Some New Results of the Differentiation in the Groups Mod-n

AtefaJalilSalh Abdullah
Mustansiriyah University, College of Basic Education, Dept. of Math.

Abstract

In [1] by H. M. A. Abdullah ,Atefa J. S. Abdullah and Rawaa. E. E. Ibrahim, it was showna new results of the integrals in the group Z_{n}, by giving a new definition of the integrals of all elements of $Z_{n}(n \geq 2)$.In this paper, we shall study a new properties of the definition of the derivativeof all cyclic elements in Z_{n}.

Keywords: Cyclic elements, neat subgroup, derivative subgroup.

Introduction

Let $\mathrm{G}=Z_{n}$ be abelian group $\operatorname{Mod} \mathrm{n}, \mathrm{n} \geq 2$. we shall start with the definition of the integrals.
Definition A: see [1]The integrals in the group Z_{n} define by
$\int_{o}^{k} \bar{x} \mathrm{~d} Z_{\mathrm{n}}=\left.\bar{x} Z_{\mathrm{n}}\right|_{0} ^{k}=\mathrm{k} \bar{x} \forall n \geq 2 \mathrm{k}=0, \mathrm{I}, 2, \ldots \ldots \ldots, \mathrm{n}-1 \int_{o}^{k} \bar{x} \mathrm{~d} Z_{\mathrm{n}}=\{0 \bar{x}, 1 \bar{x}, \ldots \ldots(\mathrm{n}-1) \bar{x}\}$
we can give general definition of the integrals by the following:
$\int \bar{x} \mathrm{~d} \mathrm{Zn}=\left\{\begin{array}{cl}Z_{n} & \times=p \text { and } n \backslash p \\ <\bar{x}> & \times=p \text { and } n \backslash p \text { or } x \neq p\end{array}\right.$
Example 1 :Take $\left(Z_{8},+_{8}\right)$, so
$\int_{o}^{k} \overline{3} d Z_{8}=\int_{o}^{7} \overline{3} d Z_{8}=Z_{8}$
$\int_{o}^{k} \overline{2} d Z_{8}=\int_{o}^{7} \overline{4} d Z_{8}=<\overline{2}>$
$\int_{o}^{k} \overline{5} d Z_{8}=Z_{8}$
Now, we are ready to give the new definition of the derivative of cyclic elements in Z_{n}.
Definition B : Let $G=Z_{n}$ be a group $\bmod n$, then the derivative of any generated (cyclic) element of Z_{n}, define as the following:
$\mathrm{d}(<\overline{0}>)=\overline{0}$
$\mathrm{d}(<\bar{p}\rangle)=\mathrm{p} \forall \mathrm{p}, \mathrm{p}$ is aprime number
$\mathrm{d}(<Z n>)= \begin{cases}1 & \text { or } \\ p & n \times p \quad, \mathrm{n} \in \mathrm{Z}^{+} \mathrm{n} \neq \mathrm{p}\end{cases}$
$d(Z p)=$ all the non - Zero elements of $Z p$.
$\mathrm{d}(<\bar{n}>)=\bar{n} \quad \mathrm{n} \geq 2$
we can show that by the following example
Example 2:- Take $\left(Z_{6},+_{6}\right)$
so $\quad d\left(Z_{6}\right)=\left\{\begin{array}{l}1 \\ \end{array}\right.$
$p \quad n \times p$

Thus, $\mathrm{d}\left(\mathrm{Z}_{6}\right)=\left\{\begin{array}{lll}1 & \overline{5} & 6 \times \overline{5}\end{array}\right.$
$\mathrm{d}(<\overline{2}>) \overline{2} \quad, \mathrm{~d}(<\overline{3}>)=\overline{3}$
and $\mathrm{d}(\langle\overline{0}\rangle)=\bar{o}$
Example 3:- Take $\left(Z_{4},+_{4}\right)$
$\mathrm{d}\left(Z_{4}\right)=\left\{\begin{array}{lll}1 & \overline{3} & 4 \times \overline{3}\end{array}\right.$
$\mathrm{d}(<\overline{2}>)=\overline{2}$ and $\quad \mathrm{d}(<\overline{0}>)=\overline{0}$
clearly we have only $\langle\overline{0}\rangle,\left\langle\overline{2}>\right.$ are two cyclic subgroups of Z_{4}.
Definition C: The derivative element of the subgroup H of $\mathrm{G}=\mathrm{Z}_{\mathrm{n}}$ is said to be called (neat derivative)element, \forall prime number $\mathrm{p}, \forall \mathrm{h} \neq 0 \in \mathrm{H}$

If $\mathrm{d}(\mathrm{h})=p^{x}$, for some $\mathrm{x} \in \mathrm{G}$, then $\mathrm{d}(\mathrm{h})=\mathrm{ph}_{\mathrm{o}}=\mathrm{h}$ for some $\mathrm{h}_{\mathrm{o}} \in$ H.we shall say a subgroup H of Z_{n} is neat - derivative, if $(\forall p) p$ is prime number and $\forall h \in H, x \in Z_{n}$, if $d(h)=p^{x}$ in G then $p(h)=h_{o}$, $\mathrm{h}_{0} \in \mathrm{H}$.

