# Symmetric Bi-T-Derivations of Incline Algebra 

G.Priscilla Pacifica ${ }^{1}$ And T.Mehala ${ }^{2}$<br>${ }^{1}$ Department of Mathematics, St.Mary's college(Autonomous), Tamil Nadu,Thoothukudi-628001.<br>${ }^{2}$ M.phil Scholar, St.Mary's College(Autonomous),Tamil Nadu,Thoothukudi-628001.


#### Abstract

The concept of derivation in incline algebra was introduced by N.O.Alsherhi[1] . Kyung Ho kim and so Young Park[2] introduced the symmetric bi-f-derivation in incline algebra. In this paper, we introduce the concept of symmetric bi-t-derivation in incline algebras and present some properties of symmetric bi-tderivations. Also, we characterize $\operatorname{Ker}_{d t}(K)$ and $T_{a}(K)$ by symmetric bi-t-derivations in incline algebra and give some examples. Also we define isotone symmetric bi-t- derivation in incline algebra and analyse its properties.


Key words: bi-t-derivation, isotone, incline algebra, joinitive, $\operatorname{Ker}_{d t}(K)$.
AMS Mathematics Subject Classification: 06F35, 03G25, 08A30

## 1.Introduction

Z.Q.Cao, K.H.Kim and F.W Roush[2] introduced the notation of incline algebras in their book. After that Some authors studied incline algebra and its application. N.O.Alsherhi [1] introduced the notation of derivation in incline algebra. Kyung Ho kim [2] a introduced the symmetric bi-f-derivation in algebra. In this paper we introduced some concept of a symmetric bi-t-derivation of incline algebra and give some properties of incline algebras. Also we characterize $\operatorname{Ker}_{d t}(\mathrm{~K})$ and $T_{a}(K)$ by symmetric bi-t-derivation in incline algebra.

## 2. Preliminaries

## Definition 2.1

An incline algebra is a set K with two binary operations denoted by " + " and $" * "$ satisfying the following axioms:

```
(K1) x + y = y + x
(K2) x+(y+z)=(x+y)+z
(K3) x*(y*z)=(x*y)*z
(K4) x*(y+z) =(x*y)+(x*z)
(K5)}(y+z)*x=(y*x)+(z*x
(K6) }x+x=
(K7) x + (x*y) = x
(K8) y + (x*y)=y
```

For all $x, y, z \in K$
For pronounce " + " (resp. " *") as addition (resp. multiplication).
In an incline algebra K , the following properties hold.
(K9) $x * y \leq x$ and $y * x \leq x$ for all $x, y \in K$
(K10) $y \leq z$ implies $x * y \leq x * z$ and $y * x \leq z * x$ for all $x, y, z \in K$
(K11) If $x \leq y$ and $a \leq b$ then $x+a \leq y+b$, and $x * a \leq y * b \forall x, y, a, b \in K$ An incline algebra K is said to be commutative if $x * y=y * x \forall x, y \in K$.

## Definition 2. 2

Let K be an incline algebra. A mapping $d_{t}: K \times K \rightarrow K$ is called symmetric if $d_{t}(x, y)=d_{t}(y, x)$ holds $\forall x, y \in K$

## Definition 2.3

Let K be an incline algebra and let $d_{t}: K \rightarrow K$ be a function. We call $d_{t}$ a $t$-derivation of K , if it satisfies the following condition $x, y \in K$

$$
d_{t}(x * y)=\left(d_{t} x * y\right)+\left(x * d_{t} y\right)
$$

For all $x, y \in K$

## Definition 2.4

Let K be an incline algebra. If $d_{t}: K \times K \rightarrow K$ be a symmetric mapping. We call $d_{t}$ is joinitive mapping if it satisfies $\quad d_{t}(x+y, z)=d_{t}(x, z)+d_{t}(y, z) \forall x, y \in K$

## 3 Symmetric bi-t-derivations of incline algebras

let K denote an incline algebra with zero-element unlessotherwise specified

## Definition 3.1

Let K be a incline algebra and let $d_{t}: K \times K \rightarrow K$ be a symmetric mapping. We call $d_{t}$ a symmetric bi-tderivation on $K$ if there exists a function $t: K \times K \rightarrow K$ such that

$$
d_{t}(x * y, z)=\left(d_{t}(x, z) * t(y)\right)+\left(t(x) * d_{t}(y, z)\right)
$$

$\forall x, y, z \in K$
Obviously, a symmetric bi-t-derivation $d_{t}$ on K satisfies the relation

$$
d_{t}(x, y * z)=\left(d_{t}(x, y) * t(z)\right)+\left(t(y) * d_{t}(x, z)\right)
$$

