Symmetric Bi-T-Derivations of Incline Algebra

G.Priscilla Pacifica¹ And T.Mehala²

¹Department of Mathematics, St.Mary's college(Autonomous), Tamil Nadu, Thoothukudi-628001. ²M.phil Scholar, St.Mary's College(Autonomous), Tamil Nadu, Thoothukudi-628001.

Abstract

The concept of derivation in incline algebra was introduced by N.O.Alsherhi[1]. Kyung Ho kim and so Young Park[2] introduced the symmetric bi-f- derivation in incline algebra. In this paper, we introduce the concept of symmetric bi-t-derivation in incline algebras and present some properties of symmetric bi-tderivations. Also, we characterize $Ker_{dt}(K)$ and $T_a(K)$ by symmetric bi-t-derivations in incline algebra and give some examples. Also we define isotone symmetric bi-t- derivation in incline algebra and analyse its properties.

Key words: *bi-t-derivation, isotone, incline algebra, joinitive,* $Ker_{dt}(K)$.

AMS Mathematics Subject Classification: 06F35, 03G25, 08A30

1.Introduction

Z.Q.Cao, K.H.Kim and F.W Roush[2] introduced the notation of incline algebras in their book. After that Some authors studied incline algebra and its application. N.O.Alsherhi [1] introduced the notation of derivation in incline algebra. Kyung Ho kim [2] a introduced the symmetric bi-f-derivation in algebra. In this paper we introduced some concept of a symmetric bi-t-derivation of incline algebra and give some properties of incline algebras. Also we characterize Ker_{dt} (K) and T_a (K) by symmetric bi-t-derivation in incline algebra.

2. Preliminaries

Definition 2.1

An *incline algebra* is a set K with two binary operations denoted by " + " and " * " satisfying the following axioms:

(K1)x + y = y + x

(K2) x + (y + z) = (x + y) + z

(K3) x * (y * z) = (x * y) * z

(K4) x * (y + z) = (x * y) + (x * z)

- (K5) (y + z) * x = (y * x) + (z * x)
- (K6) x + x = x
- (K7) x + (x * y) = x
- (K8) y + (x * y) = y

For all $x, y, z \in K$ For pronounce " + " (resp. " * ") as addition (resp. multiplication). In an incline algebra K, the following properties hold.

(*K*9) $x * y \le x$ and $y * x \le x$ for all $x, y \in K$ (*K*10) $y \le z$ implies $x * y \le x * z$ and $y * x \le z * x$ for all $x, y, z \in K$ (*K*11) If $x \le y$ and $a \le b$ then $x + a \le y + b$, and $x * a \le y * b \forall x, y, a, b \in K$ An incline algebra K is said to be commutative if $x * y = y * x \forall x, y \in K$.

Definition 2.2

Let K be an incline algebra. A mapping $d_t: K \times K \to K$ is called *symmetric* if $d_t(x, y) = d_t(y, x)$ holds $\forall x, y \in K$

Definition 2.3

Let K be an incline algebra and let $d_t: K \to K$ be a function. We call d_t a *t*-derivation of K, if it satisfies the following condition $x, y \in K$

$$d_t(x * y) = (d_t x * y) + (x * d_t y)$$

For all $x, y \in K$

Definition 2.4

Let K be an incline algebra. If $d_t: K \times K \to K$ be a symmetric mapping. We call d_t is joinitive mapping if it satisfies $d_t(x + y, z) = d_t(x, z) + d_t(y, z) \forall x, y \in K$

3 Symmetric bi-t-derivations of incline algebras

let K denote an incline algebra with zero-element unlessotherwise specified

Definition 3.1

Let K be a incline algebra and let $d_t: K \times K \to K$ be a symmetric mapping. We call d_t a symmetric bi-tderivation on K if there exists a function $t: K \times K \to K$ such that

$$d_t(x * y, z) = (d_t(x, z) * t(y)) + (t(x) * d_t(y, z))$$

 $\forall x , y , z \in K$ Obviously, a symmetric bi-t-derivation d_t on K satisfies the relation

