N -fractional calculus and multivariable I-function and

generalized multivariable polynomials

F.Y. AY ANT ${ }^{1}$
1 Teacher in High School, France

Abstract
By the application of a result given by Nishimoto ([13], (2006),p. 35-44), we investigate the differintegrals of multivariable I-function and class of multivariable polynomials containing general power functions in its argument $\prod_{j}^{r}\left(\left(z_{j}-A_{j}\right)^{\tau_{j}}-f_{j}\right)^{\sigma_{j}}$. The results derived are of most general character includes, among others, the results for differintegrals of power functions given by Nishimoto [10,11,12,13], Saxena and Nishimoto [20], Romero et al. [18,19], Gupta et al. [6] and Jaimini and Nishimoto [7] and others. At the end, we shall see several corollaries and particular cases.

Keywords: General class of multivariable polynomials, fractional calculus, Mellin-barnes integrals contour, multivariable I-function, H -function.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1.Introduction and preliminaries.

Recently, Saxena and Nishimoto [20] have studied the N -fractional calculus and multivariable H -function with general arguments. In our paper, we evaluate the r-dimensional N -fractional calculus concerning a class of multivariable polynomials defined by Srivastava [16] and the multivariable I-function defined by Prasad [25] with general arguments.

Following Nishimoto [11], we define the r-dimensional N -fractional diffeintegral of a function of r-variables in the following form :

Let $D_{j}=\left\{\begin{array}{c}D_{j}, D_{j} \\ -\end{array}\right\}, C_{j}=\left\{\begin{array}{c}C_{j}, C_{j} \\ -\quad+\end{array}\right\}$
C_{j} be a curve along the cut joining two points z_{j} and $-\infty+\omega \operatorname{Im}\left(z_{j}\right)$,
C_{j} be a curve along the cut joining two points z_{j} and $\infty+\omega \operatorname{Im}\left(z_{j}\right)$,
D_{j} be a domain surrounded by C_{j},
D_{j} be a domain surrounded by C_{j}.

Further, let $f=f\left(z_{1}, \cdots, z_{r}\right)$ be an analytic function of r -variables in a domain $D=D_{1} \times D_{2} \times \cdots \times D_{r}$ where each D_{j} is surrounded by C_{j} then the fractional differintegral of an arbitrary order v_{j} for $z_{j}\left(v_{j} \in \mathbb{R}, z_{j} \in \mathbb{C}, j=1, \cdots, r\right)$ of the function $f\left(z_{1}, \cdots, z_{r}\right), \mathrm{if}\left|(f)_{v_{1}, \cdots, v_{r}}\right|$ exists, is defined by
$f_{v_{1}, \cdots, \cdots, v_{r}}=f_{v_{1}, \cdots, \cdots, v_{r}}\left(z_{1}, \cdots, z_{r}\right)=C_{1}, \cdots, C_{r} f_{v_{1}, \cdots, \cdots, v_{r}}\left(z_{1}, \cdots, z_{r}\right)$
$=\frac{\prod_{j=1}^{r} \Gamma\left(v_{j}+1\right)}{(2 \pi \omega)^{r}} \int_{C_{1}} \cdots \int_{C_{r}} \frac{f\left(\zeta_{1}, \cdots, \zeta_{r}\right)}{\prod_{j=1}^{r}\left(\zeta_{j}-z_{j}\right)^{v_{j}+1}} \mathrm{~d} \zeta_{1} \cdots \mathrm{~d} \zeta_{r}$
$(f)_{-m_{1}, \cdots,-m_{r}}=\lim _{v_{j} \rightarrow-m_{j}} f_{v_{1}, \cdots, v_{r}}\left(m_{j} \in \mathbb{Z}^{+}, j=1, \cdots, r\right)$
where

$$
\begin{equation*}
-\pi \leqslant \arg \left(\zeta_{j}-z_{j}\right) \leqslant \pi \text { for } C_{j}=\underline{C_{j}} \tag{1.2}
\end{equation*}
$$

The generalized polynomials of multivariables defined by Srivastava [25], is given in the following manner :
$S_{N_{1}, \cdots, N_{r}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathrm{r}}}\left[y_{1}, \cdots, y_{r}\right]=\sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{\mathfrak{1}}\right]} \cdots \sum_{K_{r}=0}^{\left[N_{r} / \mathfrak{M}_{\mathfrak{r}}\right]} \frac{\left(-N_{1}\right)_{\mathfrak{M}_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{r}\right)_{\mathfrak{M}_{r} K_{r}}}{K_{r}!} A\left[N_{1}, K_{1} ; \cdots ; N_{r}, K_{r}\right] y_{1}^{K_{1}} \cdots y_{r}^{K_{r}}$
where $\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathrm{r}}$ are arbitrary positive integers and the coefficients $A\left[N_{1}, K_{1} ; \cdots ; N_{r}, K_{r}\right]$ are arbitrary constants, real or complex.

We shall note
$a_{r}=\frac{\left(-N_{1}\right)_{\mathfrak{M}_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{r}\right)_{\mathfrak{M}_{\mathfrak{r}} K_{r}}}{K_{r}!} A\left[N_{1}, K_{1} ; \cdots ; N_{r}, K_{r}\right]$
The multivariable I-function defined by Prasad [15] generalizes the multivariable H -function studied by Srivastava and Panda [26,27]. This function of r-variables is defined in term of multiple Mellin-Barnes type integral :
$I\left(z_{1}, z_{2}, \cdots, z_{r}\right)=I_{p_{2}, q_{2}, p_{3}, q_{3} ; \cdots ; p_{r}, q_{r}: p^{(1)}, q^{(1)} ; \cdots ; p^{(r)}, q^{(r)}}^{0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{r}: m^{(1)}, n^{(1)} ; \cdots ;{ }^{(r)}\left(\begin{array}{c}(r) \\ \mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array}\right)\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{\prime}, \alpha_{2 j}^{\prime \prime}\right)_{1, p_{2}} ; \cdots ;} \begin{aligned} & \\ & \\ & \left.\mathrm{b}_{2 j} ; \beta_{2 j}^{\prime}, \beta_{2 j}^{\prime \prime}\right)_{1, q_{2}} ; \cdots ;\end{aligned}$

$$
\begin{gather*}
\left(\mathrm{a}_{r j} ; \alpha_{r j}^{(1)}, \cdots, \alpha_{r j}^{(r)}\right)_{1, p_{r}}:\left(a_{j}^{(1)}, \alpha_{j}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{j}^{(r)}, \alpha_{j}^{(r)}\right)_{1, p^{(r)}} \\
\left.\left(\mathrm{b}_{r j} ; \beta_{r j}^{(1)}, \cdots, \beta_{r j}^{(r)}\right)_{1, q_{r}}:\left(b_{j}^{(1)}, \beta_{j}^{(1)}\right)_{1, q^{(1)}} ; \cdots ;\left(b_{j}^{(r)}, \beta_{j}^{(r)}\right)_{1, q^{(r)}}\right) \\
\quad=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{i=1}^{r} \phi_{i}\left(s_{i}\right) z_{i}^{s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.5}
\end{gather*}
$$

