Study of Normalized Analytical Function in the View of Group Theory

Shailesh Shashikant Jadhav

Department of Mathematics Sundarrao More Arts, Commerce, and Science (Sr.) College, Poladpur.Tal-Poladpur Dist- Raigad – 402 303.

Abstract: In this paper we introduced class N of normalized analytical functions on unit disc U

given by $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, $a_k \in C$. We define operation '+' on N. We examine class N for group with respect to given operation. We find subgroup and factor group for (N, +)

1 INTRODUCTION AND PRELIMINARIES.

LetN denotes subclass of normalized analytical function in open unit disc U= $\{z: |z| < 1\}$

given by
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
. (1.1)

[1] has introduced following definitions.

Definition 1.1. A group < G, *> is a set G, closed under binary operation *, such that following axioms are satisfied

 G_1 : For all a, b, c \in G, we have

$$(a*b)*c=a*(b*c)$$
 associativity of *.

 G_2 : There is an element e in G such that for all $x \in G$,

$$e^*x = x^*e = x$$
 identity element e for *

 G_3 : corresponding to each $a \in G$, there is an element a' in G such that

$$a*a' = a'*a = e$$
 inverse a' of a.

Operation 1.2. '+'

For $f_1(z)$, $f_2(z)$, in N we have define following operations

$$f_1(z) = z + \sum_{k=2}^{\infty} t_k z^k, \quad f_2(z) = z + \sum_{k=2}^{\infty} b_k z^k.$$

$$f_1(z) + f_2(z) = z + \sum_{k=2}^{\infty} (t_k + b_k) z^k.$$
(1.2)

Definition1.3 If subset H of group G is closed under binary operation of G and If H with induced

operation from G is itself a group, then H is a **subgroup** of G.

Example 1.4. Show that $\langle N, + \rangle$ is a group.

Answer:
$$f_1(z) = z + \sum_{k=2}^{\infty} t_k z^k$$
, $f_2(z) = z + \sum_{k=2}^{\infty} b_k z^k$, $f_3(z) = z + \sum_{k=2}^{\infty} c_k z^k$ in N,
 $G_1: (f_1(z) + f_2(z)) + f_3(z) = [(z + \sum_{k=2}^{\infty} t_k z^k) + (z + \sum_{k=2}^{\infty} b_k z^k)] + (z + \sum_{k=2}^{\infty} c_k z^k)$

$$= (z + \sum_{k=2}^{\infty} (t_k + b_k) z^k) + (z + \sum_{k=2}^{\infty} c_k z^k)$$

$$= (z + \sum_{k=2}^{\infty} (t_k + b_k + c_k) z^k.$$

=L.H.S

$$f_1(z) + (f_2(z) + f_3(z)) = z + \sum_{k=2}^{\infty} t_k z^k + [(z + \sum_{k=2}^{\infty} b_k z^k) + (z + \sum_{k=2}^{\infty} c_k z^k)]$$

$$= (z + \sum_{k=2}^{\infty} t_k z^k) + [z + \sum_{k=2}^{\infty} (b_k + c_k) z^k]$$

$$= z + \sum_{k=2}^{\infty} (t_k + b_k + c_k) z^k$$

= R.H.S

Therefore $(f_1(z) + f_2(z)) + f_3(z) = f_1(z) + (f_2(z) + f_3(z)).$

 G_2 : Let I (z) = z in N such that for f(z)in N

$$I(z)+f(z) = (z + \sum_{k=2}^{\infty} 0z^k) + (z + \sum_{k=2}^{\infty} a_k z^k)$$

$$= z + \sum_{k=2}^{\infty} a_k z^k = f(z)$$

Similarly we can show that f(z)+I(z) = f(z)

$$G_3$$
: $f_1(z) = z + \sum_{k=2}^{\infty} t_k z^k$ in N their exit $f_2(z) = z + \sum_{k=2}^{\infty} -t_k z^k$ in N such that

$$f_1(z) + f_2(z) = (z + \sum_{k=2}^{\infty} t_k z^k) + (z + \sum_{k=2}^{\infty} -t_k z^k)$$

$$= (z + \sum_{k=2}^{\infty} (t_k - t_k) z^k)$$

$$=z=I(z)$$

Similarly we can show that $f_2(z)+f_1(z) = I(z)$.

Hence $\langle N, + \rangle$ is a group.

Theorem1.5. [1] has given following result

A subset H of group G is a subgroup of G if and only if

- 1. H is closed under binary operation of G.
- 2. Identity element e of G is in H.
- 3. For all $a \in H$, $a' \in H$.

