
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 55  Number 6 - March 2018 

 

ISSN: 2231-5373                                      http://www.ijmttjournal.org                              Page 434 
 

Numerical Analysis of Magneto-Hydrodynamic 

Flow of Non-Newtonian Fluid Past Over a Sharp 

Wedge in Presence of Thermal Boundary Layer 
 

  Ramesh Yadav
*1

, Santosh Kumar Dixit
#2

 and Navneet Kumar Singh
#3 

 

*1Assistant Professor, Department of Mathematics, Babu Banarasi Das National Institute of Technology & 

Management, Lucknow, U. P. India 
#2Associate Professor, Department of Mathematics, SGT University, Gurgaon, India 

#3Associate Professor, Department of Mathematics, Babu Banarasi Das Northern India Institute of Technology 

Lucknow, U. P. India 
* 

Abstract: 

 In this present study we analyzed the magneto-hydrodynamic flow of non-Newtonian fluid past over a sharp 

wedge in presence of thermal boundary layer. We have solved the non-linear differential equation with the 

help of ode45 solver by MATLAB software. we draw the graphs between velocity components of fluid and 

heats flow against dimensionless variable with different parameters such as magnetic parameter M, power law 

index parameter n, Reynolds number Re, Prandtl number Pr and wedge parameter m. The various results have 

been obtained graphically.  

Key Words: - Magnetic Parameter M, Wedge parameter m, Prandtl number 𝑃𝑟, Reynold number 𝑅𝑒, 𝑚 &  

Porous law index 𝑛.  

I.  INTRODUCTION 

Boundary layer flow problem of non-Newtonian fluid over sharp wedge in the presence of Magnetic fluid has 

generated considerable interest for its numerous engineering and industrial applications such as the boundary layer 

along a liquid film, polymer processing and chemical engineering processes viscosity on flow and heat transfer 

along a symmetric wedge. Heated fluid moving between feeding rolls and wind up rolls, cooling of polymer 

materials by using a continuous sheet, glass and fiber productions and manufacturing of polymeric sheets are some 

examples, in which involves flow of a viscoelastic fluid over a stretching sheet. A theoretical analysis of laminar 

natural convection heat transfer to non-Newtonian fluid has studied by Acrivas (1960). Chamka (1977) has 

investigated similarity solution for thermal boundary layer on a stretched surface of a non-Newtonian fluid.  

 

Andersson et al. (1996) have been studied flow of a power-law fluid film on an unsteady stretching surface. 

Hassanien et al. (1998) have investigated flow and heat transfer in a power-law fluid over a non-isothermal 

stretching sheet. Magyari and Keller (1999) have analyzed heat transfer characteristics of the separation boundary 

flow induced by a continuous stretching surface. Abd-el-Malek et al. (2002) have been solution of the Rayleigh 

problem for a power law non-Newtonian conducting fluid via group method. Zhang et al.  (2008) have investigated 
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an analysis of the characteristics of the thermal boundary layer in power law fluid. Mukhopadhyay (2009) has 

study the effect of radiation and variable fluid viscosity on flow and heat transfer along a symmetric wedge. 

Postelnicu and Pop (2011) have been studied Falkner-Skan boundary layer flow of a power-law fluid past a 

stretching wedge.  

 

Mahanta (2012) has analyzed the numerical study on heat transfer of non-Newtonian fluid flow over stretching 

surface with variable viscosity in uniform magnetic field. Manju Bisht and Anirudh Gupta (2014) have been 

studied the investigation of thermal boundary layer of non-Newtonian fluid past over a wedge. Ramesh Yadav et al. 

(2016) have been studied investigation of laminar flow of fluid with one porous bounding wall. They have been 

obtained the effects of slip coefficient of fluid, Reynolds Number Re on fluid velocity. In another paper Ramesh 

Yadav et al. (2016) have been also investigated Numerical analysis of magneto-hydrodynamic flow of viscous fluid 

between parallel porous bounding walls. They have been obtained the effects of Hartmann number H, Reynolds 

number Re and width of the channel on velocity components of fluids. Ramesh Yadav and Vivek Joseph (2016) 

have been studied numerical analysis of magneto-hydrodynamic flow of fluid with one porous bounding wall. They 

have been obtained effects of magnetic parameter M, Reynolds number Re and slip coefficient on velocity 

component of fluids in a channel flow.  

 

In this paper we study numerical analysis of magneto-hydrodynamic flow of non-Newtonian fluid past over a sharp 

wedge in presence of thermal boundary layer. The numerical results of the resulting coupled ordinary differential 

equation are obtained using under MATLAB software with the help of ode 45 solver. Results are given the velocity 

of fluid and temperature distributions for various values of power law index, Prandtl number Pr and Reynolds 

number 𝑅𝑒 and Magnetic parameter M. 

