Path Union and Double Path Union of Cordialgraphs.

Mukund V.Bapat¹

1.Abstract:

In this paper we show path union families of kite and flag of S_4 (also called as dart) are cordial graphs. $Pm(flag-S_4)$ has 8 different structures and all are cordial. We also show double path union of graph G i.e. Pm(2-G)are cordial for $G = C_4$, flag of C_3 , flag of C_4 . In allcases we consider all possible structures and establish invariance under cordiality.

Key words :

path union, cordial, graph, double path, flag, kite, invariance.

Subject classification: 05C78.

2.Introduction:

The graphs we consider are simple ,finite,undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6], A dynamic survey of graph labeling by J.Gallian [8] and Douglas West.[9].I.Cahit introduced the concept of cordial labeling[5].f:V(G) \rightarrow {0,1} be a function. From this label of any edge (uv) is given by |f(u)-f(v)|. Further number of vertices labeled with 0 i.ev_f(0) and the number of vertices labeled with 1 i.e.v_f(1) differ at most by one .Similarly number of edges labeled with 0 i.e.v_f(0) and number of edges labeled with 1 i.e.v_f(1) differ by atmostone. Then the function f is called as cordial labeling. Cahit has shown that : every tree is cordial; Kn is cordial if and only if $n \leq 3$; K_{m,n} is cordial for all m and n; the friendship graph C₃^(t) (i.e., the one-point union of t copies of C₃) is cordial if and only if tis not congruent to 2 (mod 4); all fans are cordial; the wheel W_n is cordial if and only if n is not congruent to 3 (mod 4). A lot of work has been done in this type of labeling. One may refer dynamic survey by J.Gallian[8].

We have defined path unions on different graphs inparticular on bull graph. For the same given graph there are many path union $P_m(G)$ structures possible. It depends on which point on G is used to fuse with vertex on P_m . If this point is changed and path union is designed then it may be a different (up to isomorphism) structure. We have shown that for G = bull on C_3 , bull on C_4 , C_3^+ , C_4^+ -e the different path union $P_m(G)$ are cordial[4]. It is called as invariance under cordial labeling. We use the convention that $v_f(0,1) = (a,b)$ to indicate the number of vertices labeled with 0 are a and that number of vertices labeled with 1 are b. Further $e_f(0,1) = (x,y)$ we mean the number of edges labeled with 0 are x and number of edges labeled with 1 are y.

3.Preliminaries:

The Bull graph on C_3 is defined in [9]. We generalize the definition of bull graph. Let G be a (p,q) graph. Choose any two adjacent vertices of G say u and v. Attach an pendent edge each to u and v. It is denoted by bull(G). Thus bull graph of G has P+2 vertices and q+2 edges.

4.Definitions:

4.1 Fusion of vertices.Let $u \neq v$ be any two vertices of G. We replace these two vertices by a single vertex say x and all edges incident to u and v are now incident to x.If loop is formed then it is deleted.

4.2 Flag of a graph G denoted by FL(G) is obtained by taking a graph G=G(p,q). At sutable vertex of G attach a pendent edge. It has p+1 vertices and q+1 edges.

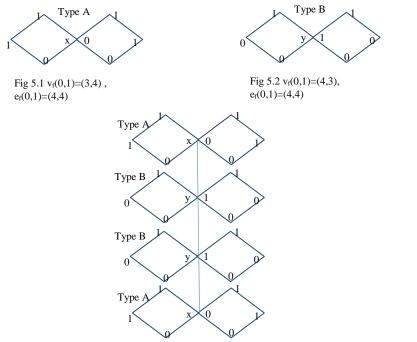
4.3 Path union : $P_m(G)$ is obtained by taking a path on m points and m copies of G are taken. At each vertex of path a copy each of G is fused. The point of fusion on G is same and fixed for all copies of G.

4.4 Double path union :Let G be a (p,q) graph. $P_m(2-G)$ is obtained by taking a path on m points and 2m copies of G are taken. At each vertex of path two copies of G are fused. The point of fusion on G is same and fixed for all copies of G.It has m(2p-1) vertices and m(2q)+m-1 edges.

5. Theorems Proved:

5.1Theorem : double Path union of $C_4i.e P_m(2-C_4)$ is cordial.

