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Abstract: The paper is concerned with the problem of diffraction of P-waves by a
Griffith crack situated at the interface of two different orthotropic media has been
analyzed. Using Fourier transform and integral equation method, the mixed boundary
value problem has been reduced to the solution of dual integral equations which has
finally been reduced to the solution of a Fredholm integral equation of the second kind
which are finally solved by using perturbation method. Stress intensity factor(SIF) and
crack opening displacement (COD) around the crack tip are derived. The values of SIF
and crack opening displacement have been calculated for various type of orthotropic
materials and depicted graphically.
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I. Introduction

In recent years the problems of diffraction of elastic waves by cracks are of considerable
importance in view of their application in Engineering Mathematics. The primary objective
in engineering structure is to avoid the growth of the crack once it initiated. It was found
that the stress has a square root singularity at the tip of the crack. In this prospect a
non-dimensional quantity called stress intensity factor is used to predict the stress state near
the crack tip caused by an applied load. Many researchers did their work on wave propagation
on bonded media containing an interfacial crack. Fracture mechanics and study of crack
propagation can be considered as an interesting branch in elastic theory. The performance of
engineered systems is affected by inhomogeneities such as cracks and inclusions present in
the material. Theory and problems related to crack geometry in orthotropic materials have
emerged as a very interesting area of research in recent times mostly due to the rapid growth in
construction engineering. Anisotropy and flaw at the interface of two bonded materials are of
great importance in designing engineering structures and machines. Composite materials are
becoming an essential commodity in modern era as they offer advantages such as low weight to
strength ratio, corrosion resistance, and high fatigue strength. The growing use of composite
materials in many engineering applications demand the fundamental understanding of the
response of cracked orthotropic bodies under stress. Many composite materials are used in
making aircraft structures to golf clubs, electronic packaging to medical equipment, and space
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vehicles to home building. It has been observed that applications of composite materials in the
commercial market are also increasing day by day. The crack problem in fracture mechanics
has a wide range of applications in civil engineering. It has a big application on manufacturing
engineering for designing metal and polymer forming processes, machining, etc.

Srivastava et al. [22] solved the problem of interaction of shear waves with Griffith crack
situated at the interface of two bonded dissimilar elastic half spaces. The problem becomes
more difficult and complicated when boundaries are present in the media. Li [14] obtained
the analytical solution for a static problem of two bonded orthotropic strips containing an
interfacial crack. The dynamical problem was studied by Matbuly [18] and obtained the
analytical expression of stress intensity factor. Diffraction problems involving multiple cracks
had been studied by many authors. But most of the problems were either involving diffraction
of shear waves or diffraction in infinite media. E. Lira-Vergara and C. Rubio-Gonzalez
[12-13] obtained the dynamic stress intensity factor of interfacial finite cracks in orthotropic
materials. Itou [7] considered the diffraction problem of an antiplane shear wave by two
coplanar Griffith cracks in an infinite elastic medium. Stress distribution near periodic cracks
at the interface of two bonded dissimilar orthotropic half planes was studied by Garg [6]. The
problem of diffraction of elastic waves by two coplanar Griffith cracks in an infinite elastic
medium was solved by Jain and Kanwal [10]. The transient response of two cracks at the
interface of a layered half space had been investigated by Kundu [11]. Mandal and Ghosh [15]
solved the problem of interaction of elastic waves with a periodic array of coplanar Griffith
cracks in an orthotropic medium. Diffraction problem of three coplanar Griffith cracks in
an orthotropic medium was considered by Sarkar et al. [20]. Das [3] and others considered
the problems containing a Griffith crack in an transversly orthotropic medium. Mukherjee
et al. [17] have studied the interaction of three interfacial Griffith cracks between bonded
dissimilar orthotropic half planes and find out the stress intensity factor. Satapathy et al.
[19] considered an orthotropic strip containing a Griffith crack which is finally solved. Das et
al. [4]are finding the Stress intensity factor of an edge crack in bonded orthotropic materials.
Dynamic stress intensity factors of multiple cracks in an orthotropic strip with FGM coating
was studied by Monfared and Ayatollahi [16]. Sinharoy [21] solved elastostatic problem of an
infinite row of parallel cracks in an orthotropic medium under general loading. Itou [9] solved
the problem of dynamic stress intensity factors of three collinear cracks in an orthotropic
plate subjected to time-harmonic disturbance
In most of the above discussed papers, the problem involving the P-waves on a finite crack
with two semi-infinite elastic half-spaces. Therefore we state the problem as diffraction of
P-waves in two bonded dissimilar containing a Griffith crack at the interface. The Fourier
transform is used to reduce the problem to a system of dual integral equations . Then the set
of dual integral equation is further reduced to a Fredholm integral equation of second kind by
using Abel’s transform technique. The solution of this integral equation has been obtained
for low frequency by using perturbation method. An iterative procedure is adopted to obtain
the low frequency solution of the problem. This procedure leads to obtain the analytical
expressions of the stress intensity factor (SIF) and crack opening displacement. Finally the
effect of material constants, on stress intensity factor and crack opening displacement have
been shown by virtue of the graphs.