 

 

II. MATHEMATICAL FORMULATION 

Let us assume that two dimensional steady, laminar incompressible non-Newtonian fluid obeying the power-law 

model, flowing over a porous wedge with constant wall temperature, 𝑇𝑤  in a stationary coordinate system. The 

governing equations of boundary layer flow are  

The continuity equation 

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
= 0,                                                                                                                                                           (1). 

Momentum and Energy equations are 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈

𝑑𝑈

𝑑𝑥
+

𝐾

𝜌

𝜕

𝜕𝑦
 
𝜕𝑢

𝜕𝑦
 
𝑛

−
𝜍𝑒  𝐵0

2

𝜌
 𝑢,                                                                                                           (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼 

𝜕2𝑇

𝜕𝑥2  ,                                                                                                                                             (3) 

where  𝜍𝑒  is electrical conductivity of the fluid, 𝐵0  is Magnetic field, 𝜌 is the density of the fluid,  𝛼 is the thermal 

diffusivity of the fluid. 

Here the boundary conditions  
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At     𝑦 =  0;  𝑢 =  𝑣 =  0  𝑎𝑛𝑑 𝑇 =  𝑇𝑤  ,                                                                                                       (4) 

At     𝑦 → ∞;𝑢 → 𝑈 𝑥 = 𝑐𝑥𝑚    𝑎𝑛𝑑  𝑇 = 𝑇∞  ,                                                                                                (5) 

At    𝑥 = 0;   𝑢 = 𝑈∞   𝑎𝑛𝑑 𝑇 = 𝑇∞  .                                                                                                                   (6) 

Here 𝑢 is the velocity of fluid in x-direction, 𝑣 is the velocity of the fluid in 𝑦 − directions, 𝜈 is the kinematic 

viscosity of the fluid and 𝑈 the reference velocity at the edge of boundary layer and is a function of 𝑥,      𝑚 =
𝛽

2𝜋−𝛽
 

is the porous wedge parameter and 𝛽 is the wedge angle, 𝜌 is the density of fluid and 𝑇 is the temperature in the 

vicinity of the porous wedge. 

We use the following transformations, utilized to facilitate the solution of the governing equations is 

𝜓 =  
𝐾𝑥

𝜌
 

1

𝑛+1  𝑈(𝑥) 
 

2𝑛−1

𝑛+1
 
 𝑓(𝜆)                                                                                                                         (7) 

𝜆 =  
𝜌 𝑈 𝑥   2−𝑛 

𝐾𝑥
 

1

𝑛+1
 𝑦                                                                                                                                       (8) 

𝜃 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
                                                                                                                                                           (9) 

Stream functions are 

𝑢 =
𝜕𝜓

𝜕𝑦
   &   𝑣 = −

𝜕𝜓

𝜕𝑥
,                                                                                                                                      (10) 

Using the stream function in the equation (2),                                       

𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2 = 𝑈
𝑑𝑈

𝑑𝑥
+

𝐾

𝜌

𝜕

𝜕𝑦
 
𝜕2𝜓

𝜕𝑦2
 
𝑛

−
𝜍𝑒  𝐵0

2

𝜌
 
𝜕𝜓

𝜕𝑦
  ,                                                                                        (11) 

From equation (7) and (8), we get 

𝜕𝜓

𝜕𝑦
= 𝑈 𝑥 𝑓′  𝜆 = 𝐶𝑥𝑚  𝑓′(𝜆)                                                                                                                          (12) 

𝜕2𝜓

𝜕𝑥𝜕𝑦
= 𝑚 𝐶 𝑥𝑚−1  𝑓′(𝜆)                                                                                                                                     (13) 

𝜕2𝜓

𝜕𝑦2 = 𝐶
3

𝑛+1  
𝜌

𝐾
 

1

𝑛+1
 𝑥

3𝑚−1

𝑛+1  𝑓′′ (𝜆)                                                                                                                        (14) 

𝜕𝜓

𝜕𝑥
=  

𝐾

𝜌
 

1

𝑛+1 𝐶
2𝑛−1
𝑛+1  2𝑚𝑛−𝑚+1 

𝑛+1
 𝑥

2𝑚𝑛 −𝑚−𝑛

𝑛+1  𝑓(𝜆)                                                                                                     (15) 

Putting these values from equation (12), (13), (14) & (15) in equation (11), we get 

𝑓′′′  𝜆 +
2𝑚𝑛−𝑚+1

𝑛 𝑛+1 
 𝑓 𝜆  𝑓′′  𝜆   2−𝑛 +

𝑚

𝑛
 1 −  𝑓′(𝜆) 2  𝑓′′ (𝜆) (1−𝑛) −

𝜍𝑒  𝐵0
2

𝜌𝐶𝑛
𝑥1−𝑚   𝑓′′  𝜆   1−𝑛 𝑓′ 𝜆 = 0,   (16) 

