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Abstract 

The present investigation deals with the reflection and 

refraction phenomenon at the imperfect interface between 

fluid saturated porous solid half space and micropolar elastic 

solid half space. P-wave or SV-wave is considered to be 

incident on the plane interface through fluid saturated porous 

solid half space. Incident wave impinge obliquely at the 

interface. Amplitudes ratios of various reflected and refracted 

waves to that of incident wave are derived and deduced for 

normal force stiffness, transverse force stiffness and for 

welded contact. After obtaining the amplitudes ratios, they 

have been computed numerically for a specific model and 

results obtained graphically with angle of incidence of 

incident wave. It is found that these amplitude ratios depend 

on angle of incidence of incident wave and material 

properties of the medium and these are affected by the 

stiffness also.  

Keywords: Amplitude ratio, reflection, refraction, micropolar 

elastic solid, porous solid.  

1. Introduction 

The micropolar theory of elasticity constructed by Eringen 

and his co-workers intended to be applied on such materials 

and for problems where the ordinary theory of elasticity fails 

because of microstructure in the materials. Micropolar elastic 

materials, roughly speaking, are the classical elastic 

materials with extra independent degree of freedom for the 

local rotations. These materials respond to spin inertia and 

body and surface couples and as a consequence they exhibit 

certain new static and dynamic effects, e.g. new types of 

waves and couples stresses. 

From a continuum mechanical point of view, micropolar 

elastic solids may be characterized by a set of constitutive 

equations which define the elastic properties of such 

materials. A linear theory as a special case of the nonlinear 

theory of micro-elastic solids was first constructed by Eringen 

and Suhubi (1964a, b). Later, Eringen (1965) and (1966) 

recognized and extended this theory.   

Eringen (1966a, 1990) developed the theories of 'micropolar 

continua' and 'microstructures continua' which are special 

cases of the theory of 'micromorphic continua' earlier 

developed by Eringen and his coworkers (1964). 
Thus,theEringen's '3M' theories (Micromorphic, Microstretch, 

Micropolar) are the generalization the classical theory of 

elasticity. In classical continuum, each particle of a continuum 

is represented by a geometrical point and can have three 

degree of freedom of translation during the process of 

deformation. 

 

Eringen's theory of micropolar elasticity keeps importance 

because of its applications in many physical substance for 

example material particles having rigid directors, chopped 

fibres composites, platelet composites, aluminium epoxy, 
liquid crystal with side chains, a large class of substance like 

liquid crystal with rigid molecules, rigid suspensions, animal 

blood with rigid cells, foams, porous materials, bones, 

magnetic fields, clouds with dust, concrete with sand and 

muddy fluids are example of micropolar materials. 

 

Soft soils such as sand and clay consist of small particles, and 

open the pore space between the particles is filled with water. 

In soil mechanics this is denoted as a saturated or partially 

saturated porous medium. The deformations of such porous 

media depend upon the stiffness of the porous material, and 

upon the behaviour of the fluid in the pores. 
 

Imperfect interface considered in this problem means that the 

stress components are continuous and small displacement 

field is not. The small vector difference in the displacements 

assumed to depend linearly on the traction vector. More 

precisely jumps in the displacement components are assumed 

to be proportional (in terms of spring-factor-type interface 

parameters) to their respective interface components. The 

infinite values of interface parameters imply vanishing of 

displacement jumps and therefore correspond to perfect 

interface conditions. The finite values of the interface 
parameters define an imperfect interface. The values of the 
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interface are depends on the material properties o the medium. 

Recently many authors have used the imperfect conditions at 

an interface to the various types of the problems (Kumar and 

Rupender, Kumar and Chawla, Chong and Wei etc.). 

 

Using the theory of de Boer and Ehlers (1990) for the fluid 
saturated porous medium and Eringen (1968) for micropolar 

elastic solid medium, the reflection and refracted phenomenon 

of longitudinal wave at a loosely bonded interface between 

fluid saturated porous solid half space and micropolar elastic 

solid half space is studied. Such problem of reflection and 

refraction where aluminium-epoxy composites as micropolar 

elastic solid is in loosely bonded contact with the crust as the 

fluid saturated porous solid. As such model may be found in 

the earth’s crust, so the results of our problem can be 

applicable to the earth’s crust, to a water-mud-rock boundary, 

or to some other specific problems in engineering or 
seismology.  