$$d_t(x, y * z) = (d_t(x, y) * t(z)) + (t(y) * d_t(x, z))$$

 $\forall x, y, z \in K$

Example 3.2

Let $K = \{0, a, b, 1\}$ be a set in which " + " and " *" is defined by

_	+	0	а	b	1		*	0	а	b	1
Then it i Define a	0	0	а	b	1	*) is an incline algebra.	0	0	0	0	0
	а	а	а	b	1		а	0	а	а	а
				b			b			b	
	1	1	1	1	1		1			b	

$$d_t(x,y) = \begin{pmatrix} 0 & \text{if } (x,y)=(0,0) \\ 0 & \text{if } (x,y)=(0,a) , (a,0) \\ 0 & \text{if } (x,y)=(0,b), (b,0) \\ 0 & \text{if } (x,y)=(0,1), (1,0) \\ 0 & \text{if } (x,y)=(0,1), (1,0) \\ 0 & \text{if } (x,y)=(a,a) \\ b & \text{if } (x,y)=(b,b) \\ b & \text{if } (x,y)=(b,b) \\ b & \text{if } (x,y)=(1,1) \\ 0 & \text{if } (x,y)=(1,1) \\ 0 & \text{if } (x,y)=(a,b) \text{ or } (b,a) \\ 0 & \text{if } (x,y)=(a,1) \text{ or } (1,a) \\ b & \text{if } (x,y)=(b,1) \text{ or } (1,b) \\ \end{pmatrix}$$

and $t : K \to K$ by

Then it is easily checked that d_t symmetric bi-t-derivation of an incline algebra K.

But d_t is not a symmetric bi-derivation since

$$0 = d_t(b * a, b) = d_t(a, b) \neq (d_t(b, b) * a) + (b * d_t(a, b) = (b * a) + (b * 0) = a + 0 = a$$

 $t(x,y) = \begin{cases} 0 & \text{if } x=0\\ 0 & \text{if } x=a\\ b & \text{if } x=b\\ b & \text{if } x=1 \end{cases}$

Proposition 3.3

Let K be an incline algebra and let d_t be a symmetric bi-t-derivation on K. Then the following identities hold for all $\forall x, y, z \in K$ $(i) d_t(x * y, z) \le t(x) + t(y) \forall x, y, z \in K$

 $(ii)d_t(x * y, z) \le d_t(x, z) + d_t(y, z) \,\forall x, y, z \in K$

Proof:

Let K be an incline algebra. let d_t be a symmetric bi-t-derivation on K. (i) Let $x, y, z \in K$ By using (K9)we have $d_t(x, z) * t(y) \le t(y)$ and $t(x) * d_t(y, z) \le t(x)$ By using(K11) we have $d_t(x, z) * t(x) + t(x) * d_t(y, z) \le t(x) + t(y)$ Hence $d_t(x * y, z) \le t(x) + t(y)$ (ii) Let $x, y, z \in K$ By using (K9)we have $d_t(x, z) * t(y) \le d_t(x, z)$

and $t(x) * d_t(y,z) \le d_t(y,z)$ By using (K11) we have $d_t(x,z) * t(y) + t(x) * d_t(y,z) \le d_t(x,z) + d_t(y,z)$ Hence $d_t(x * y, z) \le d_t(x, z) + d_t(y, z)$

Proposition 3.4

Let K be an incline algebra. If K is a distributive lattice, we have $d_t(x, y) \le t(x)$ and $d_t(x, y) \le t(y)$ for all $x, y \in K$.

Proof:

Let *K* be a distributive lattice. Then $d_t(x, y) = d_t(x * x, y)$ $= d_t(x, y) * t(x) + (t(x) * d_t(x, y))$ And so $d_t(x, y) + t(x) = (d_t(x, y) * t(x) + (t(x) * d_t(x, y)) + t(x))$ $= (d_t(x, y) * t(x) + d_t(x, y) * t(x)) + t(x)$ $= (d_t(x, y) * t(x)) + t(x) for all x, y \in K.$ By using (K8),

We get $d_t(x, y) + t(x) = t(x)$ Hence we obtain $d_t(x, y) \le t(x)$. Similarly, we have $d_t(x, y) \le t(y)$.

