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ABSTRACT 
               This paper study “Continuous Acceptance Sampling plans for Truncated Lomax distribution based on 

CUSUM Schemes” by Gauss-Chebyshev integration method.  Assuming that the life time of an item produced is 

distributed according to Lomax distribution.  Generally life tests experiments are carried out to determine an 

optimal truncated point.   Truncated distributions are employed many practical situations where there is a 

constraint a lower and upper limits of the variable understudy.  Based on these understanding we optimize CASP-

CUSUM Schemes through the truncated Lomax distribution by using Gauss-Chebyshev integration method.  At 

various parameter values of the underlying distribution, we determine probability of acceptance.  

 

Keywords: CASP-CUSUM Schemes, Optimal Truncated point, Truncated Lomax Distribution. 

 

I. INTRODUCTION 

 

                  Customer satisfaction determines the success of a new product and only products at high value meet 

needs clients who expect them to perform correctly in their whole life cycle.  In order to fulfill such requirements the 

minimum of variation of parameters should be assured within the manufacturing processes and the product itself.  

 

              Quality is relating to one or more desirable characteristics that a product or service should possess.  Quality 

has become one of the most important consumer decision factors in the selection among competing products and 

services.  Quality improvement methods can be applied to any area within a company or organization, including 

manufacturing process, development, engineering design, finance and accounting, marketing, distribution and 

logistics, customer service, and field service of products. 

 

               In order to tackle the development of advanced technologies, the reliability of products has become a 

significant matter of concern.  It regards with respect to failure avoidance rather than probability of failure.  Product 

failure occurs when the product is not able to perform its objective function and does not meet its requirements.  

Thus truncation of a product is capability to fulfill intended tasks for a specified performance period. 

               Acceptance sampling plan is an essential tool in the Statistical Quality Control. In most of the statistical 

quality control experiment, it is not possible to perform hundred percent inspections, due to various reasons.  The 

acceptance sampling plan was the first applied in the US military for testing the bullets during World War II. For 

instance, if every bullet tested in   advance, no bullets are available for shipment, and on the other hand if no bullets 

are tested, then disaster may occur in the battle field at the crucial time.  Acceptance sampling plan is a middle path 

between 100% inspection and no inspection. 

 

               A classical field of quality control is acceptance sampling; it deals mainly with the following problem 

namely product control.  Product control deals with inspection of all the items in the lot with respect to certain 

qualitative characteristics.  

 

               Truncation of a product can be defined as “the time period over which a product meets the standards of 

quality for the period of expected use”. The objective of the truncation is to study, characterization, and 

measurement, analysis of failures and repairs and consequences to improving system operational time.  
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              Truncated distribution can be used to simplify the asymptotic theory of robust estimators of location and 

regression.  These are useful when the underlying distribution is exponential, double exponential, normal, Cauchy 

and also examine the sample median, trimmed means and two stage trimmed means behavior at these distribution. 

 

              The items which are conforming the quality specifications required by consumer are referred as quality 

items.  Quality of an item is subjected to the reliability; one should adopt certain measures such as life testing 

through various probability models, preventing measures, sampling inspection CUSUM Schemes etc.  In the process 

of improving the quality of products it should be examined whether, the items produced performing their intended 

duties or not.  The items are available up to the warranty time, and how best they satisfy the consumer needs. 

 

               Life tests experiments are carried out in order to obtain the life time of an item (i.e. time to its failure or the 

stops working satisfactory).  Sometimes, it may be time consuming process as we have to wait until all the products 

fail in a life test, if the life times of products are high. One can use the truncated life test for saving time and money, 

because 100% inspection involves more time, more money, man power, material, machinery etc.  Even the sample 

finite 100% inspection practically not feasible  in case of explosive type materials like crackers, bombs, batteries, 

bulbs etc.  The test can be performed without waiting until all the products fail, and then testing time can be reduced 

significantly.  For the purpose of reduces test time and cost, obliviously truncated life models.   

 

             Hawkins, D. M. [4] proposed a fast accurate approximation for ARL‟s of a CUSUM Control Charts. This 

approximation can be used to evaluate the ARL‟s for Specific parameter values and the out of control ARL‟s  

location and scale CUSUM Charts. 

