Path Union and Double Path Union of Cordialgraphs.

Mukund V.Bapat ${ }^{1}$

Abstract

1.Abstract:

In this paper we show path union families of kite and flag of S_{4} (also called as dart) are cordial graphs. Pm(flag- S_{4}) has 8 different structures and all are cordial. We also show double path union of graph G i.e.Pm(2-G) are cordial for $G=C_{4}$,flag of C_{3},flag of C_{4}.In allcases we consider all possible structures and establish invariance under cordiality.

Key words :

path union, cordial, graph,double path,flag, kite,invariance.
Subject classification: 05C78.

2.Introduction:

The graphs we consider are simple, finite, undirected and connected.For terminology and definitions we depend on Graph Theory by Harary [6],A dynamic survey of graph labeling by J.Gallian [8] and Douglas West.[9].I.Cahit introduced the concept of cordial labeling[5].f: $\mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ be a function.From this label of any edge (uv) is given by $|f(u)-f(v)|$.Further number of vertices labeled with $0 \operatorname{i.ev}_{f}(0)$ and the number of vertices labeled with 1 i.e. $v_{f}(1)$ differ at most by one .Similarly number of edges labeled with 0 i.e. $e_{f}(0)$ and number of edges labeled with 1 i.e. $e_{f}(1)$ differ by atmostone. Then the function f is called as cordial labeling.Cahit has shown that : every tree is cordial; Kn is cordial if and only if $\mathrm{n} \leq 3 ; \mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is cordial for all m and n ; the friendship graph $\mathrm{C}_{3}{ }^{(\mathrm{t})}$ (i.e., the one-point union of t copies of $\left.C_{3}\right)$ is cordial if and only if tis not congruent to $2(\bmod 4)$; all fans are cordial; the wheel W_{n} is cordial if and only if n is not congruent to $3(\bmod 4)$.A lot of work has been done in this type of labeling.One may refer dynamic survey by J.Gallian[8].

We have defined path unions on different graphs inparticular on bull graph.For the same given graph there are many path union $P_{m}(G)$ structures possible.It depends on which point on G is used to fuse with vertex on P_{m}.If this point is changed and path union is designed then it may be a different (up to isomorphism) structure. We have shown that for $\mathrm{G}=$ bull on C_{3}, bull on $\mathrm{C}_{4}, \mathrm{C}_{3}{ }^{+}, \mathrm{C}_{4}{ }^{+}$-e the different path union $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$ are cordial[4].It is called as invariance under cordial labeling. Weusethe convention that $\mathrm{v}_{\mathrm{f}}(0,1)=(\mathrm{a}, \mathrm{b})$ to indicate the number of vertices labeled with 0 are a and that number of vertices labeled with 1 are b.Further $e_{f}(0,1)=(x, y)$ we mean the number of edges labeled with o are x and number of edges labeled with 1 are y.

3.Preliminaries:

The Bull graph on C_{3} is defined in [9]. We generalize the definition of bull graph. Let G be a (p,q) graph. Choose any two adjacent vertices of G say u and v. Attach an pendent edge each to u and v.It is denoted by bull(G). Thus bull graph of G has $\mathrm{P}+2$ vertices and $\mathrm{q}+2$ edges.

4.Definitions:

4.1 Fusion of vertices.Let $\mathrm{u} \neq \mathrm{v}$ be any two vertices of G . We replace these two vertices by a single vertex say x and all edges incident to u and v are now incident to x .If loop is formed then it is deleted.
4.2 Flag of a graph G denoted by $F L(G)$ is obtained by taking a graph $G=G(p, q)$.At sutable vertex of G attach a pendent edge. It has $\mathrm{p}+1$ vertices and $\mathrm{q}+1$ edges.
4.3 Path union : $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$ is obtained by taking a path on m points and m copies of G are taken. At each vertex of path a copy each of G is fused. The point of fusion on G is same and fixed for all copies of G.
4.4 Double path union :Let G be a (p, q) graph. $\mathrm{P}_{\mathrm{m}}(2-\mathrm{G})$ is obtained by taking a path on m points and 2 m copies of G are taken. At each vertex of path two copies of G are fused. The point of fusion on G is same and fixed for all copies of G.It has $m(2 p-1)$ vertices and $m(2 q)+m-1$ edges.
5.Theorems Proved:
5.1Theorem : double Path union of C_{4} i.e $\mathrm{P}_{\mathrm{m}}\left(2-\mathrm{C}_{4}\right)$ is cordial.