where
$\phi_{i}\left(s_{i}\right)=\frac{\prod_{j=1}^{m^{(i)}} \Gamma\left(b_{j}^{(i)}-\beta_{j}^{(i)} s_{i}\right) \prod_{j=1}^{n^{(i)}} \Gamma\left(1-a_{j}^{(i)}+\alpha_{j}^{(i)} s_{i}\right)}{\prod_{j=m^{(i)}+1}^{q^{(i)}} \Gamma\left(1-b_{j}^{(i)}+\beta_{j}^{(i)} s_{i}\right) \prod_{j=n^{(i)}+1}^{p^{(i)}} \Gamma\left(a_{j}^{(i)}-\alpha_{j}^{(i)} s_{i}\right)}, i=1, \cdots, r$
and
$\phi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{n_{2}} \Gamma\left(1-a_{2 j}+\sum_{i=1}^{2} \alpha_{2 j}^{(i)} s_{i}\right) \prod_{j=1}^{n_{3}} \Gamma\left(1-a_{3 j}+\sum_{i=1}^{3} \alpha_{3 j}^{(i)} s_{i}\right) \cdots}{\prod_{j=n_{2}+1}^{p_{2}} \Gamma\left(a_{2 j}-\sum_{i=1}^{2} \alpha_{2 j}^{(i)} s_{i}\right) \prod_{j=n_{3}+1}^{p_{3}} \Gamma\left(a_{3 j}-\sum_{i=1}^{3} \alpha_{3 j}^{(i)} s_{i}\right) \cdots}$

$$
\frac{\cdots \prod_{j=1}^{n_{r}} \Gamma\left(1-a_{r j}+\sum_{i=1}^{r} \alpha_{r j}^{(i)} s_{i}\right)}{\cdots \prod_{j=n_{r}+1}^{p_{r}} \Gamma\left(a_{r j}-\sum_{i=1}^{r} \alpha_{r j}^{(i)} s_{i}\right) \prod_{j=1}^{q_{2}} \Gamma\left(1-b_{2 j}-\sum_{i=1}^{2} \beta_{2 j}^{(i)} s_{i}\right)}
$$

$$
\begin{equation*}
\times \frac{1}{\prod_{j=1}^{q_{3}} \Gamma\left(1-b_{3 j}+\sum_{i=1}^{3} \beta_{3 j}^{(i)} s_{i}\right) \cdots \prod_{j=1}^{q_{r}} \Gamma\left(1-b_{r j}-\sum_{i=1}^{r} \beta_{r j}^{(i)} s_{i}\right)} \tag{1.7}
\end{equation*}
$$

The defined integral of the above function, the existence and convergence conditions, see Y.N. Prasad [15]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.7) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{i}\right|<\frac{1}{2} \Omega_{i} \pi$, where

$$
\begin{align*}
& \Omega_{i}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+\cdots+ \\
& \left(\sum_{k=1}^{n_{s}} \alpha_{s k}^{(i)}-\sum_{k=n_{s}+1}^{p_{s}} \alpha_{s k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{s}} \beta_{s k}^{(i)}\right) \tag{1.8}
\end{align*}
$$

where $i=1, \cdots, r$. The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function. We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where $k=1, \cdots, r: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m^{(k)}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n^{(k)}
$$

In this paper, we shall note
$U=p_{2}, q_{2} ; p_{3}, q_{3} ; \cdots ; p_{r-1}, q_{r-1}$
$V=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{r-1}$
$\mathbf{A}=\left(a_{2 k} ; \alpha_{2 k}^{(1)}, \alpha_{2 k}^{(2)}\right)_{1, p_{2}} ; \cdots ;\left(a_{(r-1) k} ; \alpha_{(r-1) k}^{(1)}, \alpha_{(r-1) k}^{(2)}, \cdots, \alpha_{(r-1) k}^{(r-1)}\right)_{1, p_{r-1}}:\left(a_{r k} ; \alpha_{r k}^{(1)}, \alpha_{r k}^{(2)}, \cdots, \alpha_{r k}^{(r)}\right)_{1, p_{r}}$
$\mathbf{B}=\left(b_{2 k} ; \beta_{2 k}^{(1)}, \beta_{2 k}^{(2)}\right)_{1, q_{2}} ; \cdots ;\left(b_{(r-1) k} ; \beta_{(r-1) k}^{(1)}, \beta_{(r-1) k}^{(2)}, \cdots, \beta_{(r-1) k}^{(r-1)}\right)_{1, q_{r-1}}:\left(b_{r k} ; \beta_{r k}^{(1)}, \beta_{r k}^{(2)}, \cdots, \beta_{r k}^{(r)}\right)_{1, q_{r}}$

2. Required results.

Lemma 1.

Let $f\left(z_{1}, \cdots, z_{r}\right)=\prod_{j=1}^{r}\left(\left(z_{j}-A\right)^{\tau_{j}}-f_{j}\right)^{\sigma_{j}}$
be an analytic function having no branch points inside or on C_{j}, then r-dimensional N -fractional differintegral is given by
$f_{v_{1}, \cdots, v_{r}}\left(z_{1}, \cdots, z_{r}\right)=\left\{\prod_{j=1}^{r}\left[\left(\left(z_{j}-A\right)^{\tau_{j}}-f_{j}\right)^{\sigma_{j}}\right]\right\}_{v_{1}, \cdots, v_{r}}=\prod_{j=1}^{r}\left[\left(\left(z_{j}-A\right)^{\tau_{j}}-f_{j}\right)^{\sigma_{j}}\right]_{v_{j}}$
see Saxena and Nishimoto [20] about the proof.

Lemma 2.

By using the lemma 1 and Nishimoto's result [13], we obtain
$f_{v_{1}, \cdots, v_{r}}\left(z_{1}, \cdots, z_{r}\right)=e^{-\omega \pi \sum_{j=1}^{r} v_{j}} \prod_{j=1}^{r}\left[\frac{\left(z_{j}-A\right)^{\sigma_{j} \tau_{j}-v_{j}}}{\Gamma\left(-\sigma_{j}\right)} \sum_{l_{j}=0}^{\infty} \frac{\Gamma\left(l_{j}-\sigma_{j}\right) \Gamma\left(v_{j}+l_{j} \tau_{j}-\sigma_{j} \tau_{j}\right)}{\Gamma\left(l_{j} \tau_{j}-\sigma_{j} \tau_{j}\right)}\left(\frac{f_{j}}{\left(z_{j}-A\right)^{\tau_{j}}}\right)^{l_{j}}\right]$
Provided that
$\left|\frac{\Gamma\left(v_{j}+l_{j} \tau_{j}-\sigma_{j} \tau_{j}\right)}{\Gamma\left(l_{j} \tau_{j}-\sigma_{j} \tau_{j}\right)}\right|<\infty, z_{j} \neq A,\left(z_{j}-A\right)^{\tau_{j}} \neq f_{j}, \sigma_{j} \in \mathbb{C}, \tau_{j} \in \mathbb{R}^{+}, v_{j} \in \mathbb{R}$ and $\left|\frac{f_{j}}{\left(z_{j}-A\right)^{\tau_{j}}}\right|<1$ for $j=1, \cdots, r$

It is interesting to note that for $\tau_{1}=\cdots=\tau_{r}=1$, (2.2) reduces to a result given by Garg et al. ([3],p. 191, eq. (2.1)).