Proof:



 $Fig \ 5.3: P_4(2-C_4): v_f(0,1) = (14,14), e_f(0,1) = (4,4) \ edge label \ (xy) = edge \ label(yx) = 1; edge \ label \ (xx) = edge \ label \ (yy) = 0$

Define a function $f:V(G) \rightarrow \{0,1\}$ as follows:

We define two types of labels Type A and Type B as above. Both are cordial labelings but they differ in label of x and y and on label numbers on vertices. Both types has same label numbers (4,4) on edges. To obtain a $P_m(2-C_4)$ we start with a path $p_m = (v_1, v_2, ..., v_m)$ and at each of it's node fuse one of the two types of libeling. Type A is fused at vertex 'x'and Type B is fused at vertex 'y' on it. For i = 1,4 (mod4) use type A labeling for i= 2,3(mod4) use type B labeling.

The label numbers observed are for vertices we have $v_f(0,1)=(7x,7x)$. when m = 2x.

#

 $v_{f}(0,1)=(14x+3,14x+4)$.For... $m \equiv 1 \pmod{4}, (m = 4x+1)$ $v_{f}(0,1)=(14x+11,14x+10)$for $m \equiv 3 \pmod{4}, (m = 4x+3)$ For edges $e_{f}(0,1)=(8+9x,9+9x)$ for $m \equiv 2,0 \pmod{4}$, write m = 4x or 4x+2, x = 0,1, $e_{f}(0,1)=(4+9x,4+9x)$ if $m \equiv 1,3 \pmod{4}$, write m = 4x+1 or 4x+3, x=0,1,...

Thus $P_m(2-C_4)$ is cordial.

5.2 Theorem : Double path union on flag of C_4 (i.e. $G = P_m(2-flag C_4)$) is cordial.(We consider all possible fournon isomorphic structures)

Proof: To obtain G we start with path $P_m = (v_1, v_2, ..., v_m)$ and at each vertex on P_m fuse two copies of flag of C₄. There are four possible structures of path union depending on the vertex on flag of C₄ used to fuse with vertex on P_m .

Refer fig 5.4.

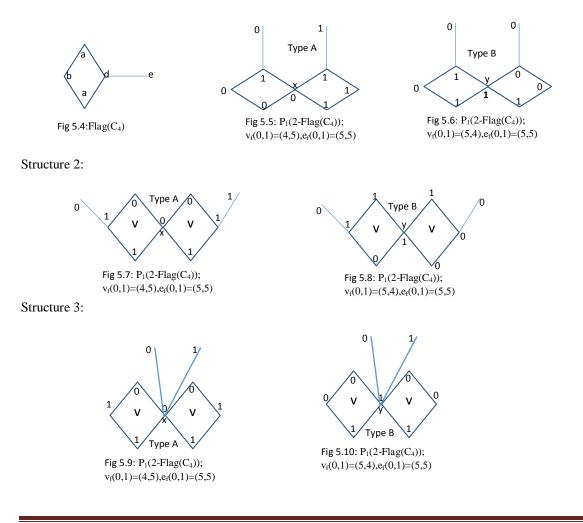
If the vertex **a** or**c** on 2-flag C_4 is used to fuse with v on P_m we get structure 1. If the vertex **b**on 2-flag C_4 is used to fuse with v on P_m we get structure 2. If the vertex **d** on 2-flag C_4 is used to fuse with v on P_m we get structure 3. If the vertex **e**on 2-flag C_4 is used to fuse with v on P_m we get structure 4.

Define a function $f:V(G) \rightarrow \{0,1\}$ as follows:

We give below two types of labeling units type A and type B and use them in a certain way to obtain labeled copy of G. To obtain any of the 4 structures we proceed as follows. We start with path P_m and type A is fused (at vertex x on it) at vertex v_i of $P_m=(v_1,v_2,...v_m)$ when $i\equiv 1,0 \pmod{4}$; type B is fused (at vertex y on it) at vertex v_i of $P_m=(v_1,v_2,...v_m)$ when $i\equiv 1,0 \pmod{4}$; type B is fused (at vertex v or it) at vertex v_i of $P_m=(v_1,v_2,...v_m)$ when $i\equiv 1,0 \pmod{4}$; type B is fused (at vertex v or it) at vertex v_i of P_m when $i\equiv 2,3 \pmod{4}$.