Example 4 : Take $\mathrm{G}=\mathrm{Z}_{6}$, and $\mathrm{H}=\langle\overline{3}>, \mathrm{H}=\{\overline{0}, \overline{3}\}$.
We can show that, the all elements of H (we have only $\overline{3} \in H$) is neat derivativeTake $p=2$
$\mathrm{d}(\overline{3})=2 \bar{x}=\overline{3} \bar{x} \notin Z_{6}$
so Take $\mathrm{p}=3$
$\mathrm{d}(\overline{3})=3 \bar{x}=3 \overline{1} \quad$ in Z_{6}
To show $d(\overline{3})=\mathrm{ph}_{\mathrm{o}}=3 \mathrm{~h}_{\mathrm{o}} \mathrm{h}_{\mathrm{o}} \in \mathrm{H}$
$\mathrm{d}(\overline{3})=3 . \overline{3} \in \mathrm{H}$
Take $\mathrm{p}=5$
clearly $(\mathrm{d}(\overline{3})=5 \mathrm{X}$ in G$)$
$\mathrm{d}(\overline{3})=5 . \overline{3}=\overline{3}$ in H
thus, $\forall \mathrm{p}, \mathrm{p}>2 \quad \forall \mathrm{~h} \in \mathrm{H}$
If $\mathrm{d}(\mathrm{h})=p^{x}$ in G , then $\mathrm{d}(\mathrm{h})=\mathrm{ph}_{\mathrm{o}}=\mathrm{h}$ in H.Therefore H is derivative - neat in G
We shall denotedby H, the p - derivative neat subgroup of G.
Example 5:- Take G= Z_{12} and $H_{0}=<\overline{2}>$
Take $\mathrm{p}=2$ and $\overline{2} \epsilon<\overline{2}>$
$\operatorname{sod}(\overline{2})=2 . \overline{1}=\overline{2}$ in G
But then is no element $\mathrm{h}_{\mathrm{o}} \in \mathrm{H} \ni \mathrm{d}(\overline{2}) \neq 2 \mathrm{~h}_{0}$ Therefore, $\mathrm{H}=<\overline{2}>$ is not p - derivative neat in G .
Definition E: A subgroup H of the Z_{n} is said to be p_{o} - derivative neat in G if for some prime number p_{o}, and $\forall \mathrm{h} \in \mathrm{H}, \mathrm{d}(\mathrm{h})=\mathrm{p}_{0} \mathrm{x}$ in G then $\mathrm{d}(\mathrm{h})=\mathrm{p}_{\mathrm{o}} \mathrm{h}_{\mathrm{o}}$ in H for some $\mathrm{h}_{\mathrm{o}} \in \mathrm{H}$.

Example 6: Take $\mathrm{G}=\mathrm{Z}_{8}, \mathrm{H}=\langle\overline{2}\rangle$
ifpo $=2 \mathrm{~h}=\overline{2} \in \mathrm{H}, \mathrm{d}(\overline{2})=2 . \overline{1}$ in G

But There is no element $\left(h_{o} \in H\right) \ni d(\overline{2})=\overline{2} h_{o}=\overline{2}$ Now, take $p=3$, test $h_{o}=\overline{2} \in H$

Clearly $\mathrm{d}(\overline{2})=3 . \overline{6}=\overline{2}$ in G and $h_{0}=\overline{6} \in<\overline{2}>$, hence $d(\overline{2})=3 . \overline{6}$ in H Now, test $\overline{4} \in H \quad d(\overline{4})=3 . \overline{4}$ $=\overline{4}$ in G and $\overline{4} \mathrm{G} \mathrm{H}$, so d $(\overline{4})=3 . \overline{4}$ in H

Test $\overline{6} \in H$
$(\mathrm{d}(\overline{6})=3 \bar{x})$ in $\mathrm{G} \quad \bar{x}=\overline{2} \in \mathrm{G}$ and $\mathrm{d}(\overline{6})=3 . \overline{2}=6$ in $\mathrm{H}(\overline{2} \in \mathrm{H})$
clearly $\quad \mathrm{d}(\bar{h})=\mathrm{p}_{0} \mathrm{X}$ in $\mathrm{G} \quad$ and $\mathrm{d}(\bar{h})=3 \mathrm{~h}_{\mathrm{o}}$ in H .
Hence H is 3-neat derivative in G.
Note : For any p - neat derivative in G , is p_{o} - neat derivative in G .
We are ready to show some new results of the p- neat derivative of element of the cyclic subgroups.