2. Formulation of the problem 

Consider a two dimensional problem by taking the z-axis 

pointing into the lower half-space and the plane interface z=0 

separating the uniform fluid saturated porous solid half space 

M1 [z ˃ 0] and micropolar elastic solid half space M2 [z˂0]. 

Consider a longitudinal wave (P-wave) or transverse wave 

(SV-wave) propagating through a medium M1 and incident at 

the plane z=0 and making an angle θ0  with normal to the 

surface. Corresponding to incident longitudinal wave, we get 

two reflected waves in the medium M1  and three refracted 

waves in medium M2. See fig. 1.    

 

3. Basics Equations and Constitutive Relations 

3.1. For medium 𝐌𝟏(fluid saturated porous half space) 

Following de Boer and Ehlers (1990b), the governing 

equations in a fluid-saturated incompressible porous medium 

are  

          div ηS𝐱 S + ηF𝐱 F = 0.                                                       (1) 

         div𝐓𝐄
𝐒 − ηS  grad p + ρS 𝐛 − 𝐱 s − 𝐏𝐄

𝐅 = 0                   (2) 

         div𝐓𝐄
𝐅 − ηF  grad p + ρF 𝐛 − 𝐱 F + 𝐏𝐄

𝐅 = 0                   (3) 

where 𝐱 i  and  𝐱 i i = S, F  denote the velocities and 

accelerations, respectively of solid (S) and fluid (F) phases of 

the porous aggregate and p is the effective pore pressure of the 

incompressible pore fluid. ρS andρF are the densities of the 

solid and fluid phases respectively and b is  the body force per 

unit volume.𝐓𝐄
𝐒and 𝐓𝐄

𝐅are the  effective stress in the solid  and 

fluid phases  respectively, 𝐏𝐄
𝐅 is the effective quantity of 

momentum supply and ηS  and ηF  are the volume fractions 

satisfying 

ηS + ηF = 1.                                                                         (4) 

If  𝐮S  and 𝐮F are the displacement vectors for solid and fluid 

phases, then 

x S = 𝐮 S ,    𝐱 s = 𝐮 s ,    𝐱 F = 𝐮 F ,     𝐱 F = 𝐮 F .                    (5) 

The constitutive equations for linear isotropic, elastic 

incompressible porous medium are given by de Boer, Ehlers 

and Liu (1993) as 

𝐓𝐄
𝐒 = 2μS𝐄S + λ

S ES . 𝐈 𝐈,                                                (6) 

𝐓𝐄
𝐅 = 0,                                                                                (7) 

𝐏𝐄
𝐅 = −𝐒v 𝐮 F − 𝐮 S                                                          (8) 

whereλ
S
  and μS  are the macroscopic Lame’s parameters of 

the porous solid and  𝐄S  is the linearized Langrangian strain 

tensor defined as  

𝐄S =
1

2
 grad 𝐮S + gradT𝐮S ,                                        (9) 

In the case of isotropic permeability, the tensor 𝐒v  describing 

the coupled interaction between the solid and fluid is given by 

de Boer and Ehlers (1990b) as 

𝐒v =
 ηF 2γFR

KF
𝐈,                                                              (10) 

whereγFR  is the specific weight of the fluid and KF  is the 

Darcy’s permeability coefficient of the porous medium. 