Proof:

Fig $5.1 \mathrm{v}_{\mathrm{f}}(0,1)=(3,4)$, $\mathrm{e}_{\mathrm{f}}(0,1)=(4,4)$

Fig $5.2 \mathrm{v}_{\mathrm{f}}(0,1)=(4,3)$, $\mathrm{e}_{\mathrm{f}}(0,1)=(4,4)$

Fig $5.3: P_{4}\left(2-C_{4}\right): v_{f}(0,1)=(14,14), e_{f}(0,1)=(4,4)$ edgelabel $(x y)=$ edge label $(y x)=1$;edge label $(x x)=$ edge label $(y y)=0$
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows:
We define two types of labels Type A and Type B as above. Both are cordial labelings but they differ in label of x and y and on label numbers on vertices. Both types has same label numbers $(4,4)$ on edges.To obtain a $P_{m}\left(2-C_{4}\right)$ we start with a path $p_{m}=\left(v_{1}, v_{2}, \ldots v_{m}\right)$ and at each of it's node fuse one of the two types of libeling. Type A is fused at vertex ' x 'and Type B is fused at vertex ' y ' on it.For $\mathrm{i} \equiv 1,4(\bmod 4)$ use type A labeling for $\mathrm{i} \equiv 2,3(\bmod 4)$ use type B labeling.

The label numbers observed are for vertices we have $\mathrm{v}_{\mathrm{f}}(0,1)=(7 \mathrm{x}, 7 \mathrm{x})$. when $\mathrm{m}=2 \mathrm{x}$.
$\mathrm{v}_{\mathrm{f}}(0,1)=(14 \mathrm{x}+3,14 \mathrm{x}+4)$.For $\ldots \mathrm{m} \equiv 1(\bmod 4),(m=4 x+1)$
$\mathrm{v}_{\mathrm{f}}(0,1)=(14 \mathrm{x}+11,14 \mathrm{x}+10) \ldots$.for $\mathrm{m}=3(\bmod 4),(m=4 \mathrm{x}+3)$
For edges $e_{f}(0,1)=(8+9 x, 9+9 x)$ for $m \equiv 2,0(\bmod 4)$, write $m=4 x$ or $4 x+2, x=0,1$,
$e_{f}(0,1)=\quad(4+9 x, 4+9 x)$ if $m \equiv 1,3(\bmod 4)$, write $m=4 x+1$ or $4 x+3,, x=0,1, .$.
ThusP $\mathrm{m}_{\mathrm{m}}\left(2-\mathrm{C}_{4}\right)$ is cordial. \#
5.2 Theorem : Double path union on flag of C_{4} (i.e. $\mathrm{G}=\mathrm{P}_{\mathrm{m}}\left(2\right.$-flag $\left.\mathrm{C}_{4}\right)$) is cordial.(We consider all possible fournon isomorphic structures)

Proof: To obtain G we start with path $P_{m}=\left(v_{1}, v_{2}, \ldots v_{m}\right)$ and at each vertex on P_{m} fuse two copies of flag of C_{4}. There are four possible structures of path union depending on the vertex on flag of C_{4} used to fuse with vertex on P_{m}.

Refer fig 5.4.

