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Abstract: The aim of the present paper is to establish the solution of advanced generalized fractional order 

kinetic equation and a main theorem based upon the multivariable I-function, Mittag –Leffler function, 

generalized M-series, generalized 𝑲𝟒 – function, and generalized Mittag- Leffler function, Riemann–Liouville 

operator. The solution of the generalized fractional kinetic equation involving the multivariable I-function is 

obtained with help of the Laplace and Sumudu transform. Due to its simple formulation and consequent special 

and useful properties, the Sumudu and Laplace transform has already shown much promise. It is revealed 

herein and elsewhere that is can help to solve intricate problems in mathematical physics, especially in 

astrophysical problems. The results derived by using certain Corollaries used in this paper are interesting, 

computable and very general in nature.  
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I. INTRODUCTION AND  PRELIMINARIES  

The fractional calculus has many important developments. Fractional calculus is a field of applied 

Mathematics that deals with derivatives and integrals of fractional order. Recently, a remarkable interest has 

been developed in the study of the solution of fractional kinetic equations due to their importance in 

astrophysics and mathematical physics. Due to the importance of kinetic equation in mathematical physics many 

authors have generalized the standard kinetic equation time to time. The kinetic equations of fractional order 

have been successfully used to determine certain phenomena governing diffusion in porous media, reaction and 

relaxation processes in complex
 
systems etc. 

 In the recent paper of Haubold and Mathai [10] have derived the fractional kinetic equation and 

thermonuclear function in terms of well known Mittag-Leffler function. The Sun which is a big star is assumed 

to be in thermal equilibrium and hydrostatic equilibrium. To describe a model, we consider it is a spherical 

symmetric, self-gravitating non-rotating. The features of its area, mass, luminosity, diameter, effective surface 

temperature, central temperature and density. The assumptions of thermal equilibrium and hydrostatic 

equilibrium imply that there is no time dependence in the equations describing the internal structure of the star 

like sun (Kourganoff 1976 ,Perdang 1976, Clayton 1983). Energy in such stars being produced by the process of 

chemical reactions. For details we refer to [10].  

As extensions of the work of Saxena et al. [18] have generalized the standard kinetic equation with 

generalized Mittag- Leffler functions. Further, Chaurasia and Kumar [22] generalized and studied the kinetic 

equation with generalized M-series of Sharma [13], generalized 𝐾4-function of Faraz and Salim [2, 27]. For 

more result one can refer to the work of Saichev and Zaslavsky [4], Sexcena et al [16, 18], Zaslavsky [9] and 

Sexena and Kalla [17].   

Haubold and Mathai [10] have established a functional differential equation between rate of change of 

reaction, the destruction rate and the production rate as follows 

 

                                                        
 𝑑𝒩

𝑑𝓉
= −𝑑 𝒩𝓉 + 𝑝 𝒩𝓉                                                                              (1) 

where 𝒩 = 𝒩 𝓉  the rate of reaction, 𝑑 = 𝑑(𝒩) the rate of destruction, 𝑝 = 𝑝(𝒩)  the rate of production 

and  denotes the function defined  by 𝒩𝑡 𝓉
∗ = 𝒩 𝓉 − 𝓉∗ , 𝓉∗ > 0. 

They have studied a the special case of (1), for spatial fluctuations or in homogeneities in the quantity 𝒩 𝓉  

are neglected, namely the equation 
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   𝑑𝒩𝑖

𝑑𝓉
= −𝑐𝑖𝒩𝑖 𝓉                                                                                     (2)                                       

 

together with the initial condition that 𝒩𝑖 𝓉 = 0 = 𝒩0  is the number of density of species i at time 𝓉 =
 0, 𝑐𝑖  >  0. Dropping the index i and integrate the standard kinetic equation (2) we obtain   

                                                                    

𝒩 𝓉 − 𝒩0 = −𝑐0𝐷𝓉
−1𝒩 𝓉                                                                             (3) 

 

 Replacing the Riemann integral operator Dt
−1  by the fractional Riemann-Liouville operator Dt

−v  [19] in 

equation (3), we obtain   
      𝒩 𝓉 − 𝒩0 = −𝑐0𝐷𝓉

−𝑣𝒩 𝓉                                                                     (4) 
 

Haubold and Mathai in [10] found the solution of (4) as follows  

                                  𝒩 𝓉 = 𝒩0  
 −1 𝑛

𝛤 𝑣𝑛 + 1 
 𝑐𝓉 𝑣𝑘

∞

𝑛=0

                                                                   (5) 

 

Also, Sexena , Mathai and Haubold [18] studied the generalizations of the fractional kinetic equation in terms 

of the Mittag-Leffler functions which is the extension of the work of Haubold  and Mathai [10]. 

Over the set of function, 

𝔸 =  𝑓 𝑡 | ∃ 𝑀, 𝜏1 , 𝜏2 > 0,  𝑓 𝑡  < 𝑀𝑒 𝑡 𝜏𝑗 , 𝑖𝑓 𝑡 ∈  −1 𝑗 × [0, ∞)              (6) 

the Sumudu transform is defined by 

𝔊 𝑢 = 𝕊 𝑓 𝑡  =   𝑓 𝑢𝑡 𝑒−𝑡𝑑𝑡,   𝑢𝜖(−

∞

0

𝜏1 , 𝜏2)                                                 (7) 

For more detail and properties of Sumudu transform (see in [14, 17, 18, 23]).The Riemann-Liouville 

fractional integral of order ϑ is defined by [1, 12] 

    𝐷𝑡
− 𝜗  𝑁 𝑥, 𝑡 =

1

𝛤(𝜗)0
    𝑡 − 𝑢 𝜗−1𝑁 𝑥, 𝑢 𝑑𝑢,

𝑡

0

                      𝑅𝑒 𝜗 > 0      (8) 

 

The Sumudu transform of the Riemann-Liouville fractional integral is defined as [12, 1] 

 

                   𝕊 𝐷𝑡
− 𝜗  𝑓 𝑡 ; 𝑢0

  = 𝑢 𝜗𝑓   𝑢                                                                        (9) 

     We also use the following interesting result  

 

              𝕊−1  𝑢𝛾−1 1 − 𝜔𝑢𝛽 
−𝛿

 = 𝑡𝛾−1𝐸𝛽𝛾
𝛿  𝜔𝑡𝛽                                                  (10) 

The Laplace transform of the function N x, t  with respect to t is  

ℒ 𝑁 𝑥, 𝑡  =  𝑒−𝑠𝑡
∞

0

𝑁 𝑥, 𝑡  𝑑𝑡 = 𝑁∗ 𝑥, 𝑠 ,       𝑥 ∈ ℜ,   ℜ 𝑠 > 0                      (11) 

And its inverse transform with respect to s is given by  

           ℒ−1 𝑁∗ 𝑥, 𝑠  =
1

2𝜋𝑖
 𝑒𝑠𝑡𝑁∗ 𝑥, 𝑠 

𝛾+𝑖∞

𝛾−𝑖∞

𝑑𝑠 = 𝑁 𝑥, 𝑡                                      (12) 

γ being a fixed real number. 