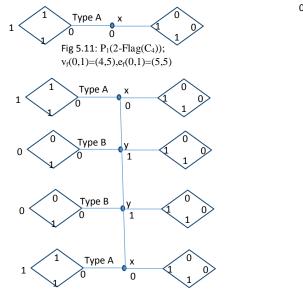
The labelnumber distribution is as follows:on vertices when m = 2x we have $v_f(0,1)=(9x,9x)$.and when m is odd number given by m=2x+1 we get $v_f(0,1)=(18x+4,18x+5)$. For edges $e_f(0,1) = (5m+x1,5m+x)$ for m is even number 2x and $e_f(0,1)=(5m+x,5m+x)$ if m is odd number given by 2x+1. Thus $P_m(2-C_4)$ is cordial.

Structure 1:



ISSN: 2231-5373

Structure 4:



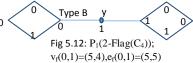
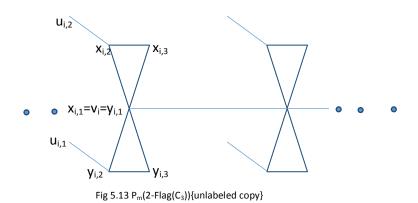


Fig 5.12: $P_4(2-Flag(C_4))$; $v_f(0,1)=(5,4), e_f(0,1)=(18,18)$ 5.3Theorem: Double Path union of C_3 -flag (i.e.G = $P_m(2-flag C_3)$ is cordial.

Proof :To obtain a double path union of C_3 flag i.e. $P_m(2 - Flag(C_3))$ we start with a path $P_m=(v_1, v_2, ..., v_m)$ and at each of it's vertex we fuse two copies of C_3 flag, with same fixed point on flag. There are three structurespossible on $P_m(2-Flag(C_3))$ namely structure 1, structure2, structure3. For structure 1 the two degree vertex on $Flag(C_3)$ is used to fuse with vertex of path Pm. Vertices and edges of two copies of flag(C₃) attached at ith(i = 1,2,..m) vertex v_i of path P_m is as shown in figure 5.1.

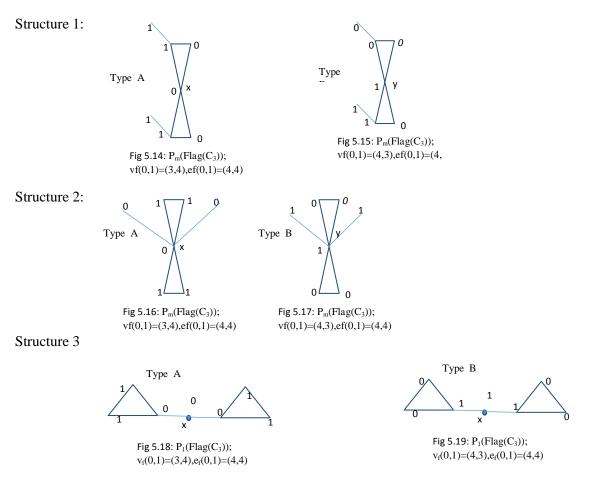


Define a function $f: V(G) \rightarrow \{0,1\}$ as follows

Define a function $f: V(G) \rightarrow \{0,1\}$ as follows:

We define two types of labels type A and type B as follows. All are cordial labelings but they differ either in label of x and y or on label numbers on vertices. All four types has same label numbers (4,4) on edges. Type A and Type B is used as follows: For $i\equiv 1,0 \pmod{4}$ use Type A and for $i\equiv 2,3 \pmod{4}$ use B type label at the vertex vi

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 55 Number 5 - March 2018



The label number distribution is as follows:

On vertices when $m \equiv 2x$ we have , $v_f(0,1) = (7x,7x)$ and when $m \equiv 1 \pmod{4}$ write m = 1+4x. We have $v_f(0,1)=(3+14x,4+14x)$ and when $m \equiv 3 \pmod{4}$ write m = 3+4x and we have $v_f(0,1)=(11+14x,10+14x)$. On edges we have $e_f(0,1)=(4+9x,4+9x)$ when m = 2x+1, x=0,1,2... And when m = 2x we have $e_f(0,1)=(8+9x,9+9x)$

5.4Theorem: Path union of kite (i.e. P_m(kite) graph is cordial

Proof: A path union on Kite is obtained by first taking a path $P_m = (v_1, v_2, ..., v_m)$ and m labeled copies of Kite as shown below. We fuse a suitable labeled copy of kite at each vertex of path P_m . Define a function f:V(G) \rightarrow {0,1} as follows.: A labeled copy of kite has 4- vertices named as a, b,c,d with labels 1,1,0,0 respectively. There are two structures possible on path union .Structure 1 is obtained by fusing vertex b or d at the vertex of path P_m =(v_1, v_2, ..., v_m) And structure 2 is obtained by fusing vertex a or c on kite at the vertex of path $P_m = (v_1, v_2, ..., v_m)$