Lemma 3.

$\left[\left((z-A)^{\tau}-f\right)\left((z-A)^{\tau}-g\right)\right]_{v}=e^{-\omega \pi v} \sum_{u=0}^{\infty} \frac{(-\rho)_{u}}{u!}(g-f)^{u} \sum_{l=0}^{\infty} \frac{(z-A)^{(\rho+\sigma-u) \tau-v}}{\Gamma(u-\sigma-\rho)}$
$\frac{\Gamma(l+u-\sigma-\rho) \Gamma(v+(u+l-\sigma-\rho) \tau)}{\Gamma((l+u-\sigma-\rho) \tau)}\left(\frac{f}{(z-A)^{\tau}}\right)^{l}$
where $\left|\frac{\Gamma(v+(u+l-\sigma-\rho) \tau)}{\Gamma((l+u-\sigma-\rho) \tau)}\right|<\infty, z^{\tau} \neq f,, \sigma \in \mathbb{C}, \tau \in \mathbb{R}^{+}, v \in \mathbb{R}$ and $\left|\frac{f}{(z-A)^{\tau}}\right|<1$.
Proof
$\left[\left((z-A)^{\tau}-f\right)\left((z-A)^{\tau}-g\right)\right]_{v}=\sum_{u=0}^{\infty} \frac{(-\rho)_{u}}{u!}(g-f)^{u}\left[\left((z-A)^{\tau}-f\right)_{\sigma+\rho-u}\right]_{v}=e^{-\omega \pi v}$
$\sum_{u=0}^{\infty} \frac{(-\rho)_{u}}{u!}(g-f)^{u} \sum_{l=0}^{\infty} \frac{(z-A)^{(\rho+\sigma-u) \tau-v}}{\Gamma(u-\sigma-\rho)} \frac{\Gamma(l+u-\sigma-\rho) \Gamma\left(v+\tau(l+u-\sigma-\rho) \tau_{j}\right)}{\Gamma\left(\tau(l+u-\sigma-\rho) \tau_{j}\right)}\left(\frac{f}{(z-A)^{\tau}}\right)^{l}$

Lemma 4.

$\left[\left(\left(z_{j}-A\right)^{\tau_{j}}-f_{j}\right)^{\sigma_{j}}\left(\left(z_{j}-A\right)^{\tau_{j}}-g_{j}\right)^{\rho_{j}}\right]_{v_{1}, \cdots, v_{r}}=\prod_{j=1}^{r} e^{-\omega \pi v_{j}} \sum_{u_{j}=0}^{\infty} \frac{\left(-\rho_{j}\right)_{u_{j}}}{u_{j}!}\left(g_{j}-f_{j}\right)^{u_{j}} \sum_{l_{j}=0}^{\infty} \frac{\left(z_{j}-A\right)^{\left(\rho_{j}+\sigma_{j}-u_{j}\right) \tau_{j}-v_{j}}}{\Gamma\left(u_{j}-\sigma_{j}-\rho_{j}\right)}$
$\frac{\Gamma\left(l_{j}+u_{j}-\sigma_{j}-\rho_{j}\right) \Gamma\left(v_{j}+\left(u_{j}+l_{j}-\sigma_{j}-\rho_{j}\right) \tau_{j}\right)}{\Gamma\left(\left(u_{j}+l_{j}-\sigma_{j}-\rho_{j}\right) \tau_{j}\right)}\left(\frac{f_{j}}{\left(z_{j}-A\right)^{\tau_{j}}}\right)^{l}$
where $\left|\frac{\Gamma\left(v_{j}+\left(u_{j}+l_{j}-\sigma_{j}-\rho_{j}\right) \tau_{j}\right)}{\Gamma\left(\left(u_{j}+l_{j}-\sigma_{j}-\rho_{j}\right) \tau_{j}\right)}\right|<\infty, z_{j} \neq A,\left(z_{j}-A\right)^{\tau_{j}} \neq f_{j}, \sigma_{j} \in \mathbb{C}, \tau_{j} \in \mathbb{R}^{+}, v_{j} \in \mathbb{R}$ and $\left|\frac{f_{j}}{\left(z_{j}-A\right)^{\tau_{j}}}\right|<1$ for $j=1, \cdots, r$.

Proof
By using the lemma 1 and lemma 3, we obtain the lemma 4.

3. Main result.

We have the following result.

Theorem.

$$
\begin{aligned}
& {\left[\prod _ { j = 1 } ^ { r } [((z _ { j } - A) ^ { \tau _ { j } } - f _ { j }) ^ { \sigma _ { j } }] [((z _ { j } - A) ^ { \tau _ { j } } - g _ { j }) ^ { \rho _ { j } }] S _ { N _ { 1 } , \cdots , N _ { r } } ^ { \mathfrak { M } _ { 1 } , \cdots , \mathfrak { M } _ { \mathrm { r } } } \left(y_{1}\left[\left(z_{1}-A\right)^{\tau_{1}}-f_{1}\right]^{\alpha_{1}}\left[\left(z_{1}-A\right)^{\tau_{1}}-g_{1}\right]^{\beta_{1}}, \cdots,\right.\right.} \\
& \left.y_{r}\left[\left(z_{r}-A\right)^{\tau_{r}}-f_{r}\right]^{\alpha_{r}}\left[\left(z_{r}-A\right)^{\tau_{r}}-g_{r}\right]^{\beta_{r}}\right) I\left(\lambda_{1}\left[\left(z_{1}-A\right)^{\tau_{1}}-f_{1}\right]^{\mu_{1}}\left[\left(z_{1}-A\right)^{\tau_{1}}-g_{1}\right]^{\eta_{1}}, \cdots,\right. \\
& \left.\left.\lambda_{r}\left[\left(z_{r}-A\right)^{\tau_{r}}-f_{r}\right]^{\mu_{r}}\left[\left(z_{r}-A\right)^{\tau_{r}}-g_{r}\right]^{\eta_{r}}\right)\right]_{v_{1}, \cdots, v_{r}}
\end{aligned}
$$

$$
=e^{-\omega \pi \sum_{j=1}^{r} v_{j}} \sum_{u_{1}, \cdots, u_{r}=0}^{\infty} \prod_{j=1}^{r}\left[\frac{\left(g_{j}-f_{j}\right)^{u_{j}}}{u_{j}!}\left(z_{j}-A\right)^{\tau_{j}\left(\sigma_{j}+\rho_{j}-u_{j}\right)-v_{j}}\right] \sum_{l_{1}, \cdots, l_{r}=0}^{\infty} \prod_{j=1}^{r}\left[\left(\frac{f_{j}}{\left(z_{j}-A\right)^{\tau_{j}}}\right)^{l_{j}} \frac{1}{l_{j}!}\right]
$$