II. Formulation of the problem

Let us consider the elastodynamic plane problem of diffraction of normally incident
longitudinal wave by a Griffith cracks situated at the interface of two orthotropic half spaces.
Let x, y, z be the cartesian co-ordinate axes which are the axes of symmetry of the orthotropic
materials. The crack is assumed to occupy the region |x1| ≤ a, −∞ < z1 < ∞, y1 = 0. If we
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consider the transformation x1/a = x, y1/a = y and z1/a = z, then we find that the location
of the crack at the interface becomes |x| < 1, −∞ < z < ∞, y = 0.

-1 1 x

y

z

Medium 1

Medium 2

Fig.1 Configuration of the Crack

The displacements ux(x, y) and uy(x, y) along the x and y axes respectively are given by the
following equations
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where c11, c22 and c12 are non-dimensional parameters related to the elastic constants by the
relations

c11 =
E1

µ12[1−(
E2
E1

)µ2
12]

c22 =
E2
E1

c11

c12 = ν12c22 = ν21c11
In the above equations Ei, µij and νij (i, j = 1, 2, 3) denote the engineering elastic
constants of the material where the subscript 1, 2, 3 correspond to the x, y, z directions
which coincide with the axis of material orthotropy and the constants Ei and νij satisfy the
Maxwell’s relation νij/Ei = νji/Ej . Therefore, substituting ux(x, y, t) = ux(x, y)e

−iωt and
uy(x, y, t) = uy(x, y)e

−iωt in equations (1) and (2) we obtain
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The stresses and displacements are related by the following equations
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Henceforth the time factor e−iωt which is common to all field variables would be omitted
in the sequence but to be understood.

The boundary conditions are given by

σ(1)
yy (x, 0

+) = σ(2)
yy (x, 0

−) = −σ0, |x| < 1 (5)

u(1)y (x, 0+) = u(2)y (x, 0−), |x| > 1 (6)

u(1)x (x, 0+) = u(2)x (x, 0−), |x| > 1 (7)

σ(1)
yy (x, 0

+) = σ(2)
yy (x, 0

−), |x| > 1 (8)

σ(1)
xy (x, 0

+) = σ(2)
xy (x, 0

−), |x| < ∞ (9)

The displacement component ux in x direction is negligible in comparison to the
displacement component uy in y direction in the case of normally incidence. We consider
that the displacement on the crack faces ux(x, 0

+) and uy(x, 0
−) are identical. So for that in

lieu of (7) we consider

u
(1)
x (x, 0+) = u

(2)
x (x, 0−) for |x| < ∞. (7a)

An appropriate integral solutions of (3) and (4) can be taken as

u(1)x (x, y) =
2

π

∫ ∞

0
[A1(ζ)e

−δ1y +A2(ζ)e
−δ2y] sin(ζx)dζ y > 0 (10)

u(2)x (x, y) =
2

π

∫ ∞

0
[A

′
1(ζ)e

δ1y +A
′
2(ζ)e

δ2y] sin(ζx)dζ y < 0 (11)

u(1)y (x, y) =
2

π

∫ ∞

0

1

ζ
[ω1A1(ζ)e

−δ1y + ω2A2(ζ)e
−δ2y] cos(ζx)dζ y > 0 (12)

u(2)y (x, y) =
2

π

∫ ∞

0

1

ζ
[ω1A

′
1(ζ)e

δ1y + ω2A
′
2(ζ)e

δ2y] cos(ζx)dζ y < 0 (13)
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and the non vanishing stress components are given by

σ(1)
xy (x, y) = µ

(1)
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[
2

π

∫ ∞
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∫ ∞
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∫ ∞
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where