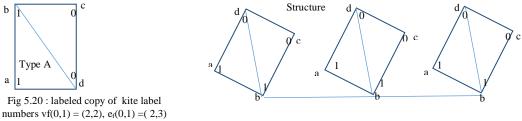


Fig 5.21 : P_3 (kite): labeled copy : label of edge (bb) = 0

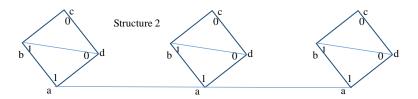


Fig 5.22: P_3 (kite): labeled copy : label of edge (aa) = 0

For both structures the label number distribution is $v_f(0,1)=(2m,2m)$ and $e_f(0,1)=(3m-1,3m)$. The graph is cordial.

Theorem 4 :Double path union of kite (i.e. $G = P_m(2-kite)$)is cordial.

Proof. There are two structures possible on G depending on which vertex of kite is used to fuse with the vertex of path P_m . Define a function f:V(G) \rightarrow {0,1} as follows:

Structure 1

We give two types (units) of labels which are used suitably to fuse at vertex on path Pm.Point of fusion is point x on the unit.

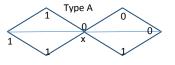


Fig 5.23 : labeled copy of $P_1(2\text{--}kite\)$ label numbers $v_f(0,1)=(3,4),\,e_f(0,1)=(5,5)$

Type **B**

Fig 5.24 : labeled copy of $P_1(2$ - kite) label numbers $v_f(0,1) = (4,3), e_f(0,1) = (5,5)$

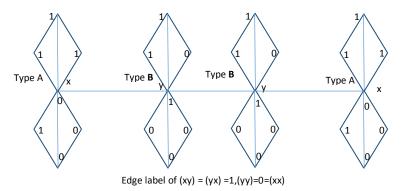


Fig 5.25: P_4 (2-kite):label numbers $v_f(0,1) = (14,14)$, $e_f(0,1) = (21,22)$

Structure 2:

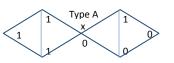


Fig 5.26 : labeled copy of $P_1(2$ -kite) label numbers $v_f(0,1) = (3,4)$, $e_f(0,1) = (5,5)$

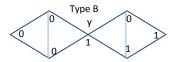
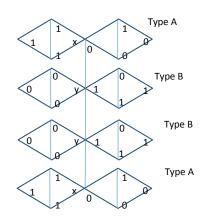


Fig 5.27 : labeled copy of $P_1(2$ - kite) label numbers $v_f(0,1) = (4,3)$, $e_f(0,1) = (5,5)$



Edge label of (xy) = (yx)

ig 5.28:
$$P_4$$
(2-kite):label numbers $v_f(0,1) = (14,14), e_f(0,1) = (21,22)$

To construct both structures we use type A label on vi of path $Pm = (v_1, v_2, \dots, v_m)$ when $i \equiv 1, 0 \pmod{4}$ and type B is used when $i \equiv 2, 3 \pmod{4}$.

For both structures we observe number distribution as follows:

F

 $v_f(0,1) = (7x,7x)$ for m is even number 2x and when m is of type 4x + 1 we have $v_f(0,1) = (3+14x,4+14x)$ and when m is of type m = 4x + 3 we have $v_f(0,1) = (11+14x,10+14x)$ To obtain edge numbers case 1: $e_f(0,1)=(5+11x,5+11x)$ when m is odd number given by m = 2x case 2:m is of type m = 2x we have $e_f(0,1)=(11x+10,11x+11)$. Thus the graph is cordial.#

5.5Theorem :Path union of flag of S_4 (i.e.G = $P_m(flag S_4)$ is cordial

Proof: Define a function $f:V(G) \rightarrow \{0,1\}$ as follows: We obtain two types of labeled units type A and type B as shown below. In all 8 structure we fuse Type A at vertex v_i of $Pm=(v_1,v_2, v_3, ..., v_m)$ where $i\equiv 1,3 \pmod{4}$ and Type B when $i\equiv 2, 3 \pmod{4}$. There are eight non- isomorphic structures possible.