In 1903, the Swedish mathematician Gosta Mittag-Leffler introduced the function Eα z  [15] is defined as   

               𝐸𝛼 𝑧 =  
𝑧𝑛

𝛤 𝑛𝛼 + 1 

∞

𝑛=0

,   𝛼 ∈ ℂ,   ℜ 𝛼 > 0                                                (13) 

Where z is a complex variable and Γ(. ) is a gamma function α > 0.The Mittag-Leffler function is the direct 

generalization of the exponential function to which it reduces for α = 1. For 0< α < 1, it interpolates between 

the pure exponential and hypergeometric function 
1

1−z
. Mittag-Leffler function naturally occurs as the solution of 

the fractional order differential equations. 

Wiman [6] studied the generalization of  Eα z , that is given by 

 𝐸𝛼 ,𝛽  𝑧 =  
𝑧𝑛

𝛤 𝑛𝛼 + 𝛽 

∞

𝑛=0

,   𝛼, 𝛽 ∈ ℂ, ℜ 𝛼 > 0, ℜ 𝛽 > 0                           (14) 

which is known as Wiman’s function. 

Prabhakar [21] investigated the function Eα ,β
γ  z  as 
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                  𝐸𝛼 ,𝛽
𝛾  𝑧 =  

       𝛾 𝑛     

𝛤 𝑛𝛼 + 𝛽  

∞

𝑛=0

  
 𝑧𝑛

𝑛 !
                                                                     (15) 

II. THE SOLUTION OF FRACTIONAL KINETIC EQUATION IN TERMS OF MULTIVARIABLE I-FUNCTION :  

In this section, we solve fraction kinetic equation to generate a solution in terms of I-function and Mittag-Leffler, 

using the Laplace and Sumudu transform and their inverse. 

The multivariable I-function is defined [24] as 

 

I 𝑧1,…,𝑧𝑟  ∶= 𝐼
 𝑝𝑖 ,𝑞𝑖 2,𝑟

:   𝑝 𝑖 ,𝑞 𝑖   
1,𝑟

 0,𝑛𝑖 2,𝑟 :   𝑚  𝑖 ,𝑛 𝑖   
1,𝑟

 

𝑧1

⋮
𝑧𝑟

 
𝒜  ∶ ℬ
𝒞   ∶ 𝒟

                  

=
1

 2𝜋𝜔 𝑟
    

 

ℓ1

…   
 

ℓ𝑟

𝜓 𝜉1 , … , 𝜉𝑟   𝜙𝑖 𝜉𝑖 𝑧𝑖
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟                 (16) 

where 𝜔 =  −1 , 

𝜓 𝜉1 , … , 𝜉𝑟 =
   𝛤 1 − 𝑎𝑘𝑗 +  𝛼𝑘𝑗

 𝑖 𝜉𝑖
𝑘
𝑖=1  

𝑛𝑘
𝑗 =1  𝑟

𝑘=2

   𝛤  𝑎𝑘𝑗 −  𝛼𝑘𝑗
 𝑖 𝜉𝑖

𝑘
𝑖=1  

𝑝𝑘
𝑗 =𝑛𝑘+1  𝑟

𝑘=2

                                              

×
1

   𝛤  1 − 𝑏𝑘𝑗 +  𝛽𝑘𝑗
 𝑖 𝜉𝑖

𝑘
𝑖=1  

𝑞𝑘
𝑗 =1  𝑟

𝑘=2

                                                       (17) 

 

  𝜙𝑖 𝜉𝑖 =
  𝛤 𝑏𝑘

 𝑖 − 𝛽𝑘
 𝑖 𝜉𝑖 

𝑚  𝑖 

𝑘=1  

  𝛤  𝑎𝑗
 𝑖 − 𝛼𝑗

 𝑖 𝜉𝑖 
𝑝 𝑖 

𝑗 =𝑛 𝑖 +1
 

  𝛤 1 − 𝑎𝑗
 𝑖 + 𝛼𝑗

 𝑖 𝜉𝑖 
𝑛 𝑖 

𝑗 =1  

  𝛤 1 − 𝑏𝑘
 𝑖 + 𝛽𝑘

 𝑖 𝜉𝑖 
𝑞 𝑖 

𝑗 =𝑚  𝑖 +1
 

 

                           (18) 

∀𝑖 ∈  1, … , 𝑟 . Also, 

 

        0, 𝑛𝑖 2,𝑟                    ∶= 0, 𝑛2: … : 0, 𝑛2, 

        𝑝𝑖 , 𝑞𝑖 2,𝑟              ∶= 𝑝2 , 𝑞2: … : 𝑝𝑟 , 𝑞𝑟 , 

        𝑚(𝑖), 𝑛(𝑖)  
1,𝑟

   ∶=  𝑚(1), 𝑛(1) ; … ;  𝑚(𝑟), 𝑛(𝑟) , 

         𝑝(𝑖), 𝑞(𝑖)  
1,𝑟

    ∶=  𝑝(1), 𝑞(1) ; … ;  𝑝(𝑟), 𝑞(𝑟) , 

𝒜 ≔:  (𝑎𝑖𝑗 ; 𝛼𝑖𝑗
 1 

, … , 𝛼𝑖𝑗
 𝑖 )1,𝑝𝑖

2,𝑟    ≔  𝑎2𝑗 ; 𝛼2𝑗
(1)

, 𝛼2𝑗
(2)

 
1,𝑝2

; … ;  𝑎𝑟𝑗 ; 𝛼𝑟𝑗
(1)

, … , 𝛼𝑟𝑗
(𝑟)

 
1,𝑝𝑟

 , 

ℬ ≔:  (𝑎𝑗
 𝑖 , 𝛼𝑗

 𝑖 )
1,𝑝(𝑖)
1,𝑟                 ≔  𝑎𝑗

(1)
, 𝛼𝑗

(1)
 

1,𝑝(1)
; … ;  𝑎𝑗

(𝑟)
, … , 𝛼𝑗

(𝑟)
 

1,𝑝(𝑟)
  , 

𝒞 ≔:  (𝑏𝑖𝑗 ; 𝛽𝑖𝑗
 1 

, … , 𝛽𝑖𝑗
 𝑖 )1,𝑞𝑖

2,𝑟      ≔  𝑏2𝑗 ; 𝛽2𝑗
(1)

, 𝛽2𝑗
(2)

 
1,𝑞2

; … ;  𝑏𝑟𝑗 ; 𝛽𝑟𝑗
(1)

, … , 𝛽𝑟𝑗
(𝑟)

 
1,𝑞𝑟

 , 

𝒟 ≔:  (𝑏𝑗
 𝑖 , 𝛽𝑗

 𝑖 )
1,𝑞(𝑖)
1,𝑟                 ≔  𝑏𝑗

(1)
, 𝛽𝑗

(1)
 

1,𝑞(1)
; … ;  𝑏𝑗

(𝑟)
, … , 𝛽𝑗

(𝑟)
 

1,𝑞(𝑟)
 , 

Such that  𝑛𝑖 , 𝑝𝑖 , 𝑞𝑖 , 𝑚
(𝑖), 𝑛(𝑖), 𝑝(𝑖), 𝑞 𝑖  are non-negative integers and all 𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛼𝑖𝑗

 
, 𝛽𝑖𝑗 , 𝑎𝑗  

(𝑖)
,  𝑏𝑗

(𝑖)
, 𝛼𝑗

(𝑖)
, 𝛽𝑗

(𝑖)
 are 

complex numbers and the empty product denotes unity. 

