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1. Introduction

Metric fixed Point theory has tremendous applications in many Branches of Science and Engineering field.
Metric fixed point theory developed after the Polish Mathematician S.Banach [1] proved Banach Contraction
principle, which states that a contraction map on a complete Metric Space has a unique fixed point. Now Fixed
point theory has a vast literature. In 1968 R.Kanan [2] proved a fixed point theorem for self map. In 1971
Chatterjea [3] proved a fixed point theorem for a self map which is a modification of Kanan map.

In 1980 Khan M.S. [4] proved some fixed point theorems in Metric and Banach Space. Afterward Delbosko [5]

defined set of all continuous functions g : Rf — R, which satisfying some properties and proved some fixed

point results .In 1994AndrianConstantin [6] proved common fixed point theorem for two pair of weakly
commuting maps. Now In this paper we define a new contraction and prove common fixed point theorems for
sequence of maps.

2. Preliminaries

Definition 2.1:-Let X be a non-empty set . A mapping d : X x X — R issaid to be a Metric or a distance
function if it satisfies following conditions.
1.d (x, y) isnon-negative.

2. d(x,y)=0 ifandonlyifxandy coincides i.e. x=y.

3.d(x,y)=d(y,x) (Symmetry)

4, d(x,y)<d(x,z)+d(z,y) (Triangle inequality)

Then the function d is referred to as metric on X. And (X,d) or simply X is said to as Metric space.

Definition 2.2:- A Metric space (X,d) is said to be a complete Metric space if every Cauchy sequence in X
converges to a point of X.

Definition 2.3:- If (X,d) be a complete Metric space and a function F : X — X s said to be a contraction
map if

d(F(x),F(y))<Bd(x,y)
Forall x,yoX andfor 0 < g <1
Definition 2.4:-Let F : X —» X _then x o X is said to be a fixed point of F if F (x) = x

Definition 2.5:-Let X be a Metric space and if F, and F, be any two maps. An element a ¢ X issaidtobea

common fixed pointof F, and F, if F (a)=F,(a)
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For ex:- If F (x) = sin(x) and F,(x) = tan(x)

Then 0 is the common fixed point F, and F, Since F (0) = sin(0) and F,(0) =tan(0) =0

Theorem 2.1 (Kanan fixed point theorem in complete metric space) [2]
Let X be a Complete metric Space and F : X — X isa mapping such that,
d(Fx,Fy)< g [d(x,Fx)+d(y,Fy)] forall x,y e X

Where 5 < 1010 Then Fhasa unique fixed point.

Theorem 2.2[3]JA mapping F : X — X \yhere (X,d) is a Metric space is said to be C-Contraction if there is

1 L. .
asome B St0< B < —st thefollowing inequality holds
2

d(F.,F )< pg(d(x,F)+d(y,F)))
If (X,d) beacomplete Metricspace, then any C-contraction on X has a unique fixed point.

In 1981 Delbosco [5] defined the set G of all continuous mappings « : [0,)° — [0,) which satisfies the
following conditions
(i) «(1,1,1) =k <1
(ii) Leta,b >0 be such that either a < k(a,b,b) ora < k(b,b,a) ora <k(b,a,b).Then a < kb.
And Delbosco proved that for P : X — X ,Q : X — X on a Complete metric space $(X,d)$
Which satisfies the condition,
d(Pa,Qb)< «a(d(a,b),d(a,Qb),d(b,Qb)) (1)
Forall a,b e X ,wherea in G.Then P and Q have a unique common fixed point. Then in 1994 Adrian
Constantin proved following result of common fixed point theorem.
Let P and Q be two self maps of a metric space (X,d) which satisfies following conditions
(i) d(Pa,Qb) < a(d(a,b),d(a,Pa),d(b,Qb))
foralla,b ¢ X and o € G
(ii)There is a pointv e X so that P is continuous at v and Q is continuous at Pv,