 

              Kakoty. S., Chakravaborthy A.B. [6] determined CASP-CUSUM charts under the assumption that the 

variable under study follows a Truncated Normal Distribution. Generally truncated distributions are employed in 

many practical phenomena where there is a constraint on the lower and upper limits of the variable under study. For 

example, in the production engineering items, the sorting procedure eliminates items above or bellows designated 

tolerance limits.  It is worthwhile to note that any continuous variable be first approximated as an exponential 

variable.  

 

               Vardeman.S, Di-ou Ray [10]  introduced CUSUM control charts under the restriction that the values are 

regard to quality is exponentially distributed. Further the phenomena under study is the occurrence of rate of rare 

events and the inter arrival times for a homogenous poison process are identically independently distributed 

exponential random variables. 

 

              Lonnie. C. Vance [7], considered Average Run Length of cumulative Sum Control Charts for controlling 

normal means and to determine the parameters of a CUSUM Chart. To determine the parameters of CUSUM Chart 

the acceptable and rejectable quality levels along with the desired respective ARL‟s are consider. 

 

                Muhammed Riaz, Nasir Abbas[8]  and Ronald J.M.M Does proposed two Runs rule schemes for the 

CUSUM Charts. The performance of the CUSUM and EWMA Charts are compared with the usual CUSUM and 

weighted CUSUM, the first initial response CUSUM compared with usual EWMA Schemes. This comparison stated   

that the proposed schemes perform better for small and moderate shifts. 

 

               Mohammed Akhtar. P and Sarma K.L.A.P [1] analyzed and Optimization of CASP-CUSUM Schemes 

based on truncated two parametric Gamma distribution and evaluate L (0), L‟ (O) and probability of Acceptance and 

also Optimized CASP-CUSUM Schemes based numerical results. 

 

               Narayana Murthy,B.R. and Mohammed Akhtar.P[11] proposed an Optimization of CASP CUSUM 

Schemes based on Truncated Log-logistic distribution and evaluate the probability of acceptance for different 

paremter values.  

 

              Sainath.B and Mohammed Akhtar .P [13] studied an Optimization of CASP-CUSUM Schemes based on 

truncated Burr distribution and the results were analyzed at different values of the parameters. 

     

             Venkatesulu.G and Mohammed Akhtar.P[14] determined Truncated Gompertz Distribution and its 

Optimization of CASP-CUSUM Schemes  by changing the values of the parameters and finally critical comparisons 

are drawn based on the obtained numerical results. 
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            In the present paper it is determined Type-C OC curves of CASP-CUSUM schemes when the variable under 

study follows truncated Lomax Distribution. Thus it is more worthwhile to study some interesting characteristics of 

Type-C OC Curves based on this distribution.  

 

LOMAX DISTRIBUTION 

 

             The Lomax distribution, also called “Pareto type II” distribution is a particular case of the generalized 

Pareto distribution.  The Lomax distribution has been used in the literature in a number of ways.  It has been used as 

an alternative to the exponential distribution when the data are heavy tailed.  The Lomax distribution has 

applications in economics, actuarial modeling, queuing problems and biological sciences. 

Definition:    A continuous random variable X assuming non-negative values is said to have Lomax Distribution 

with parameters α, λ> 0, and its probability density function is given by: 

                𝑓 𝑥 =
𝛼

𝜆
 1 +

𝑥

𝜆
 
−(𝛼+1)

                                                                                …. (1.1) 

Where λ > 0 is the scale parameter and  α > 0 is the shape parameter of the Lomax distribution.   

                  

Truncated Lomax Distribution      

 

   It is the ratio of probability density function of the Lomax distribution to their cumulative distribution 

function at the point B. 

    

 

The random variable X is said to follow a truncated Lomax Distribution as: 
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 Where‟ B’ is the truncated point of the Lomax Distribution. 