The contour integral (16) convergence, if 

                       𝑎𝑟𝑔 𝑧𝑖 <
1

2
𝑈𝑖𝜋 , 𝑈𝑖 > 0 , 𝑖 = 1, … , 𝑟 ,                                                               (19)  

where  

𝑈𝑖 =  𝛼𝑗
 𝑖 −  𝛼𝑗

 𝑖 +  𝛽𝑗
 𝑖 −

𝑚  𝑖 

𝑗 =1

𝑝 𝑖 

𝑗 =𝑛 𝑖 +1

𝑛 𝑖 

𝑗 =1

 𝛽𝑗
 𝑖 +   𝛼2𝑗

 𝑖 −  𝛼2𝑗
 𝑖 

𝑝2

𝑗 =𝑛2+1

𝑛2

𝑗 =1

 

𝑞 𝑖 

𝑗 =𝑚  𝑖 +1

 

+ ⋯ +   𝛼𝑟𝑗
(𝑖)

−  𝛼𝑟𝑗
(𝑖)

𝑝𝑟

𝑗 =𝑛𝑟+1

𝑛𝑟

𝑗 =1

 −   𝛽2𝑗
 𝑖 + ⋯ +  𝛽𝑟𝑗

 𝑖 

𝑞𝑟

𝑗 =1

𝑞2

𝑗 =1

                                                  (20) 

And  𝐼 𝑧1,…,𝑧𝑟  = 𝑂  𝑧1 𝛼1 , … ,  𝑧𝑟  
𝛼𝑟  , 𝑚𝑎𝑥  𝑧1    , … ,  𝑧𝑟  

  → 0 , 

where 𝛼𝑖 =  
1≤𝑗≤𝑚  𝑖 
𝑚𝑖𝑛 ℝ  

𝑏𝑗
 𝑖 

𝛽𝑗
 𝑖    , 𝛽𝑖 =  

1≤𝑗≤𝑛 𝑖 
𝑚𝑎𝑥 ℝ  

 𝛼𝑗
 𝑖 

−1 

𝛼𝑗
 𝑖   , 𝑖 = 1 , … , 𝑟. 

For the condition of convergence and analyticity of multivariable I-function we refer [24, 25]. 

 

The Laplace transform of the caputo fractional derivative (see, e.g., Podlubny [11]) 
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ℒ 𝐷𝑡
𝛼𝑁 𝑥, 𝑡  0

  = 𝑠𝛼𝑁∗ 𝑥, 𝑠 −  𝑠𝑟−1 𝐷0
 

𝑡
𝛼−𝑟𝑁 𝑥, 𝑡 |𝑡=0

𝑛

𝑟=1

,     𝑛 − 1 < ℜ 𝛼 ≤ 𝑛 , 𝑛 ∈ 𝑁       (21)   

 We also use the following result obtain by Mathai and Saxena [15] as 

  ℒ−1 𝑠−𝛽 (1 − 𝑎𝑠−𝛼)−𝛾 ; 𝑥 = 𝑥𝛽−1  
 𝛾 𝑘 𝑎𝑥𝛼 𝑘

𝛤 𝛼𝑘 + 𝛽  𝑘!
= 𝑥𝛽−1𝐸𝛼 ,𝛽

𝛾

∞

𝑘=0

 𝑎𝑥𝛼                (22) 

where, 𝛽, 𝛾, 𝑎 ∈ ℂ , ℜ 𝛼 > 0, ℜ 𝛽 > 0, ℜ 𝛾 > 0 and   𝑎𝑠−𝛼  < 1. 
 

Remark: If we put γ = 1, then equation (22) reduces to 

 

          ℒ−1 s−β(1 − as−α)−1; x = xβ−1Eα ,β
  axα                                                       (23) 

If further we put β = 1, then equation (23) reduces to 

  

ℒ−1 𝑠−1 1 − 𝑎𝑠−𝛼 −1; 𝑥   = 𝐸𝛼
  𝑎𝑥𝛼                                                            (24) 

 

Theorem 1. Let  𝜗 > 0 , 𝑐 > 0, 𝑤 > 0, 𝜌 > 0 ,  𝑅𝑒 𝑝 > |𝑤|𝜗 𝛼  ,𝑐 ≠ 𝑤 then for the solution of the 

generalized fractional kinetic equation  

 

         𝒩 𝑡 − 𝒩0𝑡𝜌−1𝐼 𝑤𝜗 𝑡𝜗𝜂1, … , 𝑤𝜗 𝑡𝜗𝜂𝑟 = −𝑐𝜗 𝐷𝑡
−𝜗

0
 𝒩 𝑡                                                 (25) 

Then holds the result 

𝒩 𝑡 = 𝒩0   −1 𝐾 𝑐𝑡 𝜗𝐾 . 𝐼
 𝑝𝑖+1,𝑞𝑖+1 2,𝑟 :   𝑝 𝑖 ,𝑞 𝑖   

1,𝑟

 0,𝑛𝑖+1 2,𝑟 :   𝑚  𝑖 ,𝑛 𝑖   
1,𝑟

 
𝑤𝜗 𝑡𝜗𝜂1

⋮
𝑤𝜗 𝑡𝜗𝜂𝑟

    
𝒜  ∶ ℬ
𝒞   ∶ 𝒟

             26 

∞

𝐾=0

 

where  

𝒜 ≡    1 − 𝜌; 𝜗 … 𝜗 ,  𝑎2𝑗 ; 𝛼2𝑗
(1)

, 𝛼2𝑗
(2)

 
1,𝑝2

; … ;  𝑎𝑟𝑗 ; 𝛼𝑟𝑗
(1)

, … , 𝛼𝑟𝑗
(𝑟)

 
1,𝑝𝑟

 , 

ℬ ≡   𝑎𝑗
(𝑖)

, 𝛼𝑗
(𝑖)

 
1,𝑝(1)

; … ;  𝑎𝑗
(𝑟)

, … , 𝛼𝑗
(𝑟)

 
1,𝑝 𝑟  

  , 

𝒞 ≡   𝑏2𝑗 ; 𝛽2𝑗
(1)

, 𝛽2𝑗
(2)

 
1,𝑞2

; … ;  𝑏𝑟𝑗 ; 𝛽𝑟𝑗
(1)