I. New Results .I

Theorem 1: Let A and B are two p- neat derivative in G then

1) $A \cap B$ is a p- neat derivative in G
2) $A+B$ is a p- neat derivative in G

Proof (1):Let h be any element in $A \cap B$, and $(\forall p) p$ is prime number
suppose, $\mathrm{d}(\mathrm{h})=\mathrm{p} \bar{x}$ in $\mathrm{G}(\mathrm{x} \in \mathrm{G})$
since $h \in A \cap B$, so $\exists a n$ elementg $\in G \ni d(h)=p g \in A \cap B$
$\mathrm{d}(\mathrm{h})=\mathrm{pg}$ in A But A is p - neat derivative so $\mathrm{d}(\mathrm{h})=\mathrm{pa}_{\mathrm{o}}$
for some $\mathrm{a}_{0} \in A \quad$ and $\mathrm{d}(\mathrm{h})=\mathrm{pg}$ in $\mathrm{B} . \mathrm{B}$ is p - neat derivative.
Thus, $\mathrm{d}(\mathrm{h})=\mathrm{ph}_{\mathrm{o}} \quad$ for some $\mathrm{b}_{\mathrm{o}} \in \mathrm{B} \quad$ so $\mathrm{d}(\mathrm{h})=\mathrm{p} \mathrm{a}_{\mathrm{o}}=\mathrm{pb}_{\mathrm{o}}$
we get $p\left(a_{0}-b_{0}\right)=0 \quad$ and thus $\mathrm{a}_{0}=b_{0} \in A \cap B$
Therefore, $\mathrm{d}(\mathrm{h})=\mathrm{p}\left(\mathrm{a}_{\mathrm{o}}\right)=\mathrm{p}\left(\mathrm{b}_{\mathrm{o}}\right) \quad \mathrm{a}_{0}, \mathrm{~b}_{0} \in A \cap \mathrm{~B}$
That mean, $\mathrm{A} \cap \mathrm{B}$ is p - neat derivative in G .
(2) To prove, $A+B$ is p - neat derivative in G

Let X be any element in $\mathrm{A}+\mathrm{B}$ and suppose that $\mathrm{d}(\mathrm{x})=\mathrm{pg}$ in G
since $x \in A+B, x=a+b$ for some $a \in A$ and some $b \in B$
we have $d(x)=d(a+b)=p g \in G \quad$ so $d a+d b=p g$, da $\in A$ and $d b \in B$ But A and B are p - neat derivative in G.

Thus $\quad d a=a_{0}$ for some $a_{0} \in A d b=b_{0}$ for some $b_{0} \in B$
we obtain $d(a+b)=d a+d b=a_{o}+b_{0} \in A+B$
consequently $\mathrm{A}+\mathrm{B}$ is p - neat derivation.
Theorem 2: Let A be a neat - derivative subgroup of B in G - then
i) A is a p- neat - derivative in G
ii) If B is p - neat derivative in G, then B / A is p - neat derivative in G / A

Proof: i) For all $a \in A$ and for all p is prime number p we have $d(a)=p g$ for some $g \in G$ But $A \subseteq B$ and A is p - neat derivative in B so, $d(a)=p b \quad$ for some $b \in B$
and $\exists \mathrm{a}_{0} \in \mathrm{~A} \ni \mathrm{~d}(\mathrm{a})=\mathrm{pa}_{\mathrm{o}}$ in A
which means that A is p - neat derivative in G.
(ii) Let $b+A \in B / A$ for some $b \in B$
$(\forall \mathrm{p}) \mathrm{p}$ is prime number, suppose thatd $(\mathrm{b}+\mathrm{A})=\mathrm{p}(\mathrm{g}+\mathrm{A})$ in $\mathrm{G} / \mathrm{A}(\mathrm{g} \in \mathrm{G}) \quad$ therefore $\mathrm{d}(\mathrm{b})=$ pg in G

But we have B is p- neat derivative in G so, $d(b)=p b_{o}$ for some $b_{0} \in B$
we get, $\mathrm{d}(\mathrm{b}+\mathrm{A})=\mathrm{p}(\mathrm{g}+\mathrm{A})=\mathrm{b}_{3}=\mathrm{pb}_{\mathrm{o}}+\mathrm{pA}=\mathrm{p}\left(\mathrm{b}_{\mathrm{o}}+\mathrm{A}\right)$.
Thus $d(b+A)=p(g+A)$ in $G / A \quad d(b+A)=p\left(b_{0}+A\right)$ in B / A
which means that B / A is p - neat derivative in G / A.

References

[1] H. M. A. Abdullah ,Atefa J. S. Abdullah and Rawaa E. E.,Some new results of the integrals in the group mod-n, Journal of progressive Research in Mathematics , V 12 . is sue 2 June 13, 2017
[2] H. M. A. Abdullah, pure (1-2) and 3 subgroup in Abelian groups . pU. M. A ser A Vd 3 no 3-1 pp
135-139 Italy, 1992.
[3] L. Fvchs., Abelian group , USA ,1998
[4] TaToKimiko ,on abelian group every subgroup of which is neat . comment .M .Uniu .st.pauli
1980