$$
\sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{r}=0}^{\left[N_{r} / \mathfrak{M}_{\mathfrak{r}}\right]} a_{r} \prod_{j=1}^{r} y_{j}^{K_{j}}\left(z_{j}-A\right)^{K_{j} \tau_{j}\left(\alpha_{j}+\beta_{j}\right)} I_{U: p_{r}, q_{r} ; Y^{\prime}}^{V ; 0, n_{r} ; X^{\prime}}\left(\begin{array}{c|c}
\lambda_{1}\left(z_{1}-A\right)^{\tau_{1}\left(\mu_{1}+\eta_{1}\right)} & \mathbf{A}: \mathrm{A}^{\prime} \tag{3.1}\\
\cdot & \cdot \\
\lambda_{r}\left(z_{r}-A\right)^{\tau_{r}\left(\mu_{r}+\eta_{r}\right)} & \mathbf{B}: \mathrm{B}^{\prime}
\end{array}\right)
$$

where
$X^{\prime}=m^{(1)}+3, n^{(1)} ; \cdots ; m^{(r)}+3, n^{(r)}$
$Y^{\prime}=p^{(1)}+3, q^{(1)}+3 ; \cdots ; p^{(r)}+3, q^{(r)}+3$
$A^{\prime}=\left(a_{k}^{(1)} ; \alpha_{k}^{(1)}\right)_{1, p^{(1)}},\left(-\rho_{1}-K_{1} \beta_{1} ; \eta_{1}\right),\left(u_{1}-\sigma_{1}-\rho_{1}-K_{1}\left(\alpha_{1}+\beta_{1}\right) ; \mu_{1}+\eta_{1}\right)$,
$\left(\tau_{1}\left(l_{1}+u_{1}-\sigma_{1}-\rho_{1}-K_{1}\left(\alpha_{1}+\beta_{1}\right)\right) ; \tau_{1}\left(\mu_{1}+\eta_{1}\right)\right) ; \cdots ;\left(a_{k}^{(r)} ; \alpha_{k}^{(r)}\right)_{1, p^{(r)}},\left(-\rho_{r}-K_{r} \beta_{r} ; \eta_{r}\right)$,
$\left(u_{r}-\sigma_{r}-\rho_{r}-K_{r}\left(\alpha_{r}+\beta_{r}\right) ; \mu_{r}+\eta_{r}\right),\left(\tau_{r}\left(l_{r}+u_{r}-\sigma_{r}-\rho_{r}-K_{r}\left(\alpha_{r}+\beta_{r}\right)\right) ; \tau_{r}\left(\mu_{r}+\eta_{r}\right)\right)$
$B^{\prime}=\left(b_{k}^{(1)} ; \beta_{k}^{(1)}\right)_{1, q^{(1)}},\left(u_{1}-\rho_{1}-K_{1} \beta_{1} ; \eta_{1}\right),\left(l_{1}+u_{1}-\sigma_{1}-\rho_{1}-K_{1}\left(\alpha_{1}+\beta_{1}\right) ; \mu_{1}+\eta_{1}\right)$,
$\left(v_{1}+\tau_{1}\left(l_{1}+u_{1}-\sigma_{1}-\rho_{1}-K_{1}\left(\alpha_{1}+\beta_{1}\right)\right) ; \tau_{1}\left(\mu_{1}+\eta_{1}\right)\right) ; \cdots ;\left(b_{k}^{(r)} ; \beta_{k}^{(r)}\right)_{1, q^{(r)}},\left(u_{r}-\rho_{r}-K_{r} \beta_{r} ; \eta_{r}\right)$,
$\left(l_{r}+u_{r}-\sigma_{r}-\rho_{r}-K_{r}\left(\alpha_{r}+\beta_{r}\right) ; \mu_{r}+\eta_{r}\right),\left(v_{r}+\tau_{r}\left(l_{r}+u_{r}-\sigma_{r}-\rho_{r}-K_{r}\left(\alpha_{r}+\beta_{r}\right)\right) ; \tau_{r}\left(\mu_{r}+\eta_{r}\right)\right)$
Provided that
$z_{j}^{\tau_{j}} \neq g_{j}, f_{j} ; \alpha_{j}, \beta_{j}, \mu_{j}, \eta_{j}, \tau_{j} \in \mathbb{R}^{+}, z_{j} \neq A, v_{j} \in \mathbb{R}$ for $j=1, \cdots, r$
$\tau_{j} \operatorname{Re}\left(\sigma_{j}+\eta_{j}+K_{j}\left(\alpha_{j}+\beta_{j}\right)\right)+\tau_{j}\left(\mu_{j}+\eta_{j}\right) \max _{1 \leqslant l \leqslant n^{(j)}} \operatorname{Re}\left(\frac{a_{l}^{(j)}-1}{\alpha_{l}^{(j)}}\right)<v_{j}<0 ; j=1, \cdots, r$
$\left|\arg \lambda_{j}\left(\left(z_{j}-A\right)^{\tau_{j}}-f_{j}\right)^{\mu_{j}}\left(\left(z_{j}-A\right)^{\tau_{j}}-g_{j}\right)^{\eta_{j}}\right|<\frac{1}{2} \Omega_{j} \pi$, where Ω_{j} is defined by (1.8) and the multiple series in the left-hand side of (3.1) is absolutely and uniformely convergent.

Proof
To establish (3.1), we first express the class of multivariable polynomials $S_{N_{1}, \cdots, N_{r}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{\mathfrak{r}}}[$.$] in series forms with the help of$ (1.3), we employ the definition of the N -fractional calculus given by Nishimoto (1.1) on the left-hand side of equation (3.1), we express the multivariable I-function in terms of its equivalent multiple Mellin-Barnes integrals contour with the help of (1.5), we interchange the order of (K_{1}, \cdots, K_{r})-finite multiple summations and (s_{1}, \cdots, s_{r})-integrals (which is permissible under the stated conditions), we obtain (say I),
$I=\sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{r}=0}^{\left[N_{r} / \mathfrak{M}_{\mathrm{r}}\right]} a_{r} \prod_{j=1}^{r} y_{j}^{K_{j}} \frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{i=1}^{r} \phi_{i}\left(s_{i}\right) \lambda_{i}^{s_{i}}$
$\left[\left(\left(z_{i}-A\right)^{\tau_{i}}-f_{i}\right)^{\sigma_{i}+\alpha_{i} K_{i}+\mu_{i} s_{i}}\left(\left(z_{i}-A\right)^{\tau_{i}}-g_{i}\right)^{\rho_{i}+\beta_{i} K_{i}+\eta_{i} s_{i}}\right]_{v_{1}, \cdots, v_{r}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
Now, we use the lemma 4, we get
$I=\sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{r}=0}^{\left[N_{r} / \mathfrak{M}_{\mathrm{r}}\right]} a_{r} \frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{j=1}^{r} \phi_{j}\left(s_{j}\right) \lambda_{j}^{s_{j}} e^{-\omega \pi v_{j}} \sum_{u_{j}=0}^{\infty} \frac{\left(-\rho_{j}-\beta_{j} K_{j}-\eta_{j} s_{j}\right)_{u_{j}}}{u_{j}!}\left(g_{j}-f_{j}\right)^{u_{j}}$

