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Abstract: 
               In this article I will be giving a series which provides the Laplace Transform of a real valued function and 

is expandable by Maclaurin’s series. It’s easy way to find the Laplace transform of any real valued function which is 
expandable by Maclaurin’s series.   
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I. INTRODUCTION 

In mathematics, we know that there are many real valued functions those are converge or diverge to a certain limit. 

A Laplace transform exists, if the integral of a given function on closed interval [a , b] converge. But “this series 

exist for any real valued function which are expandable by Maclaurin‟s series”. 

 Now, to determine the Laplace transform of any real valued function (𝑡) , where  0 ≤ t ≤ , we use the following 

according to the definition of Laplace transform: 
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           Where s > 0. 

To determine the Laplace transform, no need to evaluate the above integration for any real valued function 

(which is expandable by Maclaurin‟s series) in The Kumar-Laplace series. 

II. SERIES 

Now, we will state a series which is equivalent to Laplace transform in terms of „s‟ where, s>0. 

Let )( tF  be a real valued function. By Maclaurin‟s series expansion, we get the following series: 
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      Where, 0 ≤ t < . 

If the above series converges, then Laplace transform of )( tF exist. 

Now, considering nth terms of the above series, we get: 
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If s>0, then, for any finite value 
n

tFL )}({ converges. 

  

III. DERIVATION 

Let )( tF be a real valued function (where 0 ≤ t < ). Then, the Laplace transform of F(t) is given by,  
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      Where s > 0.  

 Let )( tF be defined on a closed interval [0 , t] such that  
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is continuous on closed interval [0 , t]. 
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exists in an open interval (0 , t). 

Then, there exists a real number „θ‟ where 0 < θ < 1 such that: 
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Now, multiplying the above equation by 
st

e


on both sides, we get: 
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Now, on integrating the above equation where 0 ≤ t < , we get: 
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Now, by the definition of Laplace transforms, we have: 
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This gives us: 
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Which is known as “The Kumar – Laplace series”. 

COMMENT ON RESULT:  We can observe that there is no integration to determine the Laplace transform 

of any given real valued function, which is expandable by Maclaurin‟s series. 

 

 

 

 

IV. APPLICATION 

Some examples for Kumar – Laplace series: 

(1) Let )( tF = 2
1

t , )0(F = 0 
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 Solution: Here, Maclaurin‟s expansion does not exist. Hence, we can‟t find its Laplace transform by  

Kumar – Laplace series for )( tF = 2
1

t . 
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Solution: By Kumar – Laplace series we have the equation: 
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On substituting the given values we get: 
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