, … , 𝛽𝑟𝑗
(𝑟)

 
1,𝑞𝑟

,  1 − 𝜌 − 𝜗𝐾; 𝜗 … 𝜗  , 

𝒟 ≡   𝑏𝑗
(𝑖)

, 𝛽𝑗
(𝑖)

 
1,𝑞(1)

; … ;  𝑏𝑗
(𝑟)

, … , 𝛽𝑗
(𝑟)

 
1,𝑞(𝑟)

 , 

 

Proof : To obtain (26), express the multivariable I-function in terms of Mellin-Barnes type of contour integral 

by (16), we get  

     𝒩 𝑡 −
𝒩0  𝑡𝜌−1

 2𝜋𝜔 𝑟
  

 

ℓ1

…   
 

ℓ𝑟

𝜓 𝜉1 , … , 𝜉𝑟   𝜙𝑖 𝜉𝑖  𝑤
𝜗 𝑡𝜗𝜂𝑖

  
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟 = −𝑐𝜗 𝐷0
 

𝑡
−𝜗𝒩(𝑡)  

    
Applying the Laplace transform both sides, we have  

ℒ 𝒩 𝑡  =
𝒩0  

 2𝜋𝜔 𝑟
  

 

ℓ1

…   
 

ℓ𝑟

𝜓 𝜉1 , … , 𝜉𝑟   𝜙𝑖 𝜉𝑖  𝑤
𝜗𝜂𝑖

  
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟   

× ℒ 𝑡𝜗  𝜉𝑖+𝜌−1𝑟
𝑖=1  − 𝑐𝜗ℒ 𝐷0

 
𝑡
−𝜗𝒩(𝑡)    

Using the result (21), we get 

 𝒩 𝑝 =  
𝒩0  

 2𝜋𝜔 𝑟
  

 

ℓ1

…  𝜓 𝜉1 , … , 𝜉𝑟   𝜙𝑖 𝜉𝑖  𝑤
𝜗𝜂𝑖

  
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟  .  
 

ℓ𝑟

 

× 𝛤  𝜌 + 𝜗  𝜉𝑖

𝑟

𝑖=1

 𝑝−𝜌−𝜗  𝜉𝑖
𝑟
𝑖=1 − 𝑐𝜗𝑝−𝜗𝒩 𝑝  

Or 

𝒩 𝑝  1 + 𝑐𝜗𝑝−𝜗 =  
𝒩0  

 2𝜋𝜔 𝑟
  

 

ℓ1

…  𝜓 𝜉1 , … , 𝜉𝑟   𝜙𝑖 𝜉𝑖  𝑤
𝜗𝜂𝑖

  
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟  

 

 

ℓ𝑟

 

                                           ×  𝛤  𝜌 + 𝜗  𝜉𝑖

𝑟

𝑖=1

  𝑝−𝜌−𝜗  𝜉𝑖
𝑟
𝑖=1  
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        𝒩 𝑝 =
𝒩0  

 2𝜋𝜔 𝑟
  

 

ℓ1

…  𝜓 𝜉1, … , 𝜉𝑟   𝜙𝑖 𝜉𝑖  𝑤
𝜗𝜂𝑖

  
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟   

 

 

ℓ𝑟

 

× 𝛤  𝜌 + 𝜗  𝜉𝑖

𝑟

𝑖=1

 𝑝−𝜌−𝜗  𝜉𝑖
𝑟
𝑖=1  1 + 𝑐𝜗𝑝−𝜗 

−1
 

 Now taking inverse Laplace transform both the sides and making use the result of (24), we get the desired result 

(26). 

Now we will use Sumudu transform to get the result of theorem 2.  

 

Theorem 2. Let  𝜗 > 0 , 𝑐 > 0, 𝑤 > 0, 𝜌 > 0, 𝑅𝑒 𝑢 > |𝑤|𝜗 𝛼  ,𝑐 ≠ 𝑤 then for the solution of the generalized 

fraction kinetic equation  

  

𝒩 𝑡 − 𝒩0𝑡𝜌−1𝐼 𝑤𝜗 𝑡𝜗𝜂1, … , 𝑤𝜗 𝑡𝜗𝜂𝑟 = −𝑐𝜗 𝐷𝑡
−𝜗

0
 𝒩 𝑡                                       (27) 

Then holds the result 

𝒩 𝑡 = 𝒩0   −1 𝐾 𝑐𝑡 𝜗𝐾 . 𝐼
 𝑝𝑖+1,𝑞𝑖+1 2,𝑟 :   𝑝 𝑖 ,𝑞 𝑖   

1,𝑟

 0,𝑛𝑖+1 2,𝑟 :   𝑚  𝑖 ,𝑛 𝑖   
1,𝑟

 
𝑤𝜗 𝑡𝜗𝜂1

⋮
𝑤𝜗 𝑡𝜗𝜂𝑟

    
𝒜  ∶ ℬ
𝒞   ∶ 𝒟

                   28 

∞

𝐾=0

 

where  

𝒜 ≡    1 − 𝜌; 𝜗 … 𝜗 ,  𝑎2𝑗 ; 𝛼2𝑗
(1)

, 𝛼2𝑗
(2)

 
1,𝑝2

; … ;  𝑎𝑟𝑗 ; 𝛼𝑟𝑗
(1)

, … , 𝛼𝑟𝑗
(𝑟)

 
1,𝑝𝑟

 , 

ℬ ≡   𝑎𝑗
(𝑖)

, 𝛼𝑗
(𝑖)

 
1,𝑝(1)

; … ;  𝑎𝑗
(𝑟)

, … , 𝛼𝑗
(𝑟)

 
1,𝑝 𝑟  

  , 

𝒞 ≡   𝑏2𝑗 ; 𝛽2𝑗
(1)

, 𝛽2𝑗
(2)

 
1,𝑞2

; … ;  𝑏𝑟𝑗 ; 𝛽𝑟𝑗
(1)

, … , 𝛽𝑟𝑗
(𝑟)

 
1,𝑞𝑟

,  1 − 𝜌 − 𝜗𝐾; 𝜗 … 𝜗  , 

𝒟 ≡   𝑏𝑗
(𝑖)

, 𝛽𝑗
(𝑖)

 
1,𝑞(1)

; … ;  𝑏𝑗
(𝑟)

, … , 𝛽𝑗
(𝑟)

 
1,𝑞(𝑟)

 , 

Proof. To obtain (27), express the multivariable I-function in terms of Mellin-Barnes type of contour integral by 

(16), we get  

     𝒩 𝑡 −
𝒩0  𝑡𝜌−1

 2𝜋𝜔 𝑟
  

 

ℓ1

…   
 

ℓ𝑟

𝜓 𝜉1 , … , 𝜉𝑟   𝜙𝑖 𝜉𝑖  𝑤
𝜗 𝑡𝜗𝜂𝑖

  
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟 = −𝑐𝜗 𝐷0
 

𝑡
−𝜗𝒩(𝑡)     

Applying the Sumudu transform both sides, we have  

𝕊 𝒩(𝑡) =
𝒩0  

 2𝜋𝜔 𝑟
  

 

ℓ1

…   
 

ℓ𝑟

𝜓 𝜉1 , … , 𝜉𝑟   𝜙𝑖 𝜉𝑖  𝑤
𝜗𝜂𝑖

  
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟  . 𝕊 𝑡𝜗  𝜉𝑖+𝜌−1𝑟
𝑖=1  

− 𝑐𝜗𝕊 𝐷0
 

𝑡
−𝜗𝒩(𝑡)    

Using the result (9), we get 

 𝒩   𝑢 =  
𝒩0  

 2𝜋𝜔 𝑟
  

 

ℓ1

…  𝜓 𝜉1 , … , 𝜉𝑟   𝜙𝑖 𝜉𝑖  𝑤
𝜗𝜂𝑖

  
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟  .  
 