Making the use of (5) in equations (1)-(3), and with the help 

of (6)-(9), we obtain 

div ηS𝐮 S + ηF𝐮 F = 0,                                                     (11)   
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 λ
S + μS grad div 𝐮S + μSdiv grad 𝐮S − ηSgrad p

+ ρS 𝐛 − 𝐮 s + Sv 𝐮 F − 𝐮 S = 0   (12)  

−ηFgrad p + ρF 𝐛 − 𝐮 F − Sv 𝐮 F − 𝐮 S = 0             (13) 

For the two dimensional problem, we assume the 

displacement vector 𝐮i i = F, S  as  

𝐮i =  ui , 0, w i wherei = F, S.                                   (14) 

Equations (11) - (13) with the help of eq. (14) in absence of 

body forces take the form  

ηS  
∂2uS

∂x∂t
+
∂2wS

∂z∂t
 + ηF  

∂2uF

∂x∂t
+
∂2wF

∂z ∂t
 = 0,                   (15) 

ηF
∂p

∂x
+ ρF

∂2uF

∂t2
+ Sv  

∂uF

∂t
−
∂uS

∂t
 = 0,                             (16) 

ηF
∂p

∂z
+ ρF

∂2wF

∂t2
+ Sv  

∂wF

∂t
−
∂wS

∂t
 = 0,                         (17) 

 λ
S + μS 

∂θ
S

∂x
+ μS∇2uS − ηS

∂p

∂x
− ρS

∂2uS

∂t2

+ Sv  
∂uF

∂t
−
∂uS

∂t
 = 0,                        (18) 

 λ
S + μS 

∂θ
S

∂z
+ μS∇2wS − ηS

∂p

∂z
− ρS

∂2wS

∂t2

+ Sv  
∂wF

∂t
−
∂wS

∂t
 = 0,                      19  

where   

θ
S =

∂ uS 

∂x
+
∂ wS 

∂z
                                                         (20) 

and 

∇2=
∂2

∂x2
+

∂2

∂z2
 (21) 

Also,tzz
S   and  tzx

S   the normal and tangential stresses in the 

solid phase are as under 

tzz
S = λ

S  
∂uS

∂x
+
∂wS

∂z
 + 2μS

∂wS

∂z
                            (22) 

tzx
S = μS  

∂uS

∂z
+
∂wS

∂x
 .                                                (23) 

The displacement components uj and w j  are related to the 

dimensional potential ϕ
j
 and ψj  as  

uj =
∂ϕ

j

∂x
+
∂ψj

∂z
; w j =

∂ϕ
j

∂z
−
∂ψj

∂x
; j = S, F.                       24  

Using equation (24) in equations (15)-(19), we obtain the 

following equations determining ϕ
S ,   ϕF , ψS  ,   ψF  and  p  as: 

∇2ϕ
S −

1

C1
2

∂2ϕ
S

∂t2
−

Sv

 λ
S + 2μS  ηF 2

∂ϕ
S

∂t
= 0                   (25) 

ϕ
F = −

ηS

ηF
ϕ

S 26  

μS∇2ψS − ρS
∂2ψS

∂t2
+ Sv  

∂ψF

∂t
−
∂ψS

∂t
 = 0                      (27) 

ρF
∂2ψF

∂t2
+ Sv  

∂ψF

∂t
−
∂ψS

∂t
 = 0,                                        (28) 

 ηF 2p − ηSρF
∂2ϕ

S

∂t2
− Sv

∂ϕ
S

∂t
= 0,                                   (29) 

where 

C1  

=  
 ηF 2 λS + 2μS 

 ηF 2ρS +  ηS 2ρF
.                                                  (30) 

Assuming the solution of the system of equations (25) - (29) 

in the form 

 ϕ
S , ϕ

F , ψS , ψF , p =  ϕ
1

S , ϕ
1

F , ψ
1

S , ψ
1

F , p1 exp iωt , (31) 

whereω is the complex circular frequency. 

Making the use of (31) in equations (25)-(29), we obtain 

 ∇2 +
ω2

C1
2 −

iωSv

 λ
S + 2μS  ηF 2

 ϕ
1

S = 0,                          (32) 

 μS∇2 + ρSω2 − iωSv ψ1
S = −iωSvψ

1
F                           (33) 

 −ω2ρF + iωSv ψ1
F − iωSv ψ

1
S = 0,                                (34) 

 ηF 2p1 + ηSρFω2ϕ
1

S − iωSv ϕ
1

S = 0,                             (35) 