$$
\begin{aligned}
& \sum_{l_{j}=0}^{\infty}\left(z_{j}-A\right)^{\left(\rho_{j}+\sigma_{j}-u_{j}\right) \tau_{j}-v_{j}}\left(\frac{f_{j}}{\left(z_{j}-A\right)^{\tau_{j}}}\right)^{l_{j}} \frac{\Gamma\left(l_{j}+u_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta_{j}\right) s_{j}-\sigma_{j}-\rho_{j}\right)}{\Gamma\left(u_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta_{j}\right) s_{j}-\sigma_{j}-\rho_{j}\right)} \\
& \frac{\Gamma\left(v_{j}+\left(u_{j}+l_{j}-\sigma_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta\right) s_{j}-\rho_{j}\right) \tau_{j}\right)}{\Gamma\left(\left(u_{j}+l_{j}-\sigma_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta_{j}\right) s_{j}-\rho_{j}\right) \tau_{j}\right)} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}
\end{aligned}
$$

we interchange the order of $\left(u_{j}, l_{j}\right)_{1 \leqslant j \leqslant r}$ multiple series and $\left(s_{1}, \cdots, s_{r}\right)$-integrals (which is permissible under the stated conditions), we get

$$
\begin{aligned}
& I=\sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{r}=0}^{\left[N_{r} / \mathfrak{M}_{r}\right]} a_{r} \prod_{j=1}^{r} e^{-\omega \pi v_{j}} \sum_{u_{j}=0}^{\infty} \frac{\left(z_{j}-A\right)^{\left(\rho_{j}+\sigma_{j}-u_{j}\right) \tau_{j}-v_{j}}}{u_{j}!}\left(g_{j}-f_{j}\right)^{u_{j}} \sum_{l_{j}=0}^{\infty}\left(\frac{f_{j}}{\left(z_{j}-A\right)^{\tau_{j}}}\right)^{l_{j}} \frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \\
& \prod_{j=1}^{r} \frac{\Gamma\left(l_{j}+u_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta_{j}\right) s_{j}-\sigma_{j}-\rho_{j}\right) \Gamma\left(v_{j}+\left(u_{j}+l_{j}-\sigma_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta\right) s_{j}-\rho_{j}\right) \tau_{j}\right)}{\Gamma\left(u_{j}-\sigma_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta_{j}\right) s_{j}-\rho_{j}\right) \Gamma\left(\left(u_{j}+l_{j}-\sigma_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta_{j}\right) s_{j}-\rho_{j}\right) \tau_{j}\right)} \\
& \frac{\Gamma\left(u_{j}-\rho_{j}-\beta_{j} K_{j}-\eta_{j} s_{j}\right)}{\Gamma\left(-\rho_{j}-\beta_{j} K_{j}-\eta_{j} s_{j}\right)} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{j=1}^{r} \phi_{j}\left(s_{j}\right) \lambda_{j}^{s_{j} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}} \\
& =e^{-\omega \pi \sum_{j=1}^{r} v_{j}} \sum_{l_{1}, \cdots, l_{r}=0}^{\infty} \prod_{j=1}^{r}\left[\frac{\left(g_{j}-f_{j}\right)^{u_{j}}}{u_{j}!}\left(z_{j}-A\right)^{\tau_{j}\left(\sigma_{j}+\rho_{j}-u_{j}\right)-v_{j}} \sum_{j=1}^{\infty} \prod_{j=1}^{r}\left[\left(z_{j}-A\right)^{\tau_{j}}\right)^{f_{j}} \frac{1}{l_{j}!}\right] \\
& {\left[N_{1} / \mathfrak{M}_{1}\right]} \\
& \sum_{K_{1}=0}^{\left[N_{r} / \mathfrak{M}_{\mathrm{r}}\right]} \sum_{K_{r}=0}^{l_{r}} \frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}}^{\cdots \int_{L_{r}}} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{j=1}^{r} \phi_{j}\left(s_{j}\right) \lambda_{j}^{s_{j}} \frac{\Gamma\left(u_{j}-\rho_{j}-\beta_{j} K_{j}-\eta_{j} s_{j}\right)}{\Gamma\left(-\rho_{j}-\beta_{j} K_{j}-\eta_{j} s_{j}\right)} \\
& \frac{\Gamma\left(l_{j}+u_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta_{j}\right) s_{j}-\sigma_{j}-\rho_{j}\right) \Gamma\left(v_{j}+\left(u_{j}+l_{j}-\sigma_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta\right) s_{j}-\rho_{j}\right) \tau_{j}\right)}{\Gamma\left(u_{j}-\sigma_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta_{j}\right) s_{j}-\rho_{j}\right) \Gamma\left(\left(u_{j}+l_{j}-\sigma_{j}-\left(\alpha_{j}+\beta_{j}\right) K_{j}-\left(\mu_{j}+\eta_{j}\right) s_{j}-\rho_{j}\right) \tau_{j}\right)} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}
\end{aligned}
$$

Finally interpreting the multiple Mellin-Barnes integrals contour in multivariable I-function, we obtain the desired result (3.1) after algebric manipulations.

Remarks :

We note that the technique employed here may be used in extending the result (3.1) to a product of any finite number of power functions in the arguments of the multivariable I-function and multivariable polynomials instead of two. The formula (3.1) can be extended to product of any finite number of multivariable polynomials and multivariable Ifunctions.

4. Special cases.

If we set $A=0$ in the formula (3.1), we obtain the following result.

