft set theory - First results, Compute. Math, Appl. 37 (1999) 19-31.

12. Mukherjee, T.K., and Sen, M.K., Rings with chain conditions, Fuzzy sets and systems, Volume 39, (1991),117-123.

13. Tang, J., and Zhang, X., Product operations in the category of L-fuzzy groups, Journal of Fuzzy Math. Volume 9, (2001), 1-10.

14. Zadeh, L.A., Fuzzy sets, Inform. Control, Volume 8, (1965), 338-353.