ωi =
c
(k)
11 ζ2−k2s−δ2i

δi(1+c
(k)
12 )

i = 1, 2

and Ai(ζ)(i = 1, 2), A
′
i(ζ)(i = 1, 2) are the unknown functions to be determined, δ21 and δ22

are the roots of the equation

c
(k)
22 δ

4 + {((c(k)12 )
2 + 2c

(k)
12 − c

(k)
11 c

(k)
22 )ζ

2 + (1 + c
(k)
22 )k

2
s}δ2 + (c

(k)
11 ζ

2 − k2s)(ζ
2 − k2s) = 0 (18)

III. Derivation of the integral equation

From the boundary conditions σ
(1)
yy (x, 0+)− σ

(2)
yy (x, 0−) = 0 and σ

(1)
xy (x, 0+)− σ

(2)
xy (x, 0−) = 0

we obtain the relations between A2, A
′
1, A

′
2 and A1, A

′
1, A

′
2 as

A2 = A′
1T11 +A′

2Q11 (19)

A1 = A′
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2S11 (20)
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(1)
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(1)
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Applying the boundary condition (7a) and using the equations (19) and (20) in (10) and
(11) we obtain the relation between A′

1 and A′
2 as

A′
2 = −βA′

1 (21)

where β = T11+R11−1
S11+Q11−1

The boundary conditions (5) and (6) lead to the following dual integral equations

∫ ∞

0
G(ζ)D(ζ) cos(ζx)dζ = − σ0

2µ
(1)
12

, |x| < 1 (22)

∫ ∞

0
D(ζ) cos(ζx)dζ = 0 |x| > 1 (23)

where

G(ζ) =
1

(ω1R11 + ω2T11 − ω1S11β − ω2Q11β − ω1 + ω2β)

[
c
(1)
12

π
(ζ2R11 +

ζ2T11 − βζ2Q11)−
c
(1)
22

π
(ω1δ1R11 + ω2δ2T11 − ω1δ1βS11 − ω2δ2Q11β)

]
(24)

and

D(ζ) =

[
ω1R11 + ω2T11 − ω1S11β − ω2Q11β − ω1 + ω2β

]
A′

1(ζ)

ζ
(25)

IV. Method of solution
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We consider

D(ζ) =
1

ζ

∫ 1

0
h(t) sin(ζt)dt (26)

to obtain the solution of integral equation (22) and (23) in which h(t) is the unknown function
which has been determined from the boundary conditions. Now using (26) in (22), we have
obtained

d

dx

∫ 1

0
h(t)dt

∫ ∞

0

ζ sin(ζt) sin(ζx)G(ζ)

ζ
dξ = − σ0

2µ
(1)
12

, 0 < x < 1 (27)

Using the relations ∫ ∞

0

sin(ζt) sin(ζx)

ζ
dζ =

1

2
log

∣∣∣∣ t+ x

t− x

∣∣∣∣ (28)

and

sin(ζx) sin(ζt)

ζ2
=

∫ x

0

∫ t

0

wvJ0(ζw)J0(ζv)√
x2 − w2

√
t2 − v2

dvdw (29)

in eq.(27) and after some manipulation we obtain

d

dx

∫ 1

0
h(t) log

∣∣∣∣ t+ x

t− x

∣∣∣∣dt = 2

[
τ1 −

d

dx

∫ 1

0
h(t)dt

∫ x

0

∫ t

0

vwK(v, w)√
x2 − w2

√
t2 − v2

dvdw

]
0 < x < 1 (30)

where σ1 = − σ0

ζµ
(1)
12 ϕ

ϕ =

c
(k)
12
π (R11 + T11 − βS11 − βQ11)−

c
(k)
22
π (

c
(k)
11 −n2

1

(1+c
(k)
12 )

R11 +
c
(k)
11 −n2

2

(1+c
(k)
12 )

T11 −
c
(k)
11 −n2

1

(1+c
(k)
12 )

S11 −
c
(k)
11 −n2

2

(1+c
(k)
12 )

Q11)

c
(k)
11 −n2

1

(1+c
(k)
12 )n1

R11 +
c
(k)
11 −n2

2

(1+c
(k)
12 )n2

T11 −
c
(k)
11 −n2

1

(1+c
(k)
12 )n1

S11β − c
(k)
11 −n2

2

(1+c
(k)
12 )n2

Q11β − c
(k)
11 −n2

1

(1+c
(k)
12 )n1

+
c
(k)
11 −n2

2

(1+c
(k)
12 )n2

β

n2
1 =

−((c
(k)
12 )