ϕ
1

F = −
ηS

ηF
ϕ

1
S .                                                               (36) 
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Equation (32) corresponds to longitudinal wave propagating 

with velocity V1, given by 

V1
2 =

1

G1

                                                                         (37) 

whereG1 =  
1

C1
2 −

iSv

ω λS +2μS  ηF 
2 .                            (38) 

From equation (33) and (34), we obtain 

 ∇2 +
ω2

V2
2 ψ

1
S = 0,                                                       (39) 

Equation (39) corresponds to transverse wave propagating 

with velocityV2, given by 

V2
2 =

1

G2
where 

G2 =  
ρS

μS
−

iSv

μSω
−

Sv
2

μS −ρSω2 + iωSv 
 ,                    (40) 

3.2. For medium 𝐌𝟐(micropolar elastic solid) 

The equation of motion in micropolar elastic medium are 

given by Eringen (1968) as 

 c1
2 + c3

2 ∇2ϕ =
∂2ϕ

∂t2
(41) 

 c2
2 + c3

2 ∇2U   + c3
2∇ × Φ   =

∂2U   

∂t2
                          (42) 

 c4
2∇2 − 2ω0

2 Φ   + ω0
2∇ × U   =

∂2Φ   

∂t2
                     (43) 

where 

c1
2 =

λ + 2μ

ρ
c2

2 =
μ

ρ
 ;      c3

2 =
κ

ρ
 

c4
2 =

γ

ρj
 ;      ω0

2 =
κ

ρj
                                                 (44) 

Parfitt and Eringen (1969) have shown that equation (41) 

corresponds to longitudinal wave propagating with 

velocityV11 , given by V11
2 = c1

2 + c3
2 , and equations. (42)- 

(43) are coupled equations in vector potentials U    and Φ    and 

these correspond to coupled transverse and micro-rotation 

waves. If 
ω2

ω0
2 > 2,  there exist two sets of coupled-wave 

propagating with velocities 1/λ1  and 1/λ2; where 

λ1
2 =

1

2
 B − B2 − 4C , 

λ2
2 =

1

2
 B +  B2 − 4C ,                                          (45) 

where 

B =
q p − 2 

ω2
+

1

 c2
2 + c3

2 
+

1

c4
2
 

C =  
1

c4
2
−

2q

ω2
 

1

 c2
2 + c3

2 
 

p =
κ

μ + κ
 ;    q =

κ

γ
                                                       (46) 

We consider a two dimensional problem by taking the 

following components of displacement and micro rotation as  

u  =  u, 0, w ,       Φ   =  0, Φ2 , 0 ,                               (47) 

where 

u =
∂ϕ

∂x
−
∂ψ

∂z
  ;     w =

∂ϕ

∂z
+
∂ψ

∂x
                                (48) 

and components of stresses are as  

tzz =  λ + 2μ + κ 
∂2ϕ

∂z2
+ λ

∂2ϕ

∂x2
+  2μ + κ 

∂2ψ

∂x∂z
       (49) 

tzx =  2μ + κ 
∂2ϕ

∂x∂z
−  μ + κ 

∂2ψ

∂z2
+ μ

∂2ψ

∂x2

− κΦ2 ,        (50) 

mzy

= γ
∂Φ2

∂z
                                                                           (51) 

In medium 𝐌𝟏 

 ϕS , ϕ
F , p =  1, m1 , m2  A01  exp ik1 x sinθ0–z cosθ0 

+ iω1t  + A1  exp{ik1 x sinθ1 + z cosθ1 

+ iω1t}                                                         (52) 

 ψS  , ψF =  1, m3  B01 exp ik2 x sinθ0–z cosθ0 + iω2t 

+ B1exp ik2 x sinθ2 + z cosθ2 

+ iω2t                                                       (53) 

Wherem1 = −
ηS

ηF  ;     m2 = − 
ηS ω1

2ρF−iω1 Sv

 ηF 
2  ,    
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m3 =
iω2Sv

iω2Sv − ω
2

2ρF
                                                (54) 

whereA01andB01 are amplitudes of incident P-wave and SV-

wave respectively, and k1 and k2 are the wave numbers and 

A1andB1 are amplitudes of the reflected P-wave and SV-wave 

respectively, to be determined from boundary conditions.  