Corollary 1.

$$
\begin{aligned}
& {\left[\prod_{j=1}^{r}\left(z_{j}^{\tau_{j}}-f_{j}\right)^{\sigma_{j}}\left(z_{j}^{\tau_{j}}-g_{j}\right)^{\rho_{j}} S_{N_{1}, \cdots, N_{r}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{r}}\left(y_{1}\left(z_{1}^{\tau_{1}}-f_{1}\right)^{\alpha_{1}}\left(z_{1}^{\tau_{1}}-g_{1}\right)^{\beta_{1}}, \cdots, y_{r}\left(z_{r}^{\tau_{r}}-f_{r}\right)^{\alpha_{r}}\left(z_{r}^{\tau_{r}}-g_{r}\right)^{\beta_{r}}\right)\right.} \\
& I\left(\lambda_{1}\left(z_{1}^{\tau_{1}}-f_{1}\right)^{\mu_{1}}\left(z_{1}^{\tau_{1}}-g_{1}\right)^{\eta_{1}}, \cdots,\left(\lambda_{r}\left(z_{r}^{\tau_{r}}-f_{r}\right)^{\mu_{r}}\left(z_{r}^{\tau_{r}}-g_{r}\right)^{\eta_{r}}\right)\right]_{v_{1}, \cdots, v_{r}} \\
& =e^{-\omega \pi \sum_{j=1}^{r} v_{j}} \sum_{u_{1}, \cdots, u_{r}=0}^{\infty} \prod_{j=1}^{r}\left[\frac{\left(g_{j}-f_{j}\right)^{u_{j}}}{u_{j}!} z_{j}^{\left.\tau_{j}\left(\sigma_{j}+\rho_{j}-u_{j}\right)-v_{j}\right]} \sum_{l_{1}, \cdots, l_{r}=0}^{\infty} \prod_{j=1}^{r}\left[\left(\frac{f_{j}}{z_{j}}\right)^{l_{j}} \frac{1}{l_{j}!}\right]\right.
\end{aligned}
$$

$$
\sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{r}=0}^{\left[N_{r} / \mathfrak{M}_{\mathbf{r}}\right]} a_{r} \prod_{j=1}^{r} y_{j}^{K_{j}} z_{j}^{K_{j} \tau_{j}\left(\alpha_{j}+\beta_{j}\right)} I_{U: p_{r}, q_{r} ; Y^{\prime}}^{V ; n_{r} ; X^{\prime}}\left(\begin{array}{c|c}
\lambda_{1} z_{1}^{\tau_{1}\left(\mu_{1}+\eta_{1}\right)} & \mathbf{A}: \mathrm{A}^{\prime} \tag{4.1}\\
\cdot & \cdot \\
\cdot & \cdot \\
\lambda_{r} z_{r}^{\tau_{r}\left(\mu_{r}+\eta_{r}\right)} & \mathbf{B}: \mathrm{B}
\end{array}\right)
$$

$X^{\prime}, Y^{\prime}, A^{\prime}$ and B^{\prime} are defined respectively by (3.2), (3.3), (3.4) and (3.5).
Provided that
$z_{j}^{\tau_{j}} \neq g_{j}, f_{j} ; \alpha_{j}, \beta_{j}, \mu_{j}, \eta_{j}, \tau_{j} \in \mathbb{R}^{+}, z_{j} \neq A, v_{j} \in \mathbb{R}$ for $j=1, \cdots, r$
$\tau_{j} \operatorname{Re}\left(\sigma_{j}+\eta_{j}+K_{j}\left(\alpha_{j}+\beta_{j}\right)\right)+\tau_{j}\left(\mu_{j}+\eta_{j}\right) \max _{1 \leqslant l \leqslant n^{(j)}} \operatorname{Re}\left(\frac{a_{l}^{(j)}-1}{\alpha_{l}^{(j)}}\right)<v_{j}<0$ for $j=1, \cdots, r$
$\left|\arg \lambda_{j}\left(z_{j}^{\tau_{j}}-f_{j}\right)^{\mu_{j}}\left(z_{j}^{\tau_{j}}-g_{j}\right)^{\eta_{j}}\right|<\frac{1}{2} \Omega_{j} \pi$, where Ω_{j} is defined by (1.8) and the multiple series in the left-hand side of (4.1) is absolutely and uniformely convergent.

On the other hand if we take $A=0$ and $\tau_{1}=\cdots=\tau_{r}=1$, the using the binomial formula

$$
\begin{equation*}
(1-z)^{-\alpha}=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}}{k!} z^{k},|z|<1 \tag{4.2}
\end{equation*}
$$

it yields the following corrected form of the result given by Garg et al. [3]

Corollary 2.

$$
\begin{align*}
& \prod_{j=1}^{r}\left[\left(z_{j}-f_{j}\right)^{\sigma_{j}}\right]\left[\left(z_{j}-g_{j}\right)^{\rho_{j}}\right] S_{N_{1}, \cdots, N_{r}}^{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{r}}\left(y_{1}\left(z_{1}-f_{1}\right)^{\alpha_{1}}\left(z_{1}-g_{1}\right)^{\beta_{1}}, \cdots, y_{r}\left(z_{r}-f_{r}\right)^{\alpha_{r}}\left(z_{r}-g_{r}\right)^{\beta_{r}}\right) \\
& \left.I\left(\lambda_{1}\left(z_{1}-f_{1}\right)^{\mu_{1}}\left(z_{1}-g_{1}\right)^{\eta_{1}}, \cdots, \lambda_{r}\left(z_{r}-f_{r}\right)^{\mu_{r}}\left(z_{r}-g_{r}\right)^{\eta_{r}}\right)\right]_{v_{1}, \cdots, v_{r}} \\
& =e^{-\omega \pi \sum_{j=1}^{r} v_{j}} \prod_{j=1}^{r}\left(z_{j}-f_{j}\right)^{\sigma_{j}+\rho_{j}-v_{j}} \sum_{u_{1}, \cdots, u_{r}=0}^{\infty} \prod_{j=1}^{r}\left(\frac{\left(g_{j}-f_{j}\right)}{z_{j}-f_{j}}\right)^{u_{j}} \frac{1}{u_{j}!} \sum_{K_{1}=0}^{\left[N_{1} / \mathfrak{M}_{1}\right]} \cdots \sum_{K_{r}=0}^{\left[N_{r} / \mathfrak{M}_{r}\right]} a_{r} \\
& \prod_{j=1}^{r} y_{j}^{K_{j}}\left(z_{j}-f_{j}\right)^{K_{j} \tau_{j}\left(\alpha_{j}+\beta_{j}\right)} I_{U: p_{r}, q_{r} ; Y^{\prime \prime}}^{V ; 0, n_{r} ; X^{\prime \prime}}\left(\begin{array}{c}
\lambda_{1}\left(z_{1}-f_{1}\right)^{\left(\mu_{1}+\eta_{1}\right)} \\
\cdot \\
\cdot \\
\lambda_{r}\left(z_{r}-f_{r}\right)^{\left(\mu_{r}+\eta_{r}\right)} \\
\mathbf{A}: \mathrm{A} " \\
\cdot \\
\cdot \\
\text { B" }
\end{array}\right) \tag{4.3}
\end{align*}
$$