2 + 2c
(k)
12 − c

(k)
11 c

(k)
22 ) +

√
((c

(1)
12 )

2 + 2c
(k)
12 − c

(k)
11 c

(k)
22 )

2 − 4c
(k)
11 c

(k)
22

2c
(k)
22

n2
2 =

−((c
(k)
12 )

2 + 2c
(k)
12 − c

(k)
11 c

(k)
22 )−

√
((c

(1)
12 )

2 + 2c
(k)
12 − c

(k)
11 c

(k)
22 )

2 − 4c
(k)
11 c

(k)
22

2c
(k)
22

K(v, w) =

∫ ∞

0
ζG1(ζ)J0(ζw)J0(ζv)dζ. (31)

and G1(ζ) =
G(ζ)

ζϕ
− 1
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Applying the contour integration technique [15] the semi-infinite integral has therefore
been converted to the following finite integral

K(v, w) = −ik2s

[ ∫ 1/
√
c11

0

c22( ¯̄ω1
¯̄δ1R11 + ¯̄ω2

¯̄δ2T11 − ¯̄ω1
¯̄δ1T11 − ¯̄ω2

¯̄δ2Q11)

πϕ{ ¯̄ω1(S11β −R11 + 1) + ¯̄ω2(Q11β − T11 − β)}
× J0(ksηv)H

(1)
0 (ksηw)dη

−
∫ 1

1/
√
c11

c22(ω̂2δ̂2T11 − ω̂2δ̂2Q11)

πϕ{ω̂1(R11 − S11β)− ω̂2(1 + T11 +Q11β)}
× J0(ksηv)H

(1)
0 (ksηw)dη

]
(32)

where
ζ = ksη

¯̄δ1 =

[
1
2{r1 −

√
r21 − 4r̄2}

] 1
2

¯̄δ2 =

[
1
2{r1 +

√
r21 − 4r̄2}

] 1
2

δ̂1 =

[
1
2{−r1 +

√
r21 + 4r′2}

] 1
2

δ̂2 =

[
1
2{r1 +

√
r21 + 4r′2}

] 1
2

r1 =
1

c
(k)
22

[
(c212 + 2c

(k)
12 − c

(k)
11 c

(k)
22 )η

2 + (1 + c
(k)
22 )

]
r̄2 =

c
(k)
11

c
(k)
22

[
(1− η2)( 1

c
(k)
11

− η2)

]
r′2 =

c
(k)
11

c
(k)
22

[
(1− η2)(η2 − 1

c
(k)
11

)

]
¯̄ω1 =

c
(k)
11 η2−1+ ¯̄δ1

2

(1+c
(k)
12 ) ¯̄δ1

¯̄ω2 =
c
(k)
11 η2−1+ ¯̄δ2

2

(1+c
(k)
12 ) ¯̄δ2

ω̂1 =
c
(k)
11 η2−1−δ̂1

2

(1+c
(k)
12 )δ̂1

ω̂2 =
c
(k)
11 η2−1−δ̂2

2

(1+c
(k)
12 )δ̂2

¯̄β =
¯̄δ1− ¯̄ω1
¯̄δ2− ¯̄ω2

β̂ = ω̂1+δ̂1
ω̂1+δ̂1

Employing the series expansion for Bessel function J0() and Hankel function H
(1)
0 (), from

equation (32)

K(v, w) = Mk2s log(ks) +O(k2s) (33)

where
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M =
2

π2ϕ

[ ∫ 1/
√
c11

0

c22( ¯̄ω1
¯̄δ1R11 + ¯̄ω2

¯̄δ2T11 − ¯̄ω1
¯̄δ1T11 − ¯̄ω2

¯̄δ2Q11)

{ ¯̄ω1(S11β −R11 + 1) + ¯̄ω2(Q11β − T11 − β)}
dη

−
∫ 1

1/
√
c11

c22(ω̂2δ̂2T11 − ω̂2δ̂2Q11)

{ω̂1(R11 − S11β)− ω̂2(1 + T11 +Q11β)}
dη

]
(34)

Let us expand h(t) in the form

h(t) = h0(t) + k2s log(ks)h1(t) +O(k2s) (35)

and utilizing the value of h(t) in (30)

d

dx

∫ 1

0
{h0(t) + k2s log(ks)h1(t)} log

∣∣∣∣ t+ x

t− x

∣∣∣∣dt = 2

[
σ1 −

d

dx

∫ 1

0
{h0(t) + k2s log(ks)h1(t)}

vwK(v, w)√
x2 − w2

√
t2 − v2

dvdw

]
(36)