 

 

            A new distribution with two extra parameters named a Truncated Lomax distribution is proposed which is 

more flexible than many well-known heavily tailed distributions.  The importance of Truncated Lomax distribution 

is illustrated by means of the two real data sets.  The results indicate that the new distribution can provide better fits 

than Exponential, Weibull, Gamma, Log-normal, Log-logistic and generalized extreme value distribution in 

insurance.  Therefore, Truncated Lomax distribution can be alternative to modeling the catastrophe loss in insurance 

applications. 
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2.   DESCRIPTION OF THE PLAN AND TYPE- C OC CURVE 

 

          Beattie [2] has suggested the method for constructing the continuous acceptance sampling plans. The 

procedure, suggested by him consists of a chosen decision interval namely, “Return interval” with the length h‟, 

above the decision line is taken. We plot on the chart the sum ........)3,2,1(')(
1

  isXkXS
iim

  is 

distributed independently and k1 is the reference value. If the sum lies in the area of normal chart, the product is 

accepted and if it lies of the return chart, then the product is rejected, subject to the following assumptions. 

 

1. When the recently plotted point on the chart touches the decision line, then the next point to be plotted at 

the maximum, i.e., h+h‟ 

2. When the decision line is reached or crossed from above, the next point on the chart is to be plotted from 

the baseline. 

              When the CUSUM falls in the return chart, network or a change of specification may be employed 

rather than outright rejection. 

The procedure in brief is given below. 

1. Start plotting the CUSUM at 0. 

2. The product is accepted when ;)( hkXS
im

   when Sm< 0, return cumulative to 0. 

3. When h <Sm< h+h‟ the product is rejected: when Sm  crossed h, i.e., when Sm>h+h‟ and continuously 

rejecting product until Sm>h+h‟ return cumulative to h+h‟ 

       The type-C, OC function, which is defined as the probability of acceptance of an item as function of 

incoming quality, when sampling rate is the same in acceptance and rejection regions. Then the probability 

of acceptance P (A) is given by  

                                         
)0(')0(

)0(
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
                                                       …… (2.1) 

Where L (0) = Average Run Length in acceptance zone and  

           L‟ (0) = Average Run Length in rejection zone. 

Page E.S. [8] has introduced the formulae for L (0) and L‟ (0) as  
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Where P (0) =Probability for the test starting from zero on the normal chart, 

            N (0) = ASN for the test starting from zero on the normal chart, 

           P‟ (0) = Probability for the test on the return chart and 

           N‟ (0) = ASN for the test on the return chart  

He further obtained integral equations for the quantities 

P (0), N (0), P‟ (0), N‟ (0) as follows: 
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 and z is the distance of the starting of the test in the normal chart from zero. 

 

 

3. METHOD OF SOLUTION 

 We first express the integral equation (2.4) in the form  
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  where ai‟s and ti‟s respectively the weight factor and abscissa for the Gauss-Chebyshev 

polynomial, given in Jain M.K. and et al [4] using (3.1) and (3.2),(2.4) can be written as 

  

                                                      ..…. (3.3) 

Since equation (3.3) should be valid for all values of x 

in the interval (c, d), it must be true for x=ti , i = 0 (1) n then obtain. 
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       In the system of equations except Fi , i= 0,1,2……………n are known and hence can be solved for Fi, we solved 

the system of equations by the method of Iteration. For this we write the system (3.5) as 
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                 To start the Iteration process, let us put 0....
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
n

FFF in the first equation of (3.6), we then 

obtain a rough value of   
0

F . Putting this value of  
0

F  and 0....
21


n

FFF on the second equation, we 

get the rough value 
1

F  and so on. This gives the first set of values 
i

F i= 0,1,2,...,n which are just the refined values 

of  
i

F  i= 0,1,2,…,n. The process is continued until two consecutive sets of values are obtained up to a certain 

degree of accuracy. In the similar way solutions P‟ (0), N (0), N‟ (0) can be obtained. 

 

 

4.  COMPUTATION OF ARL’s AND P (A) 

    

          We developed computer programs to solve the equations (2.4), (2.5), (2.6) and (2.7)  and we got the following 

results given in the Tables (4.1) to (4.24). 