If the vertex \mathbf{a} orc on 2-flag C_{4} is used to fuse with v on P_{m} we get structure 1 .
If the vertex bon 2-flag C_{4} is used to fuse with v on P_{m} we get structure 2 .
If the vertex \mathbf{d} on 2 -flag C_{4} is used to fuse with v on P_{m} we get structure 3 .
If the vertex eon 2-flag C_{4} is used to fuse with v on P_{m} we get structure 4 .
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows:
We give below two types of labeling units type A and type B and use them in a certain way to obtain labeled copy of G. To obtain any of the 4 structures we proceed as follows. Westart with path P_{m} and type A is fused (at vertex x on it) at vertex v_{i} of $P_{m}=\left(v_{1}, v_{2}, \ldots v_{m}\right)$ when $i \equiv 1,0(\bmod 4)$; type \mathbf{B} is fused (at vertex y on it) at vertex v_{i} of P_{m} when $i \equiv 2,3(\bmod 4)$.

The labelnumber distribution is as follows:on vertices when $\mathrm{m}=2 \mathrm{x}$ we have $\mathrm{v}_{\mathrm{f}}(0,1)=(9 \mathrm{x}, 9 \mathrm{x})$.and when m is odd number given by $\mathrm{m}=2 \mathrm{x}+1$ we get $\mathrm{v}_{\mathrm{f}}(0,1)=(18 \mathrm{x}+4,18 \mathrm{x}+5)$.
For edges $\mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{~m}+\mathrm{x} 1,5 \mathrm{~m}+\mathrm{x})$ for m is even number 2 x and $\quad \mathrm{e}_{\mathrm{f}}(0,1)=(5 \mathrm{~m}+\mathrm{x}, 5 \mathrm{~m}+\mathrm{x})$ if m is odd number given by $2 \mathrm{x}+1$. Thus $\mathrm{P}_{\mathrm{m}}\left(2-\mathrm{C}_{4}\right)$ is cordial.

Structure 1:

Fig 5.4: $\operatorname{Flag}\left(\mathrm{C}_{4}\right)$

Fig 5.5: $\mathrm{P}_{1}\left(2-\mathrm{Flag}\left(\mathrm{C}_{4}\right)\right)$; $\mathrm{v}_{\mathrm{f}}(0,1)=(4,5), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Fig 5.6: $\mathrm{P}_{1}\left(2-\mathrm{Flag}\left(\mathrm{C}_{4}\right)\right)$; $\mathrm{v}_{\mathrm{f}}(0,1)=(5,4), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Structure 2:

Fig 5.7: $\mathrm{P}_{1}\left(2-\mathrm{Flag}\left(\mathrm{C}_{4}\right)\right)$; $\mathrm{v}_{\mathrm{f}}(0,1)=(4,5), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Fig 5.8: $\mathrm{P}_{1}\left(2-\mathrm{Flag}\left(\mathrm{C}_{4}\right)\right)$; $\mathrm{V}_{\mathrm{f}}(0,1)=(5,4), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Structure 3:

Fig 5.9: $\mathrm{P}_{1}\left(2-\mathrm{Flag}\left(\mathrm{C}_{4}\right)\right)$; $\mathrm{V}_{\mathrm{f}}(0,1)=(4,5), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Fig 5.10: $\mathrm{P}_{1}\left(2-\mathrm{Flag}\left(\mathrm{C}_{4}\right)\right)$; $\mathrm{v}_{\mathrm{f}}(0,1)=(5,4), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Structure 4:

$\mathrm{v}_{\mathrm{f}}(0,1)=(5,4), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Fig 5.12: $\mathrm{P}_{4}\left(2-\operatorname{Flag}\left(\mathrm{C}_{4}\right)\right) ; \mathrm{v}_{\mathrm{f}}(0,1)=(5,4), \mathrm{e}_{\mathrm{f}}(0,1)=(18,18)$
5.3Theorem: Double Path union of C_{3}-flag (i.e.G $=\mathrm{P}_{\mathrm{m}}\left(2\right.$-flag $\left.\mathrm{C}_{3}\right)$ is cordial.