ℓ𝑟

 

× 𝛤  𝜌 + 𝜗  𝜉𝑖

𝑟

𝑖=1

 𝑝−𝜌−𝜗  𝜉𝑖
𝑟
𝑖=1 − 𝑐𝜗𝑢𝜗𝒩   𝑢  

Or 

𝒩   𝑢  1 + 𝑐𝜗𝑢𝜗 =  
𝒩0  

 2𝜋𝜔 𝑟
  

 

ℓ1

…  𝜓 𝜉1 , … , 𝜉𝑟   𝜙𝑖 𝜉𝑖  𝑤
𝜗𝜂𝑖

  
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟  

 

 

ℓ𝑟

 

                ×  𝛤  𝜌 + 𝜗  𝜉𝑖

𝑟

𝑖=1

  𝑢𝜌+𝜗  𝜉𝑖−1𝑟
𝑖=1  
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        𝒩 𝑝 =
𝒩0  

 2𝜋𝜔 𝑟
  

 

ℓ1

…  𝜓 𝜉1, … , 𝜉𝑟   𝜙𝑖 𝜉𝑖  𝑤
𝜗𝜂𝑖

  
𝜉𝑖 

𝑟

𝑖=1

𝑑𝜉1 … 𝑑𝜉𝑟   

 

 

ℓ𝑟

 

× 𝛤  𝜌 + 𝜗  𝜉𝑖

𝑟

𝑖=1

 𝑝𝜌+𝜗  𝜉𝑖−1𝑟
𝑖=1  1 + 𝑐𝜗𝑢𝜗 

−1
 

Now taking inverse Laplace transform both the sides and making use the result of (10), we get the desired result 

(28). 

 

Corollary 2.1 When 𝑛𝑖 = 0, 𝑝𝑖 = 0, 𝑞𝑖 = 0, 𝑖 = 2, ⋯ , 𝑟 − 1 (the empty product denotes unity) the (26) reduces 

to the multivariable H-function. 

 

Corollary 2.2 If we take  𝑛𝑖 = 0, 𝑝𝑖 = 0, 𝑞𝑖 = 0  and 𝑚 = 𝑛 = 𝑝 = 𝑞 = 0, 𝑟 = 1  in (26) reduces to the H-

function of single variable. 

 

III. THE SOLUTION OF FRACTIONAL KINETIC EQUATION IN TERMS OF GENERALIZED 𝕄-SERIES BY USING 

SUMUDU TRANSFORM 

A new generalization of 𝕄-series was introduced and developed by Salim et al. [27] as  

 

  
𝜗, 𝜇
𝕄

𝑝, 𝑞; 𝑚, 𝑛
 𝜂 =  

 𝑎1 𝑘𝑚 , … ,  𝑎𝑝 
𝑘𝑚

 𝑏1 𝑘𝑛 , … ,  𝑏𝑞 
𝑘𝑛

∞

𝑘=0

 
𝜂𝑘

𝛤 𝜗𝑘 + 𝜇 
                                                             (29) 

where 𝜂, 𝜗, 𝜇 ∈ ℂ, ℜ 𝜗 > 0  and m, n  are non-negative real numbers. The series in (29) is absolutely 

convergent for all values of  η  provided that 𝑝𝑚 < 𝑞𝑛 + ℜ 𝜗 , moreover if 𝑝𝑚 = 𝑞𝑛 + ℜ 𝜗  the series 

convergent for  𝜂 < 𝛿 = 𝜗𝜗 .  

Some special cases of the generalization 𝕄-series 

𝜗, 𝜇
𝕄

𝑝, 𝑞; 𝑚, 𝑛
 𝜂  are the following: 

(I) If we set 𝑚 = 𝑛 = 1 in (29), we get generalization of 𝕄-series introduced by Sharma and Jain [23], and 

defined as 
𝜗, 𝜇
𝕄

𝑝, 𝑞; 1,1
 𝜂 =

𝜗, 𝜇
𝕄
𝑝, 𝑞

 𝜂 =  
 𝑎1 𝑘 , … ,  𝑎𝑝 

𝑘

 𝑏1 𝑘 , … ,  𝑏𝑞 
𝑘

∞

𝑘=0

 
𝜂𝑘

𝛤 𝜗𝑘 + 𝜇 
                                                             (30) 

(II) If we take  𝑝 = 𝑞 = 1 in (29), the get the following generalized Mittag-Leffler function by means of power 

series, derived by Salim and Faraz [20]: 
𝜗, 𝜇
𝕄

1,1; 𝑚, 𝑛
 𝜂 =  𝔼𝜗 ,𝜇 ,𝑛

𝑎1 ,𝑏1 ,𝑚 𝜂 =  
 𝑎1 𝑘𝑚   

 𝑏1 𝑘𝑛

𝜂𝑘

𝛤 𝜗𝑘 + 𝜇 

∞

𝑘=0

                                                             (31) 

where  𝜗, 𝜇, 𝑎1 , 𝑏1 ∈ ℂ; 𝑚𝑖𝑛 ℜ 𝜗 , ℜ 𝜇 , ℜ 𝑎1 , ℜ 𝑏1   > 0.  
 

 (III) If we consider = 𝜇 = 1 and 𝑝 = 𝑞 = 1, then (29) reduces in to generalized hypergeometric function 𝐹𝑝
 

𝑞
  

[27] as 
1,1
𝕄

𝑝, 𝑞; 1,1
 𝜂 =  

 𝑎1 𝑘 , … ,  𝑎𝑝 
𝑘

 𝑏1 𝑘 , … ,  𝑏𝑞 
𝑘

∞

𝑘=0

= 𝐹𝑝
 

𝑞
   𝑎1 1

𝑝
;  𝑏1 1

𝑞
;  𝜂                                                              (32) 

where 𝑎𝑖 , 𝑏𝑗 ∈ ℂ; 𝑖 = 1,2, … , 𝑝; 𝑗 = 1,2, … , 𝑞 and 𝑏𝑗 ≠ 0, −1, −2, … and  𝑎 𝑛  is the Pochhammer symbols. 