                     

 

  

                        TABLE-4.1                                                                                          TABLE-4.2 

Values of ARL‟s AND TYPE-C OC CURVES when                   Values of ARL‟s and TYPE-C OC CURVES when 

         α=2, λ =4, k=1.5, h=0.10, h‟=0.10                                                         α=2, λ =4, k=2, h=0.10, h‟=0.10                                                                        

 

 

 

                        

 

  

 

 

                         

                               TABLE-4.3                                                                                          TABLE-4.4 

Values of ARL‟s AND TYPE-C OC CURVES when                   Values of ARL‟s and TYPE-C OC CURVES When 

               α=2, λ =4, k=2.5, h=0.10, h‟=0.10                                              α=2, λ =4, k=3, h=0.10, h‟=0.10      

   

                                                                                

 

 

 

 

 

 

 

                              

 

 

B L(0) L’(0) P(A) 

2.6 16.12509 1.7699907 0.9010906816 

2.5 20.04141 1.7997228 0.9175993800 

2.4 27.09236 1.8333746 0.9366178513 

2.3 43.53524 1.8717581 0.9587782025 

2.2 125.37740 1.9159253 0.9849487543 

B L(0) L’(0) P(A) 

2.1 11.55481 1.9672639 0.8545145988 

2.0 14.23293 2.0276411 0.8753032088 

1.9 19.00994 2.0996311 0.9005365372 

1.8 29.92328 2.1868854 0.9318943024 

1.7 79.84055 2.2947578 0.9720612764 

B L(0) L’(0) P(A) 

3.1 22.14269 1.6617905 0.9301900268 

3.0 27.90147 1.6792951 0.9432353377 

2.9 38.56524 1.6985635 0.9578141570 

2.8 64.97897 1.7198679 0.9742144346 

2.7 240.49442 1.7435414 0.9928023815 

B L(0) L’(0) P(A) 

3.6 30.05311 1.5939482 0.9496335983 

3.5 38.57830 1.6053915 0.9600486755 

3.4 55.06450 1.6177710 0.9714589715 

3.3 100.40211 1.6312029 0.9840130210 

3.2 778.61249 1.6458230 0.9978906512 
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TABLE-4.5                                                                                         TABLE-4.6 

Values of ARL‟s AND TYPE-C OC CURVES when                   Values of ARL‟s and TYPE-C OC CURVES when 

      α=2, λ =4, k=1.5, h=0.12, h‟=0.12                                                       α=2, λ =4, k=1.5, h=0.18, h‟=0.18 

 

 

 

 

                          TABLE-4.7                                                                                               Table-4.8 

Values of ARL‟s AND TYPE-C OC CURVES when                        Values of ARL‟s And Type-C OC Curves when 

     α=2, λ =4.5, k=1.5, h=0.20, h‟=0.20                                    α=2, λ =4.5, k=2, h=0.20, h‟=0.20 

      

 

 

 

 

                            TABLE-4.9                                                                                             TABLE-4.10 

Values of ARL‟s AND TYPE-C OC CURVES when                   Values of ARL‟s and TYPE-C OC CURVES when 

α=2, λ =4.5, k=2.5, h=0.20, h‟=0.20                                                                α=2, λ =4.5, k=3, h=0.20, h‟=0.20                                                   

                                                  

 

 

 

                         TABLE-4.11                                                                                              TABLE-4.12                                                                                                                      

Values of ARL‟s AND TYPE-C OC CURVES when                   Values of ARL‟s and TYPE-C OC CURVES when 

         α=2, λ =4, k=3, h=0.10, h‟=0.10                                                            α=2, λ =4, k=3, h=0.12, h‟=0.12                                                      

                                          

 

 

 

 

                      TABLE-4.13                                                                                                 TABLE-4.14 

Values of ARL‟s AND TYPE-C OC CURVES when                  Values of ARL‟s and TYPE-C OC CURVES when 

         α=2, λ =4, k=3, h=0.15, h‟=0.15                                                             α=2, λ =4, k=3, h=0.18, h‟=0.18 

 

 

 

 

 

B L(0) L’(0) P(A) 

2.1 14.12652 2.3804674 0.8557903767 

2.0 18.02655 2.4845493 0.8788680434 

1.9 25.66819 2.6120420 0.9076371789 

1.8 47.33793 2.7717428 0.9446864724 

1.7 542.31726 2.9774745 0.9945396781 

B L(0) L’(0) P(A) 