$\forall x, y, z \in K$

## Example 3.2

Let $K=\{0, a, b, 1\}$ be a set in which " + " and " *" is definded by

| + | 0 | $a$ | $b$ | 1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 0 | $a$ | $b$ | 1 |
| Then it i | b | b | b | b | 1 |
| Define a |  |  |  |  |  |
|  | 1 | 1 | 1 | 1 | 1 |


| $*$ | 0 | $a$ | $b$ | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| $a$ | 0 | $a$ | $a$ | $a$ |
| $b$ | 0 | $a$ | $b$ | $b$ |
| 1 | 0 | $a$ | $b$ | 1 |

$$
d_{t}(x, y)= \begin{cases}0 & \text { if }(x, y)=(0,0) \\ 0 & \text { if }(x, y)=(0, a),(a, 0) \\ 0 & \text { if }(x, y)=(0, b),(b, 0) \\ 0 & \text { if }(x, y)=(0,1),(1,0) \\ 0 & \text { if }(x, y)=(a, a) \\ b & \text { if }(x, y)=(b, b) \\ b & \text { if }(x, y)=(1,1) \\ 0 & \text { if }(x, y)=(a, b) \text { or }(b, a) \\ 0 & \text { if }(x, y)=(a, 1) \text { or }(1, a) \\ b & \text { if }(x, y)=(b, 1) \text { or }(1, b)\end{cases}
$$

and $t: K \rightarrow K$ by

$$
\mathrm{t}(x, y)=\left\{\begin{array}{lll}
0 & \text { if } & \mathrm{x}=0 \\
0 & \text { if } & \mathrm{x}=\mathrm{a} \\
\mathrm{~b} & \text { if } & \mathrm{x}=\mathrm{b} \\
\mathrm{~b} & \text { if } & \mathrm{x}=1
\end{array}\right.
$$

Then it is easily checked that $d_{t}$ symmetric bi-t-derivation of an incline algebra K.
But $d_{t}$ is not a symmetric bi-derivation since

$$
0=d_{t}(b * a, b)=d_{t}(a, b) \neq\left(d_{t}(b, b) * a\right)+\left(b * d_{t}(a, b)=(b * a)+(b * 0) \quad=a+0=a\right.
$$

## Proposition 3.3

Let K be an incline algebra and let $d_{t}$ be a symmetric bi-t-derivation on K . Then the following identities hold for all $\forall x, y, z \in K$
(i) $d_{t}(x * y, z) \leq t(x)+t(y) \forall x, y, z \in K$
(ii) $d_{t}(x * y, z) \leq d_{t}(x, z)+d_{t}(y, z) \forall x, y, z \in K$

## Proof:

Let K be an incline algebra.
let $d_{t}$ be a symmetric bi-t-derivation on K .
(i) Let $x, y, z \in K$

By using (K9) we have
$d_{t}(x, z) * t(y) \leq t(y)$ and $t(x) * d_{t}(y, z) \leq t(x)$
By using(K11) we have

$$
d_{t}(x, z) * t(x)+t(x) * d_{t}(y, z) \leq t(x)+t(y)
$$

Hence $\quad d_{t}(x * y, z) \leq t(x)+t(y)$
(ii) Let $x, y, z \in K$

By using (K9) we have
$d_{t}(x, z) * t(y) \leq d_{t}(x, z)$
and $t(x) * d_{t}(y, z) \leq d_{t}(y, z)$
By using (K11) we have
$d_{t}(x, z) * t(y)+t(x) * d_{t}(y, z) \leq d_{t}(x, z)+d_{t}(y, z)$

Hence $d_{t}(x * y, z) \leq d_{t}(x, z)+d_{t}(y, z)$

## Proposition 3.4

Let K be an incline algebra. If K is a distributive lattice, we have $d_{t}(x, y) \leq t(x)$ and $d_{t}(x, y) \leq t(y)$ for all $x, y \in K$.

## Proof:

Let $K$ be a distributive lattice.

$$
\begin{aligned}
& \text { Then } d_{t}(x, y)= d_{t}(x * x, y) \\
&=d_{t}(x, y) * t(x)+\left(t(x) * d_{t}(x, y)\right) \\
&\text { And so } \left.\quad \begin{array}{rl}
d_{t}(x, y)+t(x)= & \left(d_{t}(x, y) * t(x)+\left(t(x) * d_{t}(x, y)\right)+t(x)\right. \\
& =\left(d_{t}(x, y) * t(x)+d_{t}(x, y) * t(x)\right)+t(x) \\
= & \left(d_{t}(x, y) * t(x)\right)+t(x) \text { forall } x, y \in K
\end{array}\right) .
\end{aligned}
$$

By using (K8),
We get $d_{t}(x, y)+t(x)=t(x)$
Hence we obtain $d_{t}(x, y) \leq t(x)$.
Similarly, we have $d_{t}(x, y) \leq t(y)$.