Equating the co-efficient of power of ks from both sides of the above equation

h0(t) = − 2tσ0

π2
√
1− t2µ

(1)
12 ϕη

(37)

h1(t) = − 2Mtσ0

π2
√
1− t2ηϕµ

(1)
12

(38)

V. Stress Intensity Factor and Crack Opening Displacement

The normal stress σyy(x, y) in the plane y = 0 in the periphery of the crack tip can be found
and is given by

σ(1)
yy (x, 0) = −σ0(1 +Mk2s log(ks))

θ

∫ ∞

0

G(ζ)σ1(ζ)

ζ
cos(ζx)dζ (39)

Applying the formula

∫ ∞

0
τν(αx) cos(βx)dx = −

αν sin νπ
2√

β2 − α2(β + β2 − α2)1/2
, β > α and

using the relation G(ζ)
ζ = ϕ as ζ → ∞ in (39) we obtain

σ(1)
yy (x, 0) = −πσ0(1 +Mk2s log ks)

[
sin π

2√
x2 − 1(x+

√
x2 − 1)

]
, x > 1 (40)

Dynamic stress intensity factor denoted by SIF (K) at the tip of the crack defined by the
relation

SIF (K) = lim
x→1+

∣∣∣∣∣σ(1)
yy (x, 0+)(x− 1)

1
2

σ0

∣∣∣∣∣ (41)
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is obtained as

SIF (K) =
π(1 +Mk2s log ks)√

2
. (42)

Another quantity of physical interest is the Crack Opening Displacement (COD) defined by

COD = uy(x, 0
+)− uy(x, 0

−) = 2

∫ 1

x
h(t)dt, 0 ≤ x ≤ 1 (43)

COD = −4
√
1− x2[1 +Mk2s log(ks)]

πϕµ
(1)
12

(44)

VI. Numerical results and discussion

From the expression of stress intensity factor (K) at the tip of the crack has been evaluated
numerically and it is clear that the SIF depends on the material constants and frequency.
Therefore the values of the SIF can be plotted graphically against the dimensionless frequency
ks for various type of materials. The values of engineering elastic constants are given in the
following table

Table 1. Engineering elastic constants

Elastic constants c11 c22 c12
Type-1 E-type glass-epoxi composite 2.721 11.759 0.741
Type-2 Steel-Mylar composite 18.7 2.92 1.3
Type-3 Boron-epoxi composite 50.8116 2.8767 0.7364
Type-4 Steel-Mylar composite 18.7 2.92 1.3
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Fig.2 SIF versus Frequency
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Fig.3 SIF versus Frequency

From the Fig. 2- Fig. 3, it is clear that the SIF decreases with the increasing value of the
frequency for any pair of materials selected. For large value of frequency the SIF diminishes
and tends to zero which also can be observed from the expression of the SIF given by the
equation (42). The effect of material constants on the SIF is also significant here. It has been
observed that the values of the SIF change if the materials are interchanged. That difference
depends on the elastic constants of the materials.
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Fig.4 Crack Opening Displacement

The COD has been plotted for different types of material constants. In each case, COD
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increases gradually from zero, attains maximum value and then decreases to zero. It is found
that the values of COD increases (Fig. 4) for different types of material constants. In all
cases the variation of COD is found to be prominent for different orthotropic materials.

VII. Conclusion

An interfacial crack problem with a Griffith Crack between two dissimilar orthotropic media
has been solved and numerical computation has been done with a pair of composite materials.
The SIF(K) and COD have been obtained at the tip of the crack at the orthotropic bi-material
interface subject to P wave incidence. The singularities and discontinuities associated with
the incidence P waves and crack have been predicted in the solution. The graphs of Stress
Intensity Factor and Crack Opening Displacement have been plotted to show the effects
of various parameters on these quantities. The graph of stress intensity factor against the
dimensionless frequency initially increases with increasing value of frequency (ks) and after
attaining maximum value it decreases and finally tending to zero. The COD has been plotted
for different value of frequency (ks). The Crack Opening Displacement first increases and
then decreased rapidly with increase in frequency ks and finally tending to 1. From the all
graphs it can be concluded that the values of SIF and COD can be controlled and arrested
within a certain range by monitoring applied loads.
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