2.3 20.23001 4.6633110 0.8126682043 

2.2 26.13974 5.1343265 0.8358279467 

2.1 37.86080 5.7782068 0.8675907850 

2.0 72.10518 6.7109442 0.9148531556 

1.9 1670.68457 8.1821671 0.9951263666 

B L(0) L’(0) P(A) 

2.3 14.97682 3.1709139 0.8252722025 

2.2 18.57917 3.3654804 0.8466377854 

2.1 24.97241 3.6097531 0.8737061024 

1.9 39.41126 3.9254141 0.9094204903 

1.8 102.50545 4.3488874 0.9593007565 

B L(0) L’(0) P(A) 

2.8 19.63176 2.5927384 0.8833386898 

2.7 24.30739 2.6747277 0.9008703828 

2.6 32.48593 2.7696147 0.9214417338 

2.5 50.43513 2.8806651 0.9459697604 

2.4 121.44909 3.0123408 0.9757969975 

B L(0) L’(0) P(A) 

3.3 26.19493 2.3080285 0.9190249443 

3.2 32.81628 2.3527057 0.9331028461 

3.1 44.69670 2.4024832 0.9489910007 

2.9 72.20257 2.4582708 0.9670741558 

2.8 205.11890 2.5212071 0.9878578186 

B L(0) L’(0) P(A) 

3.8 35.37514 2.1395493 0.9429677129 

3.7 45.32010 2.1674635 0.9543572068 

3.6 64.22472 2.1978874 0.9669105411 

3.5 114.08570 2.2311678 0.9808182120 

3.4 613.21057 2.2677162 0.9963155389 

B L(0) L’(0) P(A) 

4.3 13.24844 1.5331647 0.8962788582 

4.2 14.22590 1.5402158 0.9023084641 

4.1 15.41829 1.5477262 0.9087749124 

4.0 16.90480 1.5557401 0.9157261848 

3.9 18.80901 1.5643080 0.9232178330 

B L(0) L’(0) P(A) 

4.3 14.99346 1.7004458 0.8981397152 

4.2 16.18979 1.7106211 0.9044367671 

4.1 17.66564 1.7214884 0.9112045765 

4.0 19.53133 1.7331173 0.9184969664 

3.9 21.96409 1.7455885 0.9263765216 

B L(0) L’(0) P(A) 

4.3 18.55009 2.0204971 0.9017773867 

4.2 20.26078 2.0378706 0.9086101651 

4.1 22.42188 2.0565202 0.9159862995 

4.0 25.23726 2.0765877 0.9239730835 

3.9 29.05568 2.0982358 0.9326493740 

B L(0) L’(0) P(A) 

4.3 24.05692 2.4671352 0.9069849849 

4.2 26.75110 2.4972489 0.9146191478 

4.1 30.28933 2.5298080 0.9229167104 

4.0 35.13998 2.5651145 0.9319689870 

3.9 42.19631 2.6035221 0.9418854713 
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TABLE-4.15                                                                                                TABLE-4.16 

Values of ARL‟s AND TYPE-C OC CURVES when                   Values of ARL‟s and TYPE-C OC CURVES when 

α=2, λ =4, k=3, h=0.20, h‟=0.20                                                             α=2, λ =4, k=3, h=0.25, h‟=0.25 

  

                           TABLE-4.17                                                                                    TABLE-4.18 

Values of ARL‟s AND TYPE-C OC CURVES when                   Values of ARL‟s and TYPE-C OC CURVES when 

α=2, λ =4, k=3, h=0.15, h‟=0.15                                                               α=2, λ =4, k=2, h=0.18, h‟=0.18 

 

                           TABLE-4.19                                                                                  TABLE-4.20  

Values of ARL‟s AND TYPE-C OC CURVES when                   Values of ARL‟s and TYPE-C OC CURVES when 

           α=2, λ =4, k=2, h=0.20, h‟=0.20                                                            α=2, λ =4, k=3, h=0.20, h‟=0.20 

 

                           TABLE-4.21                                                                                    TABLE-4.22 

Values of ARL‟s AND TYPE-C OC CURVES when                   Values of ARL‟s and TYPE-C OC CURVES when 