Proof :To obtain a double path union of C_{3} flag i.e. $\mathrm{P}_{\mathrm{m}}\left(2-\mathrm{Flag}\left(\mathrm{C}_{3}\right)\right)$ we start with a path $\mathrm{P}_{\mathrm{m}}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{m}}\right)$ and at each of it's vertex we fuse two copies of C_{3} flag, with same fixed point on flag. There are three structurespossible on $\mathrm{P}_{\mathrm{m}}\left(2-\mathrm{Flag}\left(\mathrm{C}_{3}\right)\right)$ namely structure 1 ,structure2, structure3. For structure 1 the two degree vertex on $\operatorname{Flag}\left(\mathrm{C}_{3}\right)$ is used to fuse with vertex of path Pm . Vertices and edges of two copies of $\operatorname{flag}\left(\mathrm{C}_{3}\right)$ attached at $\mathrm{i}^{\text {th }}(\mathrm{i}=1,2, . . \mathrm{m})$ vertex v_{i} of path P_{m} is as shown in figure 5.1.

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows:
Wedefine two types of labels type A and type B as follows. All are cordial labelings but they differ either in label of x and y or on label numbers on vertices.All four types has same label numbers $(4,4)$ on edges.Type A and Type B is used as follows:For $i \equiv 1,0(\bmod 4)$ use Type A and for $i \equiv 2,3(\bmod 4)$ use B type label at the vertex vi

Structure 1:

Fig 5.14: $\mathrm{P}_{\mathrm{m}}\left(\mathrm{Flag}\left(\mathrm{C}_{3}\right)\right)$; $v f(0,1)=(3,4), \operatorname{ef}(0,1)=(4,4)$

Fig 5.15: $\mathrm{P}_{\mathrm{m}}\left(\operatorname{Flag}\left(\mathrm{C}_{3}\right)\right)$; $\operatorname{vf}(0,1)=(4,3), \operatorname{ef}(0,1)=(4$,

Structure 2:

Fig 5.16: $\mathrm{P}_{\mathrm{m}}\left(\mathrm{Flag}\left(\mathrm{C}_{3}\right)\right)$; $\operatorname{vf}(0,1)=(3,4), \operatorname{ef}(0,1)=(4,4)$

Fig 5.17: $\mathrm{P}_{\mathrm{m}}\left(\mathrm{Flag}\left(\mathrm{C}_{3}\right)\right)$; $v f(0,1)=(4,3), \operatorname{ef}(0,1)=(4,4)$

Structure 3

Type A

Fig 5.18: $\mathrm{P}_{1}\left(\operatorname{Flag}\left(\mathrm{C}_{3}\right)\right)$;
$\mathrm{v}_{\mathrm{f}}(0,1)=(3,4), \mathrm{e}_{\mathrm{f}}(0,1)=(4,4)$

Fig 5.19: $\mathrm{P}_{1}\left(\operatorname{Flag}\left(\mathrm{C}_{3}\right)\right)$; $\mathrm{v}_{\mathrm{f}}(0,1)=(4,3), \mathrm{e}_{\mathrm{f}}(0,1)=(4,4)$

The label number distribution is as follows:
On vertices when $m \equiv 2 x$ we have,$v_{f}(0,1)=(7 x, 7 x)$ and when $m \equiv 1(\bmod 4)$ write $m=1+4 x$ We have $\mathrm{v}_{\mathrm{f}}(0,1)=(3+14 \mathrm{x}, 4+14 \mathrm{x})$ and when $\mathrm{m} \equiv 3(\bmod 4)$ write $m=3+4 \mathrm{x}$ and we have $\mathrm{v}_{\mathrm{f}}(0,1)=(11+14 \mathrm{x}, 10+14 \mathrm{x})$. On edges we have $e_{f}(0,1)=(4+9 x, 4+9 x)$ when $m=2 x+1, x=0,1,2 \ldots$. And when $m=2 x$ we have $e_{f}(0,1)=(8+9 x, 9+9 x)$
5.4Theorem: Path union of kite (i.e. P_{m} (kite) graph is cordial

Proof: A path union on Kite is obtained by first taking a path $\mathrm{P}_{\mathrm{m}}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{m}}\right)$ and m labeled copies of Kite as shown below.We fuse a suitable labeled copy of kite at each vertex of path P_{m}.