(iii)There exists a pointa e X s.t. the sequence {(P>S)"(a)}={(Q - P)"} has a subsequence

{(QP)" (a)} converging to v.Then v'=Pu is the unique fixed point of P and Q.
And Delbosco proved common fixed point theorem for pair of two weakly commuting mappings also

Theorem 2.3[5]IfP and R be weakly commuting mappings and if Q and S be weakly commuting self mappings
of a complete metric space (X,d) into itself which satisfies the following conditions

d(Px,Qy) < a(d(Rx,Sy),d(Rx,Px),d(Sy,Qy)) for all x,y oX

for ¢ oG .If the range of R contains the range of Q and the range of S contains range of P,

and if one of P,Q,R and S is continuous ,then P,Q,R and S have a unique common fixed Now
point z.

we modify Delboscos inequality for two maps given by equation (1) and prove some common fixed point
theorems .

First we introduce A Let Ebe the set of all functions 8 :[0,%)® — [0,%) which satisfies
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(i) piscontinuous on the set [0,c>o)3 (with respect to Euclidean metric on [0,oo)3)
(ii) x < ky forsome ks.t. 0 <k <1lwheneverx < g(y,y,X)orx < g(y,x,y)

orx < g(x,y,y) forall x,y 0 [0,)
(iii) p(x,y,y) =0 iff x=y=0

Definition 2.6:- A mapping F on a metric space X into itself is said to be New contraction if it satisfies the
following condition.
d(Fa,Fb)< g(d(a,b),d(a,Ta),d (b, Fb))

forevery a,b 6 X and some So&.

Example 2.1 :- Amapping F : X — X defined by
d(Fa,Fb)<a max{d(Fa,a)+d(Fb,b),d(Fb,b)+d(a,b),d(Fa,a)+d(a,b)}

1

for all a,b in X and some 0 <a < — is New type contraction.
2

Themap g : R’ — R, isdefined as

pu,v,w)=a max{u+Vv,v+w,u+w}
. 1
foreveryu,v,w o R ,where a iss.t. 0 <a < —.Then as § oE.
2

Clearly g iscontinuous. Also for u < g(u,v,v) = @ max{u +v,v+u,v + v}
There are two possibilities
Case (i) If max{u+v,v+u,v+v}=u+v

In this case

[04
u < < kv , where k=

l-«a l1-«a

in [0,1)

Case (ii) If max{u+v,v+u,v+v}=v+yv
Case(ii) If .. u < kv where k=2a, for0<a <1
. we have foru < g(v,u,v) oru < gB(v,v,u) we obtainu < kv forkin0<a <1.
d(Fa,Fb) <a max{d(Fa,a)+d(Fb,b),d(Fb,b)+d(a,b),d(Fa,a)+d(a,b)}
= B(d(a,b),d(Fa,a),d(Fb,b))

by definition F is new type contraction.

3 Main Result
Now we prove a fixed point result for new type contraction.

Theorem 3.1 :-If (X,d) be a Complete Metric space and if F be mapping on X into itself which satisfies

d(Fa,Fb) < #(d(a,b),d(a,Ta),d(b,Fb))
(3.1)

for alla,b 0 X and some goX.

F has a Unique fixed point in X.

Proof :-Let a be an arbitrary point in X. We construct a sequence {a, } in X as

a,=Fa,,a,=Fa ..., a, =Fa ie.a =F"a

an+1 = Fa 2 1

n !