 

Remarks 3.1 Throughout this section, we need the following well known relation  

          
 𝑎 𝑟 𝑥 𝑟

𝑟!

  ∞

𝑟=0

=   1 − 𝑥 −𝑎                                                                                                      (33) 

Theorem 3. If 𝜗 > 0, 𝑐 > 0 , μ > 0 , w ≠ 𝑐, then for the solution of the generalized fractional kinetic equation  

  𝒩 𝑡 − 𝒩0𝑡𝜇−1
𝜗, 𝜇
𝕄

𝑝, 𝑞; 𝑚, 𝑛
 −𝑤𝜗 𝑡𝜗 = −𝑐𝜗 𝐷0

  
𝑡
−𝜗𝒩 𝑡                                                                  (34) 

Then holds the result 

   𝒩 𝑡 = 𝒩0𝑡𝜇−1  (−1)𝑟

∞

𝑟=0

  𝑐𝑡 𝜗𝑟
𝜗, 𝜇 + 𝜗𝑟

𝕄
𝑝, 𝑞; 𝑚, 𝑛

 −𝑤𝜗 𝑡𝜗                                                                  (35) 
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Proof. Applying the Sumudu transform both sides of eq. (34), by using the definition (29), we get 

 

𝒩   𝑢 − 𝑁0  
 𝑎1 𝑘𝑚 , … ,  𝑎𝑝 

𝑘𝑚

 𝑏1 𝑘𝑛 , … ,  𝑏𝑞 
𝑘𝑛

∞

𝑘=0

 
 −𝑤𝜗 

𝑘
 

𝛤 𝜗𝑘 + 𝜇 
𝕊 𝑡𝜗𝑘 +𝜇−1 = −𝑐𝜗𝑢𝜗𝒩   𝑢  

solving for 𝒩   u  

               𝒩   𝑢 =  1 + 𝑐𝜗𝑢𝜗 
−1

𝑁0  
 𝑎1 𝑘𝑚 , … ,  𝑎𝑝 

𝑘𝑚

 𝑏1 𝑘𝑛 , … ,  𝑏𝑞 
𝑘𝑛

∞

𝑘=0  

 −𝑤𝜗 
𝑘

 𝑢𝜗𝑘 +𝜇−1 

using the result (33),we get  

𝒩   𝑢 = 𝒩0   −1 𝑟

∞

𝑟=0

 𝑐𝜗 
𝑟
 

 𝑎1 𝑘𝑚 , … ,  𝑎𝑝 
𝑘𝑚

 𝑏1 𝑘𝑛 , … ,  𝑏𝑞 
𝑘𝑛

∞

𝑘=0

  −𝑤𝜗  
𝑘

 𝑢𝜗𝑘 +𝜇 +𝜗𝑟 −1
 

Now, taking inverse Sumudu transform on both sides for the last equation, we have  

𝒩 𝑡 = 𝒩0 𝑡
𝜇−1   −1 𝑟

∞

𝑟=0

 𝑐𝜗 𝑡𝜗 
𝑟
 

 𝑎1 𝑘𝑚 , … ,  𝑎𝑝 
𝑘𝑚

 𝑏1 𝑘𝑛 , … ,  𝑏𝑞 
𝑘𝑛

∞

𝑘=0

  
 𝑤𝜗 𝑡𝜗 

𝑘

𝛤 𝜗𝑘 + (𝜇 + 𝜗𝑟) 
 

Or  

𝒩 𝑡 = 𝒩0𝑡𝜇−1  (−1)𝑟

∞

𝑟=0

  𝑐𝑡 𝜗𝑟
𝜗, 𝜇 + 𝜗𝑟

𝕄
𝑝, 𝑞; 𝑚, 𝑛

 −𝑤𝜗 𝑡𝜗                                     

This completes the proof of theorem 3. 

 

When 𝑚 = 𝑛 = 1 in (34), then we arrive at the following result recently obtained by Chourasia and Kumar [22] 

Corollary 3.1 Let 𝜗 > 0 , 𝑐 > 0, 𝑤 > 0, 𝜇 > 0, ℜ 𝑢 > |𝑤|𝜗 𝛼  ,𝑐 ≠ 𝑤 then for the solution of the generalized 

fraction kinetic equation  

𝒩 𝑡 − 𝑁0𝑡μ−1
𝜗, 𝜇
𝕄
𝑝, 𝑞

 𝑎1 , . . , 𝑎𝑝 ;  𝑏1 , . . , 𝑏𝑝  ;  −𝑤𝜗 𝑡𝜗 =     −𝑐𝜗 𝐷𝑡
−𝜗

0
 𝒩 𝑡                                     (36) 

Then holds the result 

𝒩 𝑡 = 𝒩0𝑡μ−1   −1 𝑟 𝑐𝜗 𝑡𝜗 
𝑟
  
𝜗, 𝜇 + 𝜗𝑟

𝕄𝑞𝑝
  

 
   𝑎1 , . . , 𝑎𝑝 ;  𝑏1 , . . , 𝑏𝑝  ;  −𝑤𝜗 𝑡𝜗                   (37)

∞

𝑟=0

 

If we set 𝑝 = 𝑞 = 1 the result in (34) reduces to the following result. 

Corollary 3.2 Let 𝜗 > 0 , 𝑐 > 0, 𝑤 > 0, 𝜇 > 0 and 𝑐 ≠ 𝑤  then for the solution of the generalized fraction 

kinetic equation  

𝒩 𝑡 − 𝒩0𝑡μ−1 𝔼𝜗 ,𝜇 ,𝑛
𝑎1 ,𝑏1 ,𝑚

 −𝑤𝜗 𝑡𝜗 = −𝑐𝜗 𝐷𝑡
−𝜗

0
 𝒩 𝑡                                             (38) 

Then holds the formula 

𝒩 𝑡 = 𝒩0𝑡μ−1   −1 𝑟 𝑐𝜗 𝑡𝜗 
𝑟
  𝔼𝜗 ,𝜇 +𝜗𝑟 ,𝑛

𝑎1 ,𝑏1 ,𝑚
 −𝑤𝜗 𝑡𝜗                                      (39)

∞

𝑟=0

 

 

Further taking 𝑝 = 𝑞 = 1, 𝑚 = 𝑛 = 1, 𝑏1 = 1 and c = w  in (38), then we obtain the interesting result given by 

Mathai et.al. [3]. 

Corollary 3.3 Let 𝜗 > 0 , 𝑐 > 0, 𝑤 > 0, 𝜇 > 0 , then for the solution of the generalized fraction kinetic 

equation  

 

𝒩 𝑡 − 𝒩0𝑡μ−1 𝔼𝜗 ,𝜇
𝑎1  −𝑤𝜗 𝑡𝜗 = −𝑐𝜗 𝐷𝑡

−𝜗
0
 𝒩 𝑡                                             (40) 

Then the following integral formula holds true: 

𝒩 𝑡 = 𝒩0𝑡μ−1 𝔼𝜗 ,𝜇
𝑎1+1,

 −𝑤𝜗 𝑡𝜗                                                                    (41) 

 

If we set 𝑝 = 𝑞 = 0 in (36), it becomes in to the known result given by Mathai et.al. [3]. 