In medium 𝐌𝟐 

ϕ = B 1 exp ik 0 x sinθ 1 – z cosθ 1  + iω1 t ,             (55) 

ψ = B 2 exp iδ 1 x sinθ 2 − z cosθ 2  + iω2 t 

+ B 3 exp iδ 2 x sinθ 3 − z cosθ 3  

+ iω3 t ,                                             (56) 

Φ2 = EB 2 exp iδ 1 x sinθ 2 − z cosθ 2  + iω2 t 

+ FB 3 exp iδ 2 x sinθ 3 − z cosθ 3  

+ iω3 t ,                                            (57) 

WhereE =
δ 1

2
 δ 1

2
−

ω2

 c 2
2+c 3

2 
+pq 

deno .
                                       (58) 

F =
δ 2

2
 δ 2

2
−

ω2

 c2
2+c3

2 
+ pq 

deno.
                    (59) 

and 

deno. = p 2q −
ω2

c4
2
 ,    δ 1

2
= λ1

2
ω2 ,   δ 2

2
= λ2

2
ω2  (60) 

wherek 0  , δ 1  and δ 2 are the wave numbers and B 1, B 2and B 3 

are amplitudes of refracted wave, refracted coupled transverse 

and refracted micro-rotation P-wave or SV-wave, respectively 

and to be determined from boundary conditions. 

4. Boundary Conditions 

The appropriate boundary conditions are the continuity of 

displacement, micro rotation and stresses at the interface 

separating media M1 and M2 . Mathematically, these boundary 

conditions  at  z=0 can be expressed as: 

 tzz = tzz
S − p; tzx = tzx

S  ; mzy = 0;  

tzx = kt uS − u ; tzz
S = kn wS − w .                    (61) 

In order to satisfy the boundary conditions, the extension of 

the Snell’s law will be  

sinθ0

V0

=
sinθ1

V1

=
sinθ2

V2

=
sinθ1

V11

=
sinθ2

λ1
−1 =

sinθ3

λ2
−1            (62) 

For P-wave, 

V0 = V1 ,    θ0 = θ1 ,                                                         (63) 

For SV-wave, 

V0 = V2 ,    θ0 = θ2 ,                                                         (64) 

Also 

k1V1 = k2V2 = k 0V11 = δ 1λ1
−1 = δ 2λ2

−1 = ω,    at  z = 0(65) 

For the incident longitudinal wave at the interface z=0, putting 

B01 = 0 in the equation (53) and for the incident transverse 

wave putting A01 = 0 in the equation (52). Using equations 

(52)-(53) and (55)-(57) in equations (22) - (24) and (48)-(51) 

and with the help of (61)-(65), we get a system of five non 

homogeneous equations which can be written as 

 aij

5

j=1

Zj = Yi ,         i = 1,2,3,4,5                                (66) 

where 

 Z1 =
A1

A∗
 ;  Z2 =

B1

A∗
 ;  Z3 =

B 1

A∗
 ;  Z4 =

B 2

A∗
 ;     Z5 =

B 3

A∗
  (67) 

whereZ1 to Z5  are the amplitudes ratios of reflected P-wave 

and reflected SV-wave,  refracted longitudinal wave, refracted 

coupled-wave at an angle  θ 2 , refracted coupled-wave at an 

angle θ 3. Also aij   and Yi  in non-dimensional form are as 

 a11 = − 
λs

μs
+ 2cos2θ1 +

m2

μsk1
2 ,  

 a12 = −
2k2

2

k1
2 sinθ2cosθ2, 

 a13 =
k 0

2

k1
2  

λ

μs
+
 2μ + κ 

μs
cos2θ 1 ,    

a14 =
(2μ + κ)

μs

δ 1
2

k1
2 sinθ 2cosθ 2,  

a15 =
 2μ + κ 

μs

δ 2
2

k1
2 sinθ 3cosθ 3; 

 a21 = 2sinθ1cosθ1, 
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 a22 =
k2