Given F satisfies (3.1)
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d(a,,a,,)=d(Fa Fa,)

n-17

IA

p(d(a,  ,a ) d(Fa, ,a, ), d(Fa a.))
p(d(a, ,,a,).d(a ,a ,).d(a, ,.a,))
kd(a, ,,a,) (3.2)

Consider,

IA

IA

Similarly,

d(a a,)<kd(a,,,a, ;)

n-1"'

(3.2) gives

d(a,,a,,)<k’d(a, ,.a,,)

n+1

d(a,,a,,,)<k"d(a, a,) (3.3)
for0 <k <1

Letting n — « we have {a_ }isa Cauchy sequence in X. And as X is complete.
=~ {a,} converges to a point in X. Let {a } converges to uoX

~ fora=uand b=a,

inequality (3.1) gives

d(Fa,a, 6 ) =d(Fu,Fa)

ne1
< pB(d(u,a ) d(u,Fu),d(a,,Fa,))
=p(d(u,a ),d(u,Fu),d(a, . a,,,))
Taking limitas n — c and since given g is continuous we have
d(Fu,u)< g(d(u,u),d(u,Fu),d(u,u))
S~ d(Fu,u)<k.0=0
Thus d(Fu,u)=0
this gives Fu=u
~uis a fixed point of F.

Uniqueness: - Now if possible suppose x be another fixed point of F
*Fx =X

Now we put a=x and b=u in inequality (3.1), we have

Consider,

d(x,u)=d(Tx,u)
< p(d(x,u),d(Fx,x),d(Fu,u))
< pgd(x,u),d(w,w),d(u,u))
< p(d(x,u),0,0)

sod(x,u) <k.0

sod(x,u)=0

This gives x=u.

Now we prove another result of common fixed point theorem for sequence of mappings of new type of
contraction.
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Theorem 3.2 Let (X,d) be a complete Metric space. And if goE and the sequence {F_} _, of maps on X into

n=1

itselfis s.t.

d(Fa,Fb)<pg(d(a,b) d(Fa,a),d(Fb,b) (3.4)
for all a,b 060X .Then sequence {Fn}:l1 has a unique common fixed pointin X.

Proof: -We construct a sequence {a, } of points of X s.t. for some fixed a, in X. For each n in N
We define a, = F a as BoE , from inequality (3.4)

o1
Consider,
d(a,,a,)=d(Fa,, F,a)
< p(d(a,,a,),d(a,,Fa,),d(a,,F,a)
=p(d(a, a,),d(a, a,) d(a, a,)
< kd(a,,a,) (a)
for 0 < k <1.

simmilarly for x,, x, 6 X
d(a,,a,)=d(F,a,,F,a,)
< p(d(a,,a,),d(a,,F,a),d(a,,F,a,))
=p(d(a, a,).d(a, a,),d(a,,a,)
< kd(a,,a,) (b)
from (a) and (b) we have
. d(a,a,) <k’d(a, a,)
In general We have

d(a, )< k"d(a,, a,)

’an+l

For0 < k <1. .. {a } IsaCauchy Sequence in X. Since X is complete. .. it convergesto u & X
consider,

d(u,Fu)<d(u,a, )+d(a,,,, Fu)

m+1

=d(u,a_ ,)+d(F_,a_ ,Fu)

m+1-"m’

IA

d(u,a, )+ pg(d(a,,u),d(F, a ,a ), d(Fu,u)) (since by (3.4))
d(u,a, )+ p(d(a,,u),d(a,,,a,),d(Fu,u))

Forall m,n 6 N . Letting m — oo then above relation gives

d(u,Fu)y<d(u,u)+ g(d(u,u),d(u,u),d(F u,u))

< B(0,0,d(F u,u))

IN

<0
sd(u,Fu)=o0
-~ Fu=u, forallnin N
This gives u is the common fixed point of sequence of maps{F,} .
To prove Uniqueness of fixed point, If possible suppose w in X be another fixed point of F_

S~ Fw=w
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Now consider
d(u,w) = d(Fiu,Fjw)
< p(d(u,w),d(Fu,u),d(w,Fb) (by(3.4))
= p(d(u,w),d(u,u),d(w,w)
= p(d(u,w),0,0)
< k.0
o.d(u,w) =0 This gives u=w. i.e. the common fixed point of {F_} is unique.

Conclusion: - Thus we have defined a new type of contraction and proved one result of fixed point and one
result of common fixed point of sequence of mappings.
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