Corollary 3.4 Let 𝜗 > 0 , 𝑐 > 0, 𝑤 > 0, 𝜇 > 0 𝑎𝑛𝑑 c ≠ w  , then the solution of equation  

𝒩 𝑡 − 𝒩0𝑡μ−1 𝔼𝜗 ,𝜇
  −𝑤𝜗 𝑡𝜗 = −𝑐𝜗 𝐷𝑡

−𝜗
0
 𝒩 𝑡                                             (42) 

is given as 

𝒩 𝑡 = 𝒩0

𝑡μ−𝜗−1

𝑐𝜗 − 𝑤𝜗
  𝔼𝜗 ,𝜇−1

  −𝑤𝜗 𝑡𝜗 −  𝔼𝜗 ,𝜇−𝜗
  −𝑤𝜗 𝑡𝜗                                                  (43) 
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If we can also obtain results concerning fractional kinetic equation by putting  𝑐 = 𝑤, 𝑝 = 𝑞 = 0 in (36), then 

we arrive another result obtained by Mathai et.al. [3]. 

Corollary 3.5 Let 𝜗 > 0 , 𝑐 > 0, 𝑤 > 0, 𝜇 > 0 , then the solution of equation  

𝒩 𝑡 − 𝒩0𝑡μ−1 𝔼𝜗 ,𝜇
  −𝑤𝜗 𝑡𝜗 = −𝑐𝜗 𝐷𝑡

−𝜗
0
 𝒩 𝑡                                             (44) 

is given as follows  

𝒩 𝑡 =
𝒩0

𝜗
𝑡μ−1  𝔼𝜗 ,𝜇−1

  −𝑤𝜗 𝑡𝜗 + (1 + 𝜗 − μ) −  𝔼𝜗 ,𝜇
  −𝑤𝜗 𝑡𝜗                                                  (45) 

IV. THE SOLUTION OF FRACTIONAL KINETIC EQUATION IN TERMS OF GENERALIZED 𝕂4
 -SERIES BY USING 

SUMUDU TRANSFORM 

Recently, Salim and Faraz [5] have introduced the generalized 𝕂4
 –function defined as 

𝕂4(𝑚 ,𝑛)
 𝜗 ,𝜇 ,𝛾 ; 𝑎 ,𝑐 ; 𝑝 ,𝑞 

 𝜂 =  
 𝑎1 𝑘𝑚 , … ,  𝑎𝑝 

𝑘𝑚
 

 𝑏1 𝑘𝑛 , … ,  𝑏𝑞 
𝑘𝑛

∞

𝑘=0

  𝛾 𝑘    𝑎 𝑘   𝜂 − 𝑐  𝑘+𝛾 𝜗−𝜇−1

𝑘!  𝛤  𝑘 + 𝛾 𝜗 − 𝜇 
                  (46) 

where ℜ 𝜗𝛾 − 𝜇 > 0. 

The series (2.1) is defined when non of the parameters 𝑏𝑗 ′𝑠 is a negative integer or zero. If any numerator 

parameter 𝑎𝑖  is a negative integer or zero, then the series terminate to a polynomial of 𝜂. 

From the ratio test it is evident that the series is convergent for all 𝜂, if 𝑝𝑚 < 𝑞𝑛 + ℜ 𝜗 , also when 𝑝𝑚 =
𝑞𝑛 + ℜ 𝜗 ,it is convergent in some cases, let 𝜉 =   𝑎𝑖 −   𝑏𝑗 .

𝑞𝑛
𝑗 =1

𝑝𝑚
𝑖=1  It can be shown that when 𝑝𝑚 = 𝑞𝑛 +

ℜ 𝜗 , the series is absolutely convergent for  𝜂 = 1. If ℜ 𝜉 < 0 ,  conditionally convergent for 𝜂  =-1 if 

0 ≤ ℜ 𝜉 < 1 and divergent for  𝜂 = 1, if  ℜ 𝜉 ≥ 1. 

  

Now, we state further relation with other special functions. 

 

(I) On setting 𝑚 = 𝑛 = 1 in (46), it reduces to generalized 𝕂4-function defined by Sharma [29] 

  

𝕂4
 𝜗 ,𝜇 ,𝛾 ; 𝑎 ,𝑐 ; 𝑝 ,𝑞 

 𝑎1 , … , 𝑎𝑝 ; 𝑏1 , … , 𝑏𝑞 ; 𝜂 =  
 𝑎1 𝑟 , … ,  𝑎𝑝 

𝑟
 

 𝑏1 𝑟 , … ,  𝑏𝑞 
𝑟

∞

𝑟=0

  𝛾 𝑟    𝑎 𝑟   𝜂 − 𝑐  𝑟+𝛾 𝜗−𝜇−1

𝑟!  𝛤  𝑟 + 𝛾 𝜗 − 𝜇 
                  (47) 

(II) If we set 𝜇 = 𝜗 − 𝜇, 𝛾 = 1, 𝑎 = 1 and  𝑐 = 0 in (50), then we obtain the following relation 

𝕂4(𝑚 ,𝑛)
 𝜗 ,𝜗−𝜇 ,1 ; 1,0 ; 𝑝 ,𝑞 

 𝑎1 , … , 𝑎𝑝 ; 𝑏1 , … , 𝑏𝑞 ; 𝜂 = 𝜂𝜇−1  
 𝑎1 𝑟𝑚 , … ,  𝑎𝑝 

𝑟𝑚
 

 𝑏1 𝑟𝑚 , … ,  𝑏𝑞 
𝑟𝑚

∞

𝑟=0

𝜂𝑟𝜗   

 𝛤 𝑟𝜗 + 𝜇 
                   

= 𝜂𝜇−1
𝜗, 𝜇
𝕄

𝑝, 𝑞; 𝑚, 𝑛
 𝑎1 , … , 𝑎𝑝 ; 𝑏1, … , 𝑏𝑞 ; 𝜂𝜗                             (48) 

(III) If we take 𝑝 = 𝑞 = 1 and 𝑎𝑖 , 𝑏𝑗  in (47), then we arrive at the following relation: 

 

𝕂4
 𝜗 ,𝜇 ,𝛾 ; 𝑎 ,𝑐 ; 1,1 

 1; 1; 𝜂 = 𝒢𝜗 ,𝜇 ,𝛾 𝑎, 𝑐, 𝜂 =  
 𝛾 𝑟𝑎

𝑟  

𝑟!

∞

𝑟=0

 𝜂 − 𝑐  𝑟+𝛾 𝜗−𝜇−1   

 𝛤  𝑟 + 𝛾 𝜗 − 𝜇 
               (49) 

where  𝒢 𝜗 ,𝜇 ,𝛾  𝑎, 𝑐, 𝜂  is the function 𝒢-function (but not the Meijer’s 𝒢-function) defined by Lorenzo and 

Hartley [29]. 