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows.:A labeled copy of kite has 4 - vertices named as a, b, c, d with labels $1,1,0,0$ respectively. Thereare two structures possible on path union. Structure 1 is obtained by fusing vertex bor d at the vertex of path P_{m} $=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{m}}\right)$ And structure 2 is obtained by fusing vertex a or c on kiteat the vertex of path $\mathrm{P}_{\mathrm{m}}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{m}}\right)$

Fig 5.20 : labeled copy of kite label numbers $\operatorname{vf}(0,1)=(2,2), e_{f}(0,1)=(2,3)$

Fig $5.21: \mathrm{P}_{3}$ (kite): labeled copy :label of edge $(\mathrm{bb})=0$

Fig 5.22: P_{3} (kite): labeled copy :label of edge $(\mathrm{aa})=0$

For both structures the label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(2 \mathrm{~m}, 2 \mathrm{~m})$ and $\mathrm{e}_{\mathrm{f}}(0,1)=(3 \mathrm{~m}-1,3 \mathrm{~m})$. The graph is cordial.
Theorem 4 :Double path union of kite (i.e. $G=P_{m}(2-k i t e)$ is cordial.
Proof.There are two structures possible on G depending on which vertex of kite is used to fuse with the vertex of path P_{m}. Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows:

Structure 1

We give two types (units) of labels which are used suitably to fuse at vertex on path Pm.Point of fusion is point x on the unit.

Fig 5.23 : labeled copy of $\mathrm{P}_{1}(2$ - kite) label numbers $\mathrm{v}_{\mathrm{f}}(0,1)=(3,4), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Fig 5.24 : labeled copy of $\mathrm{P}_{1}(2$ - kite) label numbers $\mathrm{v}_{\mathrm{f}}(0,1)=(4,3), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Fig 5.25: $\mathrm{P}_{4}(2$-kite $)$:label numbers $\mathrm{v}_{\mathrm{f}}(0,1)=(14,14), \mathrm{e}_{\mathrm{f}}(0,1)=(21,22)$

Structure 2:

Fig 5.26 : labeled copy of $\mathrm{P}_{1}(2$ - kite) label numbers $\mathrm{v}_{\mathrm{f}}(0,1)=(3,4), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Fig 5.27 : labeled copy of $\mathrm{P}_{1}(2$ - kite) label numbers $\mathrm{v}_{\mathrm{f}}(0,1)=(4,3), \mathrm{e}_{\mathrm{f}}(0,1)=(5,5)$

Edge label of $(x y)=(y x)$
Fig 5.28: $\mathrm{P}_{4}\left(2\right.$-kite):label numbers $\mathrm{v}_{\mathrm{f}}(0,1)=(14,14), \mathrm{e}_{\mathrm{f}}(0,1)=(21,22)$
To construct both structureswe use type A label on vi of path $\operatorname{Pm}=\left(v_{1}, v_{2}, \ldots v_{m}\right)$ when $i \equiv 1,0(\bmod 4)$ and type B is used when $\mathrm{i}=2,3(\bmod 4)$.

For both structures we observe number distribution as follows:
$\mathrm{v}_{\mathrm{f}}(0,1)=(7 \mathrm{x}, 7 \mathrm{x})$ for m is even number 2 x and when m is of type $4 \mathrm{x}+1$ we have $\mathrm{v}_{\mathrm{f}}(0,1)=$ $(3+14 x, 4+14 x)$ and when mis of type $m=4 x+3$ we have $v_{f}(0,1)=(11+14 x, 10+14 x)$ To obtain edge numbers case $1: e_{f}(0,1)=(5+11 x, 5+11 x)$ when m is odd number given by $m=2 x$ case $2: m$ is of type $m=2 x$ we have $e_{f}(0,1)=(11 x+10,11 x+11)$. Thus the graph is cordial. \#
5.5Theorem :Path union of flag of S_{4} (i.e. $G=\mathrm{P}_{\mathrm{m}}\left(\right.$ flag $\left.\mathrm{S}_{4}\right)$ is cordial

Proof: Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows: We obtain two types of labeled units type A and type B as shown below. In all 8 structure we fuse Type A at vertex v_{i} of $\operatorname{Pm}=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{m}\right)$ where $i \equiv 1,3(\bmod 4)$ and Type B when $\mathrm{i} \equiv 2,3(\bmod 4)$. There are eight non- isomorphic structures possible.