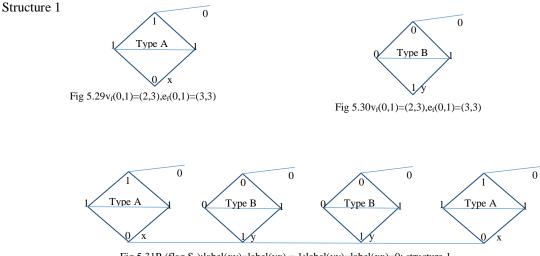
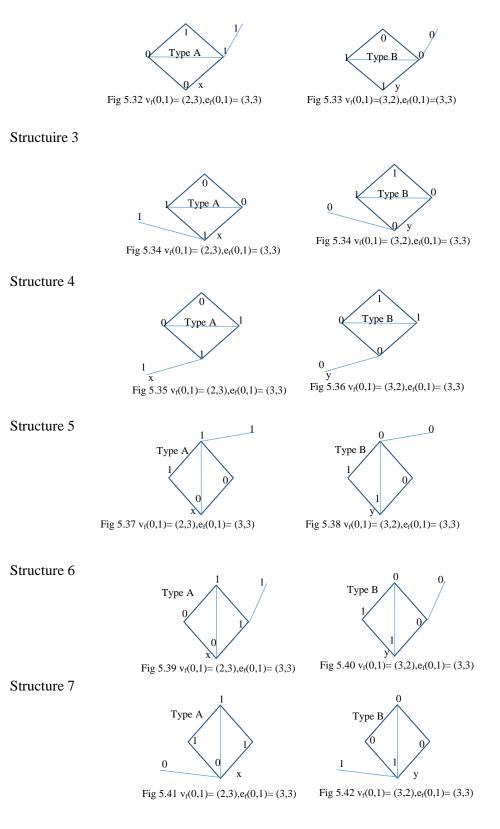
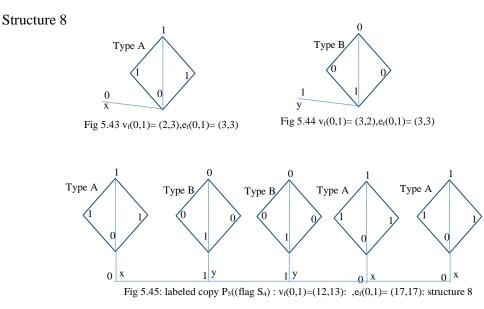


Fig 5.31P₄(flag S₄):label(xy)=label(yx) = 1;label(yy)=label(xx)=0; structure 1

Structure 2





To construct labeled copy of path union from labeled units typeAandTypeB the vertex 'x' on type A and vertex 'y' on type B is used. We observe label number distribution as follows:

On edges $e_f(0,1)=(3+7x),3+7x$ for odd m = 2x+1.and when m=2x we have ef(0,1) = (6+7x,7+7x)On vertices $v_f(0,1) = (5x+2,5x+3)$ for $m\equiv 1 \pmod{4}$ write m=4x+1, x=0,1,2... And $v_f(0,1) = (5x+8,5x+7)....$ for $m\equiv 3 \pmod{4}, m=4x+3, x=0,1,2...$ vf(0,1) = (5x,5x) when m is even number given by 2x,x=1,2,3...

Thus G is cordial #

6.Conclusions: We define double path union and obtain particular cordial labeling of some families of graph .Also note that double path union Pm(2-G) don't include double path but two copies of G at each node of path Pm. Similarly it is interesting to define similar path unions such as Pm(3-G),..Pm(k-G) etc.and study it for cordial labeling.

References.:

[1] M. Andar, S. Boxwala, and N. Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]

[2] M. Andar, S. Boxwala, and N. Limaye, On the cordiality of the t-ply Pt(u,v), ArsCombin., 77 (2005) 245-259. [135]

[3] BapatMukund ,Ph.D. thesis submitted to university of Mumbai.India 2004.

[4] BapatMukund V. Some Path Unions Invariance Under Cordial labeling, accepted IJSAM feb.2018 issue.

[5] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, ArsCombin., 23 (1987) 201-207.

[6] Harary, Graph Theory, Narosa publishing , New Delhi

[7] Yilmaz, Cahit , E-cordial graphs, Ars combina, 46, 251-256.

[8] J.Gallian,Dynamic survey of graph labeling,E.J.C 2017

[9] D. WEST,Introduction to Graph Theory ,Pearson Education Asia. ¹Mukund V. Bapat,Hindale, Tal: Devgad,Sindhudurg Maharashtra,India 416630