            α=1, λ =4, k=2, h=0.12, h‟=0.12                                                            α=2, λ =4.5, k=3, h=0.10, h‟=0.10 

 

                             TABLE-4.23                                                                                TABLE-4.24 

Values of ARL‟s AND TYPE-C OC CURVES when                   Values of ARL‟s and TYPE-C OC CURVES when 

           α=2, λ =4.5, k=2.5, h=0.12, h‟=0.12                                                     α=2, λ =4.5, k=3, h=0.12, h‟=0.12 

B L(0) L’(0) P(A) 

4.3 29.77987 2.8778050 0.911879658 

4.2 33.74896 2.9224274 0.9203076959 

4.1 39.18913 2.9709945 0.9295306802 

4.0 47.10046 3.0240400 0.9396694303 

3.9 59.65480 3.0821996 0.9508711100 

B L(0) L’(0) P(A) 

4.3 69.43465 4.7808723 0.9355812669 

4.2 90.70218 4.9284010 0.9484641552 

4.1 132.92952 5.0940590 0.9630928636 

4.0 257.06653 5.2813592 0.9798688889 

3.9 8215.00098 5.4947886 0.9993315935 

B L(0) L’(0) P(A) 

3.8 34.52708 2.1216524 0.9421084523 

3.7 43.01743 2.1470571 0.9524613619 

3.6 57.96990 2.1747067 0.9638420343 

3.5 91.27293 2.2049038 0.9764125347 

3.4 230.20418 2.2380085 0.9903717637 

B L(0) L’(0) P(A) 

2.8 26.93155 3.4454691 0.8865764737 

2.7 34.74672 3.6035326 0.9060362577 

2.6 50.06136 3.7920883 0.9295850396 

2.5 93.52734 4.0208073 0.9587813020 

2.4 1106.95068 4.3039303 0.9961269498 

B L(0) L’(0) P(A) 

2.9 29.713214 4.2461734 0.8749629259 

2.8 38.15330 4.4890919 0.8947269917 

2.7 54.37271 4.7848639 0.9191166162 

2.6 98.21504 5.1526895 0.9501518607 

2.5 63950604 5.6223497 0.9912849069 

B L(0) L’(0) P(A) 

4.0 47.10046 3.0240400 0.9396694303 

3.9 59.65480 3.0821996 0.9508711100 

3.8 82.62214 3.1462328 0.9633170962 

3.7 138.09215 3.2170589 0.9772338867 

3.6 461.43591 3.2957976 0.9929081798 

B L(0) L’(0) P(A) 

.5 11.69545 1.3853960 0.8940897584 

2.4 14.99139 1.4013257 0.9145153165 

2.3 21.49567 1.4191756 0.9380673766 

2.2 40.32782 1.4393133 0.9655395746 

2.1 738.26984 1.4622059 0.9980233312 

B L(0) L’(0) P(A) 

3.6 23.01853 1.4042108 0.9425039887 

3.5 28.67420 1.4116585 0.9530787985 

3.4 38.72478 1.4196817 0.9646356702 

3.3 61.53769 1.4283473 0.9773156047 

3.2 163.61160 1.4377333 0.9912890792 

B L(0) L’(0) P(A) 

3.1 19.95287 1.5794438 0.9266477227 

3.0 25.12374 1.5950038 0.9403039217 

2.9 34.66338 1.6120968 0.9555596113 

2.8 58.14226 1.6309550 0.9727143049 

2.7 208.72723 1.6518599 0.9921481609 

B L(0) L’(0) P(A) 

3.6 26.56414 1.5188400 0.9459159970 

3.5 33.96438 1.5290967 0.9569189548 

3.4 48.09967 1.5401767 0.9689729810 

3.3 85.82152 1.5521799 0.9822351336 

3.2 502.63605 1.5652231 0.9968956113 
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5.  NUMERICAL RESULTS AND CONCLUSIONS 

 

              At the hypothetical values of the parameters α, λ, k, h and h‟ are given at the top of each table, we 

determined optimum truncated point B at which P (A) the probability of accepting an item is maximum and also 

obtained ARL‟s values which represent the acceptance zone L(0) and rejection zone L‟(0) values.  The values of 

truncated point B of random variable X, L(0), L‟(0) and the values for Type-C Curve, i.e. P (A) are given in 

columns I, II, III, and IV respectively. 