where
$X^{\prime \prime}=m^{(1)}+2, n^{(1)} ; \cdots ; m^{(r)}+2, n^{(r)}$
$Y^{\prime \prime}=p^{(1)}+2, q^{(1)}+2 ; \cdots ; p^{(r)}+2, q^{(r)}+2$
$A^{\prime \prime}=\left(a_{k}^{(1)} ; \alpha_{k}^{(1)}\right)_{1, p^{(1)}},\left(-\rho_{1}-K_{1} \beta_{1} ; \eta_{1}\right),\left(u_{1}-\sigma_{1}-\rho_{1}-K_{1}\left(\alpha_{1}+\beta_{1}\right) ; \mu_{1}+\eta_{1}\right) ; \cdots ;$
$\left(a_{k}^{(r)} ; \alpha_{k}^{(r)}\right)_{1, p^{(r)}},\left(-\rho_{r}-K_{r} \beta_{r} ; \eta_{r}\right),\left(u_{r}-\sigma_{r}-\rho_{r}-K_{r}\left(\alpha_{r}+\beta_{r}\right) ; \mu_{r}+\eta_{r}\right)$
$B^{\prime \prime}=\left(b_{k}^{(1)} ; \beta_{k}^{(1)}\right)_{1, q^{(1)}},\left(u_{1}-\rho_{1}-K_{1} \beta_{1} ; \eta_{1}\right),\left(v_{1}+u_{1}-\sigma_{1}-\rho_{1}-K_{1}\left(\alpha_{1}+\beta_{1}\right) ; \mu_{1}+\eta_{1}\right) ; \cdots ;$
$\left(b_{k}^{(r)} ; \beta_{k}^{(r)}\right)_{1, q^{(r)}},\left(u_{r}-\rho_{r}-K_{r} \beta_{r} ; \eta_{r}\right),\left(v_{r}+u_{r}-\sigma_{r}-\rho_{r}-K_{r}\left(\alpha_{r}+\beta_{r}\right) ; \mu_{r}+\eta_{r}\right)$
Provided that
$z_{j} \neq g_{j}, f_{j} ; \alpha_{j}, \beta_{j}, \mu_{j}, \eta_{j}, \tau_{j} \in \mathbb{R}^{+}, z_{j} \neq A, v_{j} \in \mathbb{R}$ for $j=1, \cdots, r$
for $j=1, \cdots, r \operatorname{Re}\left(\sigma_{j}+\eta_{j}+K_{j}\left(\alpha_{j}+\beta_{j}\right)\right)+\left(\mu_{j}+\eta_{j}\right) \max _{1 \leqslant l \leqslant n^{(j)}} \operatorname{Re}\left(\frac{a_{l}^{(j)}-1}{\alpha_{l}^{(j)}}\right)<v_{j}<0$
$\left|\arg \lambda_{j}\left(z_{j}-f_{j}\right)^{\mu_{j}}\left(z_{j}-g_{j}\right)^{\eta_{j}}\right|<\frac{1}{2} \Omega_{j} \pi, \quad$ where Ω_{j} is defined by (1.8).
$\left|\frac{g_{j}-f_{j}}{z_{j}-f_{j}}\right|<1$ for $j=1, \cdots, r$ and the multiple series in the left-hand side of (4.1) is absolutely and convergent. We can use the lemma 2.

We consider the above corollary, if the multivariable I-function and class of multivariable polynomials reduce respectively to Fox's H-function [2,9] and class of polynomials of one variable [24], we obtain

Corollary 3.

$\left[(z-f)^{\sigma}\right)\left((z-g)^{\rho}\right) S_{N}^{M}\left(\mathrm{y}(z-f)^{\alpha}(z-g)^{\beta}\right) H_{p^{(1)}, q^{(1)}}^{m^{(1)}, n^{(1)}}\left(\begin{array}{l|l}\mathrm{Z}(z-f)^{\mu}(z-g)^{\eta} & \left.\begin{array}{l}\left(\mathrm{a}_{k}^{(1)} ; \alpha_{k}^{(1)}\right)_{1, p^{(1)}} \\ \left(\mathrm{b}_{k}^{(1)} ; \beta_{k}^{(1)}\right)_{1, q^{(1)}}\end{array}\right)_{v} .\end{array}\right.$
$=e^{-\omega \pi v}(z-f)^{\sigma+\rho-v} \sum_{u=0}^{\infty}\left(\frac{g-f}{z-f}\right)^{u} \frac{1}{u!} \sum_{K=0}^{N / M} a_{1} y^{K} z^{K(\alpha+\beta)}$
$H_{p^{(1)}+2, q^{(1)}+2}^{m^{(1)}+2 n^{(1)}}\left(\begin{array}{l|c}\mathrm{Z}(\mathrm{z}-\mathrm{f})^{\mu+\eta} & \begin{array}{c}\left(\mathrm{a}_{k}^{(1)} ; \alpha_{k}^{(1)}\right)_{1, p^{(1)}},(-\rho-K \alpha ; \eta),(u-\sigma-\rho-K(\alpha+\beta) ; \mu+\eta) \\ \left(\mathrm{b}_{k}^{(1)} ; \beta_{k}^{(1)}\right)_{1, q^{(1)}},(u-\rho-K \beta ; \eta),(v+u-\sigma-\rho-K(\alpha+\beta) ; \mu+\eta)\end{array}\end{array}\right)$
Provided that
$z \neq g, f ; \tau \in \mathbb{R}^{+}, g \neq f, v_{1} \in \mathbb{R}$,
$\operatorname{Re}(\sigma+\eta)+(\mu+\eta) \max _{1 \leqslant l \leqslant n^{(1)}} \operatorname{Re}\left(\frac{a_{l}^{(1)}-1}{\alpha_{l}^{(1)}}\right)<v<0$
$\left|\arg Z(z-f)^{\mu}(z-g)^{\eta}\right|<\frac{1}{2} \Omega_{1} \pi$, where $\Omega_{1}=\sum_{k=1}^{n^{(1)}} \alpha_{k}^{(1)}-\sum_{k=n^{(1)}+1}^{p^{(1)}} \alpha_{k}^{(1)}+\sum_{k=1}^{m^{(1)}} \beta_{k}^{(1)}-\sum_{k=m^{(1)}+1}^{q^{(1)}} \beta_{k}^{(1)}$
$\left|\frac{g-f}{z-f}\right|<1$ and the multiple series in the left-hand side of (4.1) is absolutely and uniformely.
Consider the above corollary , by applying our result given in (4.4) to the case the Laguerre polynomials ([31], page 101, eq.(15.1.6)) and ([28], page 159) and by setting

$$
S_{N}^{1}(x) \rightarrow L_{N}^{\alpha^{\prime}}(x)
$$

In which case $M=1, A_{N, K}=\binom{N+\alpha^{\prime}}{N} \frac{1}{\left(\alpha^{\prime}+1\right)_{K}}$ we have the following interesting consequencies of the main result.

Corollary 4.