2

k1
2  cos2θ2 − sin2θ2 , 

 a23 =
 2μ + κ 

μs

k 0
2

k1
2 sinθ 1cosθ 1, 

 a24 =
δ 1

2

μs
 μ cos2θ 2 + k cos2θ 2 −

kE

δ 1
2
 , 

 a25 =
δ 2

2

μs
 μ cos2θ 3 + k cos2θ 3 −

kF

δ 2
2 ; 

 a31 = a32 = a33 = 0,  a34 = cosθ2, 

 a35 =
δ 2F

k1E
cosθ3; a41 = i

sinθ0

μs
, 

a42 = i
k2

k1μ
s

cosθ2 ,   

a43 = −
1

k1μ
s
 
 2μ + k k 0

2

kt

sinθ 1cosθ 1 + ik 0sinθ 1 , 

a44 = −
1

μs
 
μδ 1

2

k1kt

 cos2θ 2 − sin2θ 2 +
kδ 1

2

k1kt

cos2θ 2

+ i
δ 1

k1

cosθ2 +
kE

kt

 , 

a45 = −
1

μs
 
μδ 2

2

k1kt

 cos2θ 3 − sin2θ 3 +
kδ 2

2

k1kt

cos2θ 3

+ i
δ 2

k1

cosθ3 +
kF

kt

 ; 

a51 = i
cosθ1

μs
;  a52 = −i

k2

k1μ
s

sinθ2 , 

a53 =
k 0

2

μsk1kn

(λ +  2μ + k cos2θ 1) + i
k 0

k1μ
s

 cosθ 1 , 

a54 = −
1

k1μ
s
 
 2μ + k δ 1

2

kn

sinθ 2cosθ 2 + iδ 1sinθ2 , 

a55 = −
1

k1μ
s
 
 2μ + k δ 2

2

kn

sinθ 3cosθ 3 + iδ 2sinθ3 ;     (68) 

For incident longitudinal P-wave: 

A∗ = A01 , B01 = 0, Y1 = −a11 , Y2 = a21 , Y3 = a31 , Y4

= −a41 , Y5 =  a51 .      (69) 

For incident transverse SV- wave: 

A∗ = B01 , A01 = 0, Y1 = a12 , Y2 = −a22 , 

Y3 = a32 , Y4 = a42 , Y5 = − a52 .                                 (70) 

 

5. Particular Case 

Case I: Normal force stiffness (kn ≠ 0, kt → ∞) 

In this case, we obtained a system of five non-homogeneous 

equations as those given by equation (66) with the change aij  

as 

a43 = −
1

k1μ
s

 ik 0sinθ 1 , a44 = −
1

k1μ
s

iδ 1cosθ2 ,    

a45 = −
1

k1μ
s

iδ 2cosθ3 .                                                 (71) 

Case II: Transverse force stiffness (kn → ∞, kt ≠ 0) 

In this case also, a system of five non-homogeneous equations 

as those given by equation (66) is obtained with the changed 

aij  as given below 

a53 =
1

k1μ
s

 ik 0cosθ 1 ,   a54 = −
1

k1μ
s

iδ 1sinθ2 ,  

a54

= −
1

k1μ
s

iδ 2sinθ3                                                           (72) 

Case III: Welded contact (kn → ∞, kt → ∞) 

Again in this case, a system of five non-homogeneous 

equations is obtained as those given by equation (66) with the 

changed aij  as  

a43 = −
1

k1μ
s

 ik 0sinθ 1 ,   a44 = −
1

k1μ
s

iδ 1cosθ2 ,    

a45 = −
1

k1μ
s

iδ 2cosθ3 .   a53 =
1

k1μ
s

 ik 0cosθ 1, 

a54 = −
1

k1μ
s

iδ 1sinθ2 ;  a54 = −
1

k1μ
s

iδ 2sinθ3          (73) 