## Definition 3.5

Let K be an incline algebra and let $d_{t}$ be a symmetric bi-t-derivation on K . If $x \leq w$ implies $d_{t}(x, y) \leq$ $d_{t}(w, y) . d_{t}$ is called an isotone symmetric bi-t-derivation for all $x, y, z \in K$.

## Note

Every distributive lattice is an incline algebra under addition (resp. multiplication).
An incline algebra is a distributive lattice if and only if $x * x=x$ for all $x \in K$.

## Proposition 3.6

Let K be an incline algebra and let $d_{t}$ a joinitive symmetric bi-t-derivation $d_{t}$ of K . Then $d_{t}$ is an isotone symmetric bi-t-derivation of K

## Proof:

Let x and w be such that $x \leq w$.
Then $x+w=w$ and so
$d_{t}(w, y)=d_{t}(w+x, y)=d_{t}(w, y)+d_{t}(x, y)$
This implies that $d_{t}(x, y) \leq d_{t}(w, y)$.
This completes the proof.
Let $d_{t}$ be a symmetric bi-t-derivation of K .
Fix $a \in K$ and define a set $T_{a}(K)$ by
$T_{a}(K)=\left\{x \in K / d_{t}(x, a)=t(x)\right\} \quad \forall x \in K$.

## Definition 3.7

Let K be an incline algebra and $d_{t}: K \times K \rightarrow K$ be a symmetric mapping then $K e r_{d t}(K)$ is defined by

$$
\operatorname{Ker}_{d t}(K)=\left\{x \in K / d_{t}(0, x)=0\right\}
$$

## Proposition 3.8

Let K be an incline algebra and let $d_{t}$ be a joinitive symmetric bi-t-derivation of $K$. If $x \leq y$ and $y \in K e r_{d t}(K)$ then we have $x \in \operatorname{Ker}_{d t}(K)$.

## Proof:

Let $x, y \in \operatorname{Ker}_{d t}(K)$.
Then $d_{t}(0, x)=d_{t}(0, y)=0$ and so

$$
\begin{aligned}
& d_{t}(0, x * y)=d_{t}(x * y, 0)=d_{t}(x, 0) * t(y)+t(x) * d_{t}(y, 0) \\
& \quad=0 * t(y)+t(x) * 0=0+0 \\
& \quad=0
\end{aligned}
$$

## Proposition 3.9

Let $K$ be an incline algebra and let $d_{t}$ be a joinitive symmytric bi-t-derivation of $K$. Then $K e r_{d_{t}}$ is sub incline of $K$.

## Proof:

Let $x, y \in \operatorname{Ker}_{d_{t}}(K)$.
Then $d_{t}(0, x)=d_{t}(0, y)=0$, and so

$$
\begin{aligned}
& d_{t}(0, x * y)=d_{t}(x * y, 0)=d_{t}(x, 0) * t(y)+t(x) * d_{t}(y, 0) \\
& \quad=0 * t(y)+t(x) * 0=0+0 \\
& \quad=0 .
\end{aligned}
$$

Which implies $x * y \in \operatorname{Ker}_{d t}(K)$.
Now $d_{t}(x+y, 0)=d_{t}(x, 0)+d_{t}(y, 0)=0+0=0$
Hence $x+y \in \operatorname{Ker}_{d t}(K)$.
This completes the proof.

## Theorem 3.10

Let $d_{t}$ be a joinitive symmetric bi-t-derivation of K . Then $K e r_{d t}(K)$ is an ideal of K .

## Proof:

By Proposition 3.9, $\operatorname{Ker}_{d t}(K)$ is an subincline of K . Let $x \leq y$ and $y \in \operatorname{Ker}_{d t}(K)$.
Then $x+y=x$ and $d_{t}(0, y)=0$.
Thus

$$
\begin{aligned}
0=d_{t}(0, y) & =d_{t}(0, x+y)=d_{t}(0, x)+d_{t}(0, y) \\
& =d_{t}(0, x)+0=d_{t}(0, x)
\end{aligned}
$$

Which implies $x \in \operatorname{Ker}_{d t}(K)$.

## REFERENCES

[^0]
[^0]:    [1] N. O. Alshehri. On derivations of incline algebras, Scientiae Mathematicae Japonicae online, e-2010 (2010), 199-205.
    [2] Z. Q. Cao, K. H. Kim and F. W. Roush, Incline algebra and applications, John Wiley and Sons, New York, 1984.
    [3] K. H. Kim, On right derivations of incline algebras, Journal of TheChung Cheong Mathematical Society, 26 No 4, (2013), 683-690. http://dx.doi.org/10.14403/jcms.2013.26.4.683
    [4] OzbalAyar, S and Firat, On f-derivations of incline algebras, LJPAM, 3 (2011) No 1, 83-90
    [5] W.Yao and S. Han, On ideals, filters, and congruences ininclines, Bull. Korean Math 46 No 3, (2009), 591-598.
    http://dx.doi.org/10.4134/bkms.2009.46.3.591