 

From the above tables 4.1 to 4.24 we made the following conclusions 

 

1. From the Table 4.1 to 4.24, it is observed that the values of P(A) is increased as the value of truncated point 

decreases. Thus, the truncated point of the random variable and the various parameters for CASP-CUSUM 

are related. 

 

2. From the Table 4.1 to 4.24, we observed that it could be maximized the truncated point B by increasing 

value of k.  

 

3. From Table 4.1 to 4.24, it is observed that at the maximum level of probability of acceptance P (A) the 

truncated point B from 5.0 to 1.2 as the value of h changes from 0.10 to 0.25.  

 

4. From the Table 4.1 to 4.24, it was observed that the value of L (0) and P (A) are increased as the value of 

truncated point decreases thus the truncated point of the random variable and the various parameters for 

CASP-CUSUM are related. 

 

5. From the Table 4.1 to 4.24, it was observed that the truncated point B changes from 3.0 to1 .1 and P (A) is 

as 25.0h   maximum i.e. 0.999331.  Thus truncated point B and h are inversely related and h and P 

(A) are positively related. 

 

6. From Table 4.1 to 4.24 it is observed that the optimal truncated point changes from 1.7 to 3.9 as 25.0h

. 

 

7. It is observed that the Table -5.1 values of Maximum Probabilities increased as the increased values of „k‟ 

as shown in the Figure-5.1. 

 

                   Table-5.1   

            α=2, λ=4, h=0.10, h‟=0.10 

             

k P(A) 

1.5 0.972061 

2 0.984949 

2.5 0.992802 

3 0.997891 

 

 

 

 

8. It is observed that the Table-5.2 values of Maximum Probabilities increased as the values of h and h‟ as 

shown in the Figure-5.2. 
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        Table-5.2 

α=2, λ=4, B=3.9, k=3 

 

h and h‟ P(A) 

0.10 0.923217 

0.12 0.926376 

0.15 0.932649 

0.18 0.941885 

0.20 0.950871 

0.25 0.999331 

 

 

9. The various relations exhibited among the ARL‟s and Type-C OC curves with the parameters    of the 

CASP-CUSUM based on the above table 4.1 to 4.24 are observed from the following Table.                 

 

Table 5.3 

CONSOLIDATED TABLE 

 

 

 

 

 

 

 

 

 

 

 

 

 

            By observing the Table- 5(c), we can conclude that the optimum CASP-CUSUM schemes which have the 

values of ARL and P (A) reach their maximum i.e., 8215, 0.999331 respectively, is 
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B Α λ h h’ k P(A) 

1.7 2 4 0.10 0.10 1.5 0.972061 

3.2 2 4 0.10 0.10 3 0.997890 

1.7 2 4 0.12 0.12 1.5 0.994539 

2.4 2 4 0.18 0.18 2 0.996126 

3.2 2 4 0.10 0.10 3 0.997890 

2.5 2 4 0.20 0.20 2 0.991284 

3.6 2 4 0.20 0.20 3 0.992908 

1.7 2 4.5 0.10 0.10 1.5 0.961777 

3.2 2 4.5 0.10 0.10 3 0.991289 

3.3 2 4.5 0.15 0.15 3 0.991325 

1.9 2 4 0.18 0.18 1.5 0.995126 

1.7 2 4.5 0.12 0.12 1.5 0.974898 

3.9 2 4 0.25 0.25 3 0.999331 

2.8 2 4 0.25 0.25 2 0.997206 

2.7 2 4.5 0.12 0.12 2.5 0.992148 

2.3 2 4.5 0.18 0.18 2 0.992314 

2.2 2 4 0.12 0.12 2 0.998616 

0.9

0.95

1

0 0.2 0.4

Figure-5.2
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              On similar lines we can obtain CASP-CUSUM schemes when a particular parameter is fixed at a point, for 

example, if we fix the value of 2k ,  
in that case only the maximum value of probability of acceptance P(A)= 

0.998616, is 
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