6. Numerical Results and Discussion 

The theoretical results obtained above indicate that the 

amplitudes ratios Zi ,  i = 1,2,3,4,5   depend on the angle of 
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incidence of incident wave P-wave or SV-Wave. In order to 

study in more detail the behaviour of various amplitudes 

ratios, we have computed them numerically for a particular 

model for which the values of relevant elastic parameters are 

as follow 

In medium M1 , the physical constants for fluid saturated 

porous medium are taken from de Boer, Ehlers and Liu 

(1993)as 

ηS = 0.67,      ηF = 0.33, ρS = 1.34 
Mg

m3
,    

ρF = 0.33 
Mg

m3
,   λS = 5.5833 

MN

m2
, KF = 0.01

m

s
,  

γFR = 10.00
KN

m3 ,    μS = 8.3750
N

m2,                            (74) 

In medium M2 , the physical constants for micropolar elastic 

solid are taken from Gauthier (1982) as 

λ = 7.59 × 1010
N

m2
, μ = 1.89 × 1010

N

m2
,  

κ = 1.49 × 108
N

m2
, ρ = 2.19 × 103

kg

m3
, 

γ = 2.68 × 104  N; j = 1.96 × 10−6m2  ; 
ω2

ω0
2

= 200. (75) 

A computer programme in MATLAB has been developed to 

calculate the modulus of amplitudes ratios  Zi ,  i =

1,2,3,4,5   for various reflected and refracted waves for the 

particular model and to depict graphically.  Z1 and  Z2  

represent the modulus of amplitudes ratios for reflected P-

wave or reflected SV-wave when P-wave is an incident wave 

or SV-wave is an incident wave respectively. Also  Z3 ,  Z4  

and  Z5  represent the modulus of amplitudes ratios for 

refracted P-wave or refracted SV-wave when P-wave is an 

incident wave or SV-wave is an incident wave respectively. 

The variations in all figures are shown for the range 0o ≤ θ ≤

90o . 

Incident P-wave 

Figures (2)–(6) depicts the variations of modulus of the 

amplitudes ratios of reflected P-wave and refracted P-wave 
with angle of incidence of indent P-wave. In all these figures 

(2)–(6), dashed line represent the general case (GEN) of 

imperfect boundary, whereas small dashed line represents the 

normal force stiffness case (NFS). Also bold dashed line 

represents the transverse force stiffness case (TFS) and solid 

line depicts the welded contact (WD). 

In figure (2), more variations in the values of GEN and WD 

cases. Also, for NFS and TFS cases the values are almost 
same. In figure (3), values are different for each case. In figure 

(4), all values are almost same. In figures (5)-(6), values for 

NFS are different from three cases which have almost same 

values.  

Incident SV-wave 

Figures (7)–(11) depicts the variations of modulus of the 

amplitudes ratios of reflected P-wave and refracted P-wave 

with angle of incidence of indent P-wave. In all these figures 

(7)–(11), dashed line represent the general case (GEN) of 

imperfect boundary, whereas small dashed line represents the 

normal force stiffness case (NFS). Also bold dashed line 

represents the transverse force stiffness case (TFS) and solid 

line depicts the welded contact (WD).  

In figure (7), more variations in the values of GEN and WD 

cases. Also, for NFS and TFS cases the values are almost 

same. In figure (8), more variations in the values of GEN and 

WD cases. Also, for NFS and TFS cases the values are almost 

same. In figures (9)-(11), values for NFS are different from 

three cases which have almost same values. 
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Fig.2-6: Variation of the amplitudes ratios  Zi , i = 1,2,3,4,5. with angle of incidence of incident P-Wave. 

 

Fig.7-11: Variation of the amplitudes ratios  Zi , i = 1,2,3,4,5. with angle of incidence of incident SV-Wave. 

7. Conclusion 

In conclusion, a mathematical study of reflection and 

refraction at an imperfect interface between fluid saturated 

porous solid half space and micropolar elastic solid half space 

is made when P-wave or SV-wave is incident. It is observed 

that the amplitudes ratios of various reflected and refracted 

waves depend on the angle of incidence of the incident wave 

and material properties of half spaces. Effect of stiffness is 

observed on amplitudes ratios. The model presented in this 

paper is one of the more realistic forms of the earth models. It 

may be of some use in engineering, seismology and 

geophysics etc.  
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