Or 

𝑓′′′  𝜆 +
2𝑚𝑛−𝑚+1

𝑛 𝑛+1 
 𝑓 𝜆  𝑓′′  𝜆   2−𝑛 +

𝑚

𝑛
 1 −  𝑓′(𝜆) 2  𝑓′′ (𝜆) (1−𝑛) −𝑀2   𝑓′′  𝜆   1−𝑛 𝑓′ 𝜆 = 0,              (17) 

𝜃 ′′ + 𝜂𝑓𝑃𝑟𝑅𝑒𝜃′ = 0,                                                                                                                                              (18) 
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Where 𝑀2 =
𝜍𝑒  𝐵0

2

𝜌𝐶𝑛
𝑥1−𝑚  , 𝜆 is the similarity variable and 𝑓 𝜆  and  𝜃(𝜆) are similarity dependent variables and 𝜂 = 

2𝑚𝑛 −𝑚+1

𝑛 𝑛+1 
, 𝑅 =

𝑅𝑒

𝑅𝑒
 𝑛 ,𝑥 

2
𝑛+1

 ,    𝑅𝑒(𝑛,𝑥) =
𝑥𝑛𝑈2−𝑛

𝜐
  is the generalized Reynolds number for non-Newtonian fluids and 

𝑅𝑒 =
𝑥𝑈

𝜐
 and 𝑃𝑟 =

𝜌𝜐 𝐶𝑝

𝐾
 are Reynolds number and Prandtl number, respectively. 

The associated boundary conditions are: 

At      𝜆 = 0;       𝑓 = 0,     𝑓′ = 0,      𝜃 = 1,                                                                                                           (19) 

At      𝜆 = ∞;     𝑓′ = 1,   𝜃 = 0,                                                                                                                             (20)     

where prime denote the differentiation with respect to  𝜆. 

For Newtonian fluid index of power law fluid 𝑛 = 1,   equation (17) and (18) Reduced 

𝑓′′′ +
1

2
(𝑚 + 1) 𝑓 +  1 −  𝑓′  2 − 𝑀2𝑓′ = 0,                                                                                                     (21) 

𝜃 ′′ +
1

2
Pr 𝑚 + 1 𝑅𝑒𝑓𝜃′ = 0,                                                                                                                                (22) 

The important physical quantity of interest is the Nusselt number which can be defined as  

𝑁𝑢𝑥 =
𝑞𝑤  𝑥

 𝑇0−𝑇∞  𝐾
= −𝜃 ′(0) 𝑅 𝑛,𝑥 

2

𝑛+1   .                                                                                                                         (23) 

Solving the above differential equation (20), using the boundary condition (16) & (17), we get 

𝜃 = 𝑒−
1

2
Pr  𝑚+1 𝑅𝑒  𝐹 𝜆

                                                                                                                                         (24) 

 

III. METHOD OF SOLUTION 

In this paper we have solved the above differential equation (17) & (21) numerically using MATLAB software. In 

this we used ode45 solver for solving set of differential equation with described boundary conditions which is 

given in equation (19) and (20). For the purposed the time interval (0, 1) with initial condition vector (0, 0, 1) has 

been taken for convergence criteria has been chosen ('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]). Different set of 

parameter has been chosen to investigate the results. The range of dimensionless variable  𝜆   (0 ≤ 𝜆 ≤ 1), the 

value magnetic parameter M has been taken (1, 2, 3, 4),  Porous law index 𝑛 has been taken {1, 3, 5, 8 and 1, 4, 6, 

8). The graphs of heat transfer against dimensionless variable 𝜆 𝑖𝑛 𝑡𝑕𝑒 𝑟𝑎𝑛𝑔𝑒 (0 ≤ 𝜆 ≤ 5) a the value Magnetic 

Parameter M ( 1, 2, 3, 4), Reynold number Re (1, 2, 3, 4) and Prandtl number Pr (1, 2, 3, 4, 5) has been taken. 

Various graphs have been plotted with described set of parameters and discussed in detail in the next section. 

IV. RESULTS AND DISCUSSION 

The non-linear differential equation (17), (21), (22) and (24) subject to (19) and (20) must in be integrated by 

numerical procedure to use ode45 solver and find the results. The numerical results are obtained to study of effects 

the various values of the Reynolds number 𝑅𝑒, Magnetic parameter M, Power law index n and Prandtl number 𝑃𝑟 

on dimensionless velocity of Newtonian and non-Newtonian fluids and dimensionless temperature profiles. 