Structure 1

Fig $5.29 \mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig $5.30 \mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig 5.31P $\mathrm{P}_{4}\left(\right.$ flag $\left.\mathrm{S}_{4}\right): \operatorname{label}(\mathrm{xy})=\operatorname{label}(\mathrm{yx})=1 ; \operatorname{label}(\mathrm{yy})=\operatorname{label}(\mathrm{xx})=0$; structure 1

Structure 2

Fig $5.32 \mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Structuire 3

Fig $5.34 \mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$
Structure 4

Fig $5.35 \mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig $5.33 \mathrm{v}_{\mathrm{f}}(0,1)=(3,2), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig $5.34 \mathrm{v}_{\mathrm{f}}(0,1)=(3,2), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig $5.38 \mathrm{v}_{\mathrm{f}}(0,1)=(3,2), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Structure 6

Fig $5.39 \mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$
Structure 7

Fig $5.41 \mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig $5.40 \mathrm{v}_{\mathrm{f}}(0,1)=(3,2), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig $5.42 \mathrm{v}_{\mathrm{f}}(0,1)=(3,2), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Structure 8

Fig $5.43 \mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig $5.44 \mathrm{v}_{\mathrm{f}}(0,1)=(3,2), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig 5.45: labeled copy $P_{5}\left(\left(\right.\right.$ flag $\left.S_{4}\right): v_{f}(0,1)=(12,13)$: , $e_{f}(0,1)=(17,17)$: structure 8

To construct labeled copy of path union from labeled units typeAandTypeB the vertex ' x ' on type A and vertex ' y ' on type B is used. We observe label number distribution as follows:

On edges $\left.e_{f}(0,1)=(3+7 x), 3+7 x\right) \ldots .$. for odd $m=2 x+1$.and when $m=2 x$ we have $e f(0,1)=(6+7 x, 7+7 x)$ On vertices $v_{f}(0,1)=(5 x+2,5 x+3)$ for $m \equiv 1(\bmod 4)$ write $m=4 x+1, x=0,1,2 \ldots \operatorname{Andv}_{f}(0,1)=(5 x+8,5 x+7) \ldots$. for $m \equiv 3(\bmod 4), m=4 x+3, x=0,1,2 \ldots v f(0,1)=(5 x, 5 x)$ when m is even number given by $2 x, x=1,2,3 \ldots$

Thus G is cordial \#
6.Conclusions: We define double path union and obtain particular cordial labeling of some families of graph .Also note that double path union $\operatorname{Pm}(2-G)$ don't include double path but two copies of G at each node of path Pm. Similarly it is interesting to define similar path unions such as $\operatorname{Pm}(3-G), . . \operatorname{Pm}(k-G)$ etc.and study it for cordial labeling.

References.:

[1] M. Andar, S. Boxwala, and N. Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]
[2] M. Andar, S. Boxwala, and N. Limaye, On the cordiality of the t-ply Pt(u,v), ArsCombin., 77 (2005) 245-259. [135]
[3] BapatMukund ,Ph.D. thesis submitted to university of Mumbai.India 2004.
[4] BapatMukund V. Some Path Unions Invariance Under Cordial labeling,accepted IJSAM feb. 2018 issue.
[5] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, ArsCombin., 23 (1987) 201-207.
[6] Harary,GraphTheory,Narosa publishing ,New Delhi
[7] Yilmaz,Cahit ,E-cordial graphs,Ars combina,46,251-256.
[8] J.Gallian,Dynamic survey of graph labeling,E.J.C 2017
[9] D. WEST,Introduction to Graph Theory ,Pearson Education Asia. ${ }^{1}$ Mukund V. Bapat,Hindale, Tal: Devgad,Sindhudurg Maharashtra,India 416630