Example 1.6. Let $H = \{z + \sum_{k=2}^{\infty} a_k z^k / a_k \text{ is integer}\}.$

Show that H is subgroup of G.

Answer:
$$1.f_1(z) = z + \sum_{k=2}^{\infty} t_k z^k$$
, $f_2(z) = z + \sum_{k=2}^{\infty} b_k z^k$ in

$$f_1(z) + f_2(z) = z + \sum_{k=2}^{\infty} (t_k + b_k) z^k$$
.

as
$$t_k$$
, $b_k \in \mathbb{Z}$, $t_k + b_k \in \mathbb{Z}$. Hence $f_1(z) + f_2(z) \in H$.

2. Let I(Z) = Z is identity element of (N, +).

I (Z) =
$$z + \sum_{k=2}^{\infty} a_k z^k$$
, where $a_k = 0$.

Then $I(Z) \in H$.

3 For
$$f_1(z) = z + \sum_{k=2}^{\infty} t_k z^k$$
 their exist $f_2(z) = z + \sum_{k=2}^{\infty} (-t_k) z^k$ such that

$$f_1(z) + f_2(z) = (z + \sum_{k=2}^{\infty} t_k z^k) + (z + \sum_{k=2}^{\infty} (-t_k) z^k)$$

$$=z+\sum_{k=2}^{\infty}(t_k-t_k)z^k$$

=z

=I(z).

For $t_k \in \mathbb{Z}$, $-t_k \in \mathbb{Z}$.

Hence $f_2(z) \in H$.

Therefore H is subgroup of N

Definition 1.7. A subgroup H of group G is normal if gH=Hg $y g \in H$.

Example 1.8. Show that H is Normal subgroup of N.

Answer: $g.H=\{g.h/h \in H\}$

For
$$f(z) = z + \sum_{k=2}^{\infty} t_k z^k$$
.

$$f(z).H = \{f(z)+h(z)/h(z) \in H\}.$$

$$H.f(z) = \{h(z) + f(z)/h(z) \in H\}.$$

But
$$f(z)+h(z)=(z+\sum_{k=2}^{\infty}t_kz^k)+(z+\sum_{k=2}^{\infty}h_kz^k)$$
.

$$=z+\sum_{k=2}^{\infty}(t_k+h_k)z^k.$$

$$= z + \sum_{k=2}^{\infty} (h_k + t_k) z^k.$$

$$= (z + \sum_{k=2}^{\infty} b_k z^k) + (z + \sum_{k=2}^{\infty} t_k z^k).$$

$$=h(z)+f(z).$$

Hence f(z).H=H.f(z).

Therefore H is normal subgroup of G.

Example 1.9. Show that set of cosets of H form group N/H.

Answer:1.
$$(f(z).H)*(g(z).H) = (f(z)+g(z)).H$$

$$(f(z).H)*[(g(z).H)*(h(z).H] = (f(z).H)*[(g(z)+h(z))].H$$

$$= (f(z) + (g(z) + h(z)).H$$

$$= (f(z) + g(z) + h(z)).H$$

Similarly we can show that

$$[(f(z).H)*(g(z).H)]*(h(z).H) = (f(z)+g(z)+h(z)).H$$

Hence G_1 axiom satisfied.

2. TakeI
$$(z) = z$$

$$(f(z).H)*(I(z).H) = (f(z)+I(z)).H$$

=f(z).H

Similarly we can show that (I(z).H)*(f(z).H) = f(z).H

Hence G_2 axiom satisfied

3. If
$$f(z) = z + \sum_{k=2}^{\infty} t_k z^k$$
, $g(z) = z + \sum_{k=2}^{\infty} (-t_k) z^k$.

Then f(z) + g(z) = I(z)

$$(f(z).H)*(g(z).H) = (f(z)+g(z)).H$$

=I(z).H

Similarly we can show that (g(z).H)*(f(z).H)=I(z).H

For f(z). $H \in N/H$ there exist g(z). $H \in N/H$ such that

$$(f(z).H)*(g(z).H) = (g(z).H)*(f(z).H) = I(z).H$$

Hence G_3 is satisfied.

Therefore (N/H,*) is a group.

REFERENCES

[1] G.B.FRALAY, Abstract Algebra

[2] S.M. KHAIRNAR AND MEENA MORE, on certain subclass of analytic functions involving Al-Oboudi differential operator, 2(2008), 1739-1748

[3] F.M. AL-OBOUDI, on univalent functions defined by a generalized S´al´agean operator, Internat. J. Math. and Mathematical Sciences, 27 (2004), 1429–1436.

[4] P.L. DUREN, Univalent functions, Grundlehren der Mathematischen Wissenchaften, **259**, Springer-Verlag, New York, USA, 1983.