$\left[(z-f)^{\sigma}\right)\left((z-g)^{\rho}\right) L_{N}^{\alpha^{\prime}}\left(\mathrm{y}(z-f)^{\alpha}(z-g)^{\beta}\right)$

$$
\begin{align*}
& H_{p^{(1)}, q^{(1)}}^{m^{(1)}}\left(\begin{array}{l|l}
\mathrm{Z}(z-f)^{\mu}(z-g)^{\eta} & \left.\begin{array}{l}
\left(\mathrm{a}_{k}^{(1)} ; \alpha_{k}^{(1)}\right)_{1, p^{(1)}} \\
\left(\mathrm{b}_{k}^{(1)} ; \beta_{k}^{(1)}\right)_{1, q^{(1)}}^{(1)}
\end{array}\right)_{v} .
\end{array}\right. \\
& =e^{-\omega \pi v}(z-f)^{\sigma+\rho-v} \sum_{u=0}^{\infty}\left(\frac{g-f}{z-f}\right)^{u} \frac{1}{u!} \sum_{K=0}^{N}\binom{N+\alpha^{\prime}}{N-K} a_{1}(-y)^{K} z^{K(\alpha+\beta)} \frac{(-N)_{K}}{K!} \\
& H_{p^{(1)}+2, q^{(1)}+2}^{m^{(1)}+n^{(1)}}\left(\begin{array}{l|l}
\mathrm{Z}(\mathrm{z}-\mathrm{f})^{\mu+\eta} & \begin{array}{c}
\left(\mathrm{a}_{k}^{(1)} ; \alpha_{k}^{(1)}\right)_{\left.1, p^{(1)}\right)},(-\rho-K \alpha ; \eta),(u-\sigma-\rho-K(\alpha+\beta) ; \mu+\eta) \\
\left(\mathrm{b}_{k}^{(1)} ; \beta_{k}^{(1)}\right)_{1, q^{(1)}},(u-\rho-K \beta ; \eta),(v+u-\sigma-\rho-K(\alpha+\beta) ; \mu+\eta)
\end{array}
\end{array}\right) \tag{4.9}
\end{align*}
$$

under the same conditions that (4.8).

Remark :

By the similar methods, we obtain the analog relations with the Aleph-function of several variables [1], Aleph-function of two variables [22] and one variable [29,30], the I-function of two variables ([8],[23]), the multivariable I-function [17], the I-function of one variable [21], the multivariable A-function [5], the A-function [4] and the modified multivariable H -function [16].

5. Conclusion.

Finally, it is interesting to observe that due to fairly general character of the multivariable I-function and class of multivariable polynomials, numerous interesting special cases of the main result (3.1) associated with potentially useful a variety special functions of one and several variables, orthogonal polynomials, multivariable H -function, H -function, G-function and Generalized Lauricella functions etc.

References.

[1] F.Y. Ayant, An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT). 31 (3) (2016),142-154.
[2] C. Fox, The G and H-functions as symmetrical Fourier Kernels, Trans. Amer. Math. Soc. 98 (1961), 395-429.
[3] M. Garg and R. Mishra, On r-dimensional N-fractional differintegral of multivariable H-function, J. Indian Acad. Math, 28 (2006), 189-198.
[4] B.P. Gautam and A.S. Asgar, The A-function. Revista Mathematica. Tucuman (1980).
[5] B.P. Gautam and A.S. Asgar, On the multivariable A-function. Vijnana Parishas Anusandhan Patrika,29(4) (1986), 67-81.
[6] K.C. Gupta, S.P. Goyal and R.Garg, N-fractional differintegral of multivariable H-function, Ganita Sandesh, 16 (2002), 5-12.
[7] B.B. Jaimini and K. Nishimoto, N-fractional calculus of generalized Lauricella function of several variables, J. Frac. Calc. 29 (2006), 65-74.
[8] K.S. Kumari, T.M. Vasudevan Nambisan and A.K. Rathie, A study of I-function of two variables, Le Matematiche, 69(1) (2014), 285-305.
[9] A.M. Mathai and R.K. Saxena, The H-function with applications in statistics and other disciplines, John Wiley and Sonc Inc, New York, 1978.
[10] K. Nishimoto, Fractional calculus, Descartes Press, Koriyama, Japan (1984), Vol I ; (1987), Vol II ; (1989), Vol III ; (1991), Vol IV and (1996), Vol V.
[11] K. Nishimoto, An essence of Nishimoto's fractional calculus, (Calculus of $21^{\text {st }}$ Century) : Integration and differentiation of arbitrary order, Descartes Press, Koriyama, Japan, 1991.
[12] K.Nishimoto, N-fractional calculus of power and logarithmic functions and some identities, J. Frac. Calc. 21 (2002), 1.6.
[13] K.Nishimoto, N-fractional calculus of some composite functions , J. Frac. Calc. 29 (2006), 35-44.
[14] K. Nishimoto and R.K. Saxena, Nfractional calculus of power functions, J. Frac. Calc. 31 (2007), 57-64.
[15] Y.N. Prasad, Multivariable I-function , Vijnana Parishad Anusandhan Patrika 29 (1986) , 231-237
[16] Y.N. Prasad and A.K.Singh, Basic properties of the transform involving and H-function of r-variables as kernel, Indian Acad Math, (2) (1982), 109-115.
[17] J. Prathima, V. Nambisan and S.K. Kurumujji, A Study of I-function of Several Complex Variables, International Journalof Engineering Mathematics Vol (2014), 1-12.
[18] S.S. Romero, S.L. Kalla and K. Nishimoto, N-fractional calculus of some functions function, J. Frac. Calc. 9 (1996), 33-39.
[19] S.S. Romero, A Prioto and K. Nishimoto, N-fractional differintegral of generalized hypergeometric function, J. Frac. Calc, 15 (1999), 55-60.
[20] R.K. Saxena and K. Nishimoto, N-fractional calculus of the multivariable H-functions, J. Frac. Calc, 31 (2007), 43-52.
[21] V.P. Saxena, Formal solution of certain new pair of dual integral equations involving H-function, Proc. Nat. Acad.Sci. India. Sect, (2001), A51, 366-375.
[22] K. Sharma, On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences 3(1) (2014), 1-13.
[23] C.K. Sharma and P.L. Mishra, On the I-function of two variables and its properties. Acta Ciencia Indica Math, 17 (1991), 667-672.
[24] H.M. Srivastava, A contour integral involving Fox's H-function. Indian. J. Math, (14) (1972), 1-6.
[25] H.M. Srivastava, A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), 183-191.
[26] H.M.Srivastava and R. Panda, Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24 (1975),119-137.
[27] H.M.Srivastava and R.Panda, Some expansion theorems and generating relations for the H-function of several complex variables II. Comment. Math. Univ. St. Paul. 25 (1976), 167-197.
[28] H.M. Srivastava and N.P. Singh, The integration of certain products of the multivariable H-function with a general class of polynomials. Rend. Circ. Mat. Palermo. Vol 32 (No 2) (1983), 157-187.
[29] N. Südland, B. Baumann and T.F. Nonnenmacher, Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998), 401-402.
[30] N.Sudland, B. Baumann and T.F. Nannenmacher, Fractional drift-less Fokker-Planck equation with power law diffusion coefficients, in V.G. Gangha, E.W. Mayr, W.G. Vorozhtsov (Eds.), Computer Algebra in Scientific Computing (CASC Konstanz 2001), Springer, Berlin, 2001, 513-525.
[31] C. Szego, (1975), Orthogonal polynomials. Amer. Math. Soc. Colloq. Publ. 23 fourth edition. Amer. Math. Soc. Providence. Rhodes Island, 1975.