Velocity profiles of non-Newtonian and Newtonian fluids are given in the figure 1- 7, for prescribed values of 
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Magnetic Parameter M, Power law index n. Figures 1-3, represents the graphs between velocity component of 

fluids 𝑓(𝜆) against dimensionless variables 𝜆  for prescribed values of 𝑚 = 2/9, 𝑛 = 1; it seen that velocity 

profiles of fluids increases with enhancement of magnetic parameter M. Figure 4 & 5 represents the axial 𝑓(𝜆) and 

radial velocity 𝑓′(𝜆) components against dimensionless variables 𝜆 for prescribed values of M = 2, m = 2/9; it is 

found that axial and radial velocity components of fluids decreases with increase of power law index number n. 

Figure 6 & 7 represents the graphs between axial 𝑓(𝜆) and radial 𝑓′(𝜆) velocity components of fluids against 

dimensionless variable 𝜆 for non-Newtonian fluids (n = 2) at constant m = 2/9; it is seen that axial and radial 

velocity components of fluids increases with increase of Magnetic parameter M. Figures 8, 9 & 10 represents the 

graph between temperature profile 𝜃 (𝜆)  of fluids against dimensionless variable 𝜆 at constant values of n = 1, m = 

2/9 and other different constant; it is seen that the temperature profile of fluids decreases sharply with increase of 

following parameter such as Magnetic parameter M, Reynolds Number Re and Prandtl Number Pr. 

 

 

 

Fig 1. Graph between axial velocity of fluid 𝑓(𝜆)and dimensionless variable 𝜆  with variation of Magnetic Parameter M 

(Hartmann Number0 at constant variables n = 1,  m = 2/9. 
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Fig 2. Graph between radial velocity of fluid 𝑓 ′(𝜆)and dimensionless variable 𝜆  with variation Prandtl Number Pr at 

constant variables n = 1, m = 2/9. 

 

 

Fig 3. Graph between velocity profiles of fluids 𝑓 ′′(𝜆)and dimensionless variable 𝜆  with variation of Magnetic 

Parameter M (Hartmann Number) at constant variables n = 1, m = 2/9. 
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Fig 4. Graph between axial velocity of fluids 𝑓 ′′(𝜆)and dimensionless variable 𝜆  with variation of power law index 

number (n) at constant variables m = 2/9, M = 2. 

 

 

Fig 5. Graph between radial velocity of fluid 𝑓 ′(𝜆)and dimensionless variable 𝜆  with variation of power law index 

number (n) at constant variables m = 2/9, M = 2. 
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Fig 6. Graph between axial velocity of fluid 𝑓 (𝜆)and dimensionless variable 𝜆  with variation of Magnetic parameter M 

at constant variables m = 2/9, n = 2. 

 

 

Fig 7. Graph between radial velocity of fluid 𝑓 ′(𝜆)and dimensionless variable 𝜆  with variation of Magnetic parameter M 

at constant variables m = 2/9, n = 2. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

f (
 

 )

 

 

M  =  1

M  =  2

M  =  3

M  =  4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

 

f '
 ( 

 


  )

 

 

M  =  1

M  =  2

M  =  3

M  =  4

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 55  Number 6 - March 2018 

 

ISSN: 2231-5373                                      http://www.ijmttjournal.org                              Page 442 
 

 

Fig 8. Graph between Temperature profile of fluid 𝜃 (𝜆)and dimensionless variable 𝜆  with variation of Magnetic 

parameter M at constant variables m = 2/9, n = 1, Pr = 2, Re = 0.6. 

 

 

Fig 9. Graph between Temperature profile of fluid 𝜃 (𝜆)and dimensionless variable 𝜆  with variation of Reynolds Number 

Re at constant variables m = 2/9, n = 1, Pr = 2, M = 1. 
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Fig 10. Graph between Temperature profile of fluid 𝜃 (𝜆)and dimensionless variable 𝜆  with variation of Magnetic 

parameter M at constant variables m = 2/9, n = 1, Re = 0.5, M = 1. 

 

V. CONCLUSIONS 

In this paper, we have presented numerical analysis of magneto-hydrodynamic flow of non-Newtonian fluid past 

over a sharp wedge in presence of thermal boundary layer in reaction occurring in this case which will have 

application in chemical coating of metals and removal of particles. The main objective this study to analysis the 

effects of magnetic parameter M on fluids velocity and heat flow of Newtonian and non-Newtonian fluids 

simultaneously the effects of Reynolds and Prandtl number of heat flow. In this it is found that the axial and radial 

velocity component of Newtonian and Non-Newtonian fluid increases sharply with enhancement of magnetic 

parameter M and reciprocal effect with increase of power law index number n. it is also seen the heat flow of fluids 

sharply decreases with increase of Magnetic parameter M, Reynolds Number Re and Prandtl number Pr. 
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