(IV) Further, if we put 𝛾 = 1in (49), then 𝕂4 function readily yields the following relationship with ℛ-function 

 

𝕂4
 𝜗 ,𝜇 ,1 ; 𝑎 ,𝑐 ; 1,1 

 1; 1; 𝜂 = ℛ𝜗 ,𝜇  𝑎, 𝑐, 𝜂 =  𝑎𝑟

∞

𝑟=0

 𝜂 − 𝑐  𝑟+1 𝜗−𝜇−1  

 𝛤  𝑟 + 1 𝜗 − 𝜇 
                        (50) 

where 𝜂 > 𝑐 ≥ 0, 𝜗 ≥ 0, ℜ 𝜗 − 𝜇 > 0 and ℛ𝜗 ,𝜇  𝑎, 𝑐, 𝜂  is the ℛ-function defined by Lorenzo and Hartley [28]. 

(V) If we put  𝑐 = 𝜇 = 0 in (50), we get 

 

𝕂4
 𝜗 ,0,1 ; 𝑎 ,0 ; 1,1  1; 1; 𝜂 = ℱ𝜗 𝑎, 𝜂 =  𝑎𝑟

∞

𝑟=0

 𝜂 − 𝑐  𝑟+1 𝜗−1  

 𝛤  𝑟 + 1 𝜗 
                        (51) 

Where ℱ𝜗 𝑎, 𝜂  is the ℱ-function defined by Robotnov and Hartley, for example see [30]. 

 

Remark 4.1: The following formula is needed for investigation of next theorem. 

  
𝑛

𝑟
  (𝑎)𝑟 =

𝑛

𝑟=1

(1 + 𝑥)𝑛                                                                           (52) 
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Theorem 4. The general fractional kinetic equation  

𝒩 𝑡 − 𝒩0𝕂
4 𝑚 ,𝑛 

 𝜗 ,𝜇 ,𝛿 ; −𝑐𝜗 ,0 ; 𝑝 ,𝑞 
 𝑡 = −   

𝑛

𝑟
 

𝑛

𝑟=1

𝑐𝑟𝜗 𝐷0
  

𝑡
−𝜗𝒩 𝑡                                         (53) 

holds the formula  

𝑁 𝑡 = 𝑁0𝕂
4 𝑚 ,𝑛 

 𝜗 ,𝜇+𝑛𝜗 ,𝛿+𝑛 ; −𝑐𝜗 ,0 ; 𝑝 ,𝑞 
 𝑡                                                                                 (54) 

 

Proof. Beginning with eq. (53), applying Sumudu transform both the sides and using result (46), we get 

 

          𝒩   u − 𝒩0  
 a1 km , … ,  ap 

km
 

 b1 kn , … ,  bq 
kn

∞

k=0

  δ k    −cϑ k𝕊  t k+δ ϑ−μ−1 
 

k!  Γ  k + δ ϑ − μ 
= −   

n

r
 

n

r=1

crϑ urϑ 𝒩   u  

                        
solving for 𝒩   u , it gives  

𝒩   u  1 +   
n

r
 

n

r=1

 cϑuϑ r = 𝒩0uδϑ−μ−1  
 a1 km , … ,  ap 

km
 

 b1 kn , … ,  bq 
kn

∞

k=0

  δ k    −cϑuϑ k

k! 
 

  Or 

𝒩   u    
n

r
 

n

r=0

 cϑuϑ r = 𝒩0uδϑ−μ−1  
 a1 km , … ,  ap 

km
 

 b1 kn , … ,  bq 
kn

∞

k=0

  δ k    −cϑuϑ k

k! 
 

using the formulae (33) and (52),we have  

           𝒩   u = 𝒩0uδϑ−μ−1 1 + cϑuϑ −1  
 a1 km , … ,  ap 

km
 

 b1 kn , … ,  bq 
kn

∞

k=0

 

Or 

              𝒩   u = 𝒩0  
 a1 km , … ,  ap 

km
 

 b1 kn , … ,  bq 
kn

∞

k=0

 n + δ k −cϑ k

k!
u δ+k ϑ−μ−1 

Now, taking inverse Sumudu transform on both sides for the last equation, we obtain the desired result (54). 

 

Theorem 5.The general fractional kinetic equation 

     𝒩 𝑡 − 𝒩0𝕂4 𝑚 ,𝑛 
 𝛼 ,𝛽 ,𝛾 ; 𝑎 ,0 ; 𝑝 ,𝑞 

 𝑡 = − 𝑐𝜗 𝐷0
  

𝑡
−𝜗𝒩 𝑡                                                          (55) 

There holds the result  

        𝒩 𝑡 = 𝒩0   −1 𝑟

∞

𝑟=0

 −𝑐𝜗 
𝑟
 𝕂4 𝑚 ,𝑛 

 𝛼 ,𝛽−𝜗𝑟 ,𝛾 ; 𝑎 ,0 ; 𝑝 ,𝑞 
 𝑡                                                 (56)  

Proof. If we apply Sumudu transform and using (53) and (9), (55) becomes 

𝒩   u − N0  
 a1 km , … ,  ap 

km
 

 b1 kn , … ,  bq 
kn

∞

k=0

  γ k    a k  𝕊 t k+γ α−β−1 

k!  Γ  k + γ α − β 
= −cϑ u 

  
 
ϑ𝒩   u  

solving for 𝒩   u  , it gives 

N   u = 𝒩0 1 + cϑuϑ −1  
 a1 km , … ,  ap 

km
 

 b1 kn , … ,  bq 
kn

∞

k=0

  γ k    a k  

k! 
u k+γ α−β−1 

making use of (33), we get 

                  𝒩   u = 𝒩0   −1 r

∞

r=0

 −cϑ r    γ k    a k  

k! 
u k+γ α−β+ϑr−1 

Now, taking inverse Sumudu transform on both sides for the last equation, we arrive at the required result (56). 

 

The result in Theorems 4 and 5 can be easily specialized to yield the corresponding kinetic equations involving 

K4-function, 𝒢-function, ℛ-function and ℱ-function. 

V. CONCLUSION 

The generalized fractional kinetic equation taken in the present paper involves various special functions. It is 

not difficult to obtain several further analogues fractional kinetic equations and their solution as those exhibited 

here by theorems 2 and 3 and its Corollaries. Moreover, in view of close relationships of the generalized H-

function, generalized M-series and generalized K4-function with other special functions, it does not seem 

difficult to construct various known and new fractional kinetic equations. The Mittag-Leffler function is a 
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special function having an essential role in the solution of fractional order integral and differential equations. 

Recently, this function is frequently used in modeling phenomena of fractional order appearing in the physics, 

biology, and engineering and applied sciences. The results calculated are suitable for various numerical 

computations like dynamical properties of the particle reaction rate, statistical mechanics associated with the 

particle distribution. 
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