Definition 3.5

Let K be an incline algebra and let d_t be a symmetric bi-t-derivation on K. If $x \le w$ implies $d_t(x, y) \le d_t(w, y)$. d_t is called an *isotone* symmetric bi-t-derivation for all $x, y, z \in K$.

Note

Every distributive lattice is an incline algebra under addition (resp. multiplication). An incline algebra is a distributive lattice if and only if x * x = x for all $x \in K$.

Proposition 3.6

Let K be an incline algebra and let d_t a joinitive symmetric bi-t-derivation d_t of K. Then d_t is an isotone symmetric bi-t-derivation of K

Proof:

Let x and w be such that $x \le w$.

Then x + w = w and so

 $d_t(w, y) = d_t(w + x, y) = d_t(w, y) + d_t(x, y)$

This implies that $d_t(x, y) \le d_t(w, y)$.

This completes the proof.

Let d_t be a symmetric bi-t-derivation of K.

Fix $a \in K$ and define a set $T_a(K)$ by

 $T_a(K) = \{ x \in K/d_t(x, a) = t(x) \} \quad \forall x \in K.$

Definition 3.7

Let K be an incline algebra and $d_t: K \times K \to K$ be a symmetric mapping then $Ker_{dt}(K)$ is defined by

$$Ker_{dt}(K) = \{x \in K/d_t(0, x) = 0\}$$

Proposition 3.8

Let K be an incline algebra and let d_t be a joinitive symmetric bi-t-derivation of K. If $x \le y$ and $y \in Ker_{dt}(K)$ then we have $x \in Ker_{dt}(K)$.

Proof:

Let $x, y \in Ker_{dt}(K)$. Then $d_t(0, x) = d_t(0, y) = 0$ and so $d_t(0, x * y) = d_t(x * y, 0) = d_t(x, 0) * t(y) + t(x) * d_t(y, 0)$ = 0 * t(y) + t(x) * 0 = 0 + 0= 0

Proposition 3.9

Let K be an incline algebra and let d_t be a joinitive symmytric bi-t-derivation of K. Then Ker_{d_t} is sub incline of K.

Proof:

Let $x, y \in Ker_{d_t}(K)$. Then $d_t(0, x) = d_t(0, y) = 0$, and so $d_t(0, x * y) = d_t(x * y, 0) = d_t(x, 0) * t(y) + t(x) * d_t(y, 0)$ = 0 * t(y) + t(x) * 0 = 0 + 0 = 0. Which implies $x * y \in Ker_{dt}(K)$. Now $d_t(x + y, 0) = d_t(x, 0) + d_t(y, 0) = 0 + 0 = 0$ Hence $x + y \in Ker_{dt}(K)$. This completes the proof.

Theorem 3.10

Let d_t be a joinitive symmetric bi-t-derivation of K. Then $Ker_{dt}(K)$ is an ideal of K.

Proof:

By Proposition 3.9, $Ker_{dt}(K)$ is an subincline of K. Let $x \le y$ and $y \in Ker_{dt}(K)$. Then x + y = x and $d_t(0, y) = 0$. Thus

$$0 = d_t(0, y) = d_t(0, x + y) = d_t(0, x) + d_t(0, y)$$

= $d_t(0, x) + 0 = d_t(0, x)$

Which implies $x \in Ker_{dt}(K)$.

REFERENCES

- [1] N. O. Alshehri. On derivations of incline algebras, Scientiae Mathematicae Japonicae online, e-2010 (2010), 199-205.
- [2] Z. Q. Cao, K. H. Kim and F. W. Roush, Incline algebra and applications, John Wiley and Sons, New York, 1984.
- [3] K. H. Kim, On right derivations of incline algebras, Journal of TheChung Cheong Mathematical Society, 26 No 4, (2013), 683-690. http://dx.doi.org/10.14403/jcms.2013.26.4.683
- [4] OzbalAyar, S and Firat, On f-derivations of incline algebras, LJPAM, 3 (2011) No 1, 83-90.
- [5] W.Yao and S. Han, On ideals, filters, and congruences ininclines, Bull. Korean Math 46 No 3, (2009), 591-598. http://dx.doi.org/10.4134/bkms.2009.46.3.591