On ($\mathrm{N}+\mathrm{K}$) Power Class (Q) Operators in the Hilbert Space - I

K.M.Manikandan ${ }^{\# 1}$, Dr. T.Veluchamy ${ }^{* 2}$
${ }^{\# 1}$ Assistant Professor \& HOD,
Department of Mathematics, Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, India
${ }^{* 2}$ Retired Principal, Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, India.

Abstract

This article is focussed on characterizing new theorems and verifying examples on some properties of operators in $(n+k)$ power class (Q) for any $k \geq 0$ and for particular integer n in the Hilbert Space. Further we introduce a new class of n power quasi n normal operator acting on the complex Hilbert space H.

Mathematics Subject Classification: 47B20
Keywords - Normal operator, class (Q) operator, $n-\operatorname{power}$ class (Q) operator, $(n+k)$ power class (Q) operator.

I. INTRODUCTION

Let H be a Hilbert space and $\mathrm{L}(\mathrm{H})$ be the algebra of all bounded linear operators acting on H. A.A.S. Jibril [1], in 2008 introduced the class of n - power normal operators as a generalization of normal operators. The operator T is called $\mathrm{n}-$ power normal if T^{n} commutes with T^{*}, i.e. $T^{n} T^{*}=T^{*} T^{n}$ and is denoted by [nN]. In 2010, Adnan A.S. Jibril [2], introduced class (Q) operators acting on the Hilbert space. An operator $T \in L(H)$ is in class (Q) if it satisfies the condition $T^{*^{2}} T^{2}=\left(T^{*} T\right)^{2}$. In 2012, S. Panayappan and N. Sivamani [3] defined n power class (Q) operators on the Hilbert space. An operator $T \in L(H)$ is said to be n power class (Q) if it satisfies the condition $T^{*^{2}} T^{2 n}=\left(T^{*} T^{n}\right)^{2}$. In 2013, Krutan Rasimi, Luigj Gjoka [4] gave some results related to n power class (Q) operators acting on infinite complex separable Hilbert space.In the year 2014 Dr. T. Veluchamy, K.M.Manikanadan and T.Ramesh [5] investigated some characterization of n power class (Q) operators on Hilbert space using MATLAB. A bounded linear operator T on a complex Hilbert space H is n power quasi n-normal if $T^{n}\left(T^{*} T^{n}\right)=\left(T^{*} T^{n}\right) T^{n}$ that is T^{n} commutes with $T^{*} T^{n}$ for some integer n .

2. Main Results

In general $(\mathrm{n}+\mathrm{k})$ power class (Q) operator need not be a normal operator. Let us prove this result by giving the following example. By substituting $\mathrm{n}=2$ and $\mathrm{k}=0$ we claim that $T=\left(\begin{array}{cc}-i & 0 \\ 2 & i\end{array}\right)$ is 2 power class(Q) operator but not normal. Further we can prove that T is not 3 power class (Q) operator but 2 power quasi 2 normal operator.

Example 2.1:

Consider the operator $\mathrm{T}=\left(\begin{array}{cc}-i & 0 \\ 2 & i\end{array}\right)$ acting on C^{2} which is 2 power $\operatorname{class}(Q)$ and T is not normal operator, but not 3 power $\operatorname{class}(Q)$ operator and 2 power quasi 2 normal operator

Solution:

On direct matrix multiplication operations, we show that $T^{* 2} T^{4}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=\left(T^{*} T^{2}\right)^{2}$. Hence, T is 2 power class(Q operator. Further we show that $T^{*} T=\left(\begin{array}{cc}5 & 2 i \\ -2 i & 1\end{array}\right)$ and $T T^{*}=\left(\begin{array}{cc}1 & -2 i \\ 2 i & 5\end{array}\right) . \quad T^{*} T \neq T T^{*}$ and therefore T is not normal operator. In addition we can verify that $T^{*^{2}} T^{6}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\left(T^{*} T^{3}\right)^{2}=$ $\left(\begin{array}{cc}29 & 12 i \\ -12 i & 5\end{array}\right)$. Here $T^{*^{2}} T^{6} \neq\left(T^{*} T^{3}\right)^{2}$, and therefore T is not 3 power class (Q) operator. Further, we can prove that T is 2 power quasi 2 normal operator by verifying $T^{2}\left(T^{*} T^{2}\right)=\left(\begin{array}{cc}i & 2 \\ 0 & -1\end{array}\right)=\left(T^{*} T^{2}\right) T^{2}$

The following example shows that an operator of 3 power class (Q) need not be of 2 power class (Q). Example 2.2:

Consider the operator $\mathrm{T}=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$ acting on R^{2} which is 3 power class (Q) but not class (Q)operator, not 2 power class (Q), but 3 - normal operator.

Solution:

On direct matrix multiplication operations, we can verify that $T^{*^{2}} T^{2}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right) \neq\left(\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right)=\left(T^{*} T\right)^{2}$ and therefore T is not class (Q) operator and $T^{*^{2}} T^{4}=\left(\begin{array}{cc}-1 & -2 \\ 0 & -1\end{array}\right) \neq\left(\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right)=\left(T^{*} T^{2}\right)^{2}$, and therefore T is not 2 power class (Q) operator. Further, we can show that, $T^{*^{2}} T^{6}=\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right)=\left(T^{*} T^{3}\right)^{2}$ and therefore T is 3 power class (Q) operator. Also, $T^{3} T^{*}=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)=T^{*} T^{3}$ this implies that T is 3 normal operator.

The following theorems and definitions are used to derive third part of proposition 2.3.
([6]: Theorem 3: Page No. 158)
Let M be a closed linear subspace of H .
(i) If M is invariant under the operator T , then ${ }^{T} / M_{M}$ is an operator in the Hilbert space H and $\left\|^{T} /{ }_{M}\right\| \leq\|T\|$.
(ii) If M is invariant under the operator S and T , then it is invariant under $\mathrm{S}+\mathrm{T}$, ST and λ Tmoreover,
$(S+T) /_{M}=\left(S / /_{M}\right)+\left(T / /_{M}\right),{ }^{(S T)} /_{M}=(S / M)\left(T /{ }_{M}\right),{ }^{(\lambda T)} /_{M}=\lambda\left(T /{ }_{M}\right)$ holds.

([6] Definition 2: Page no. 158)

Let M be a closed Linear subspace invariant under the operator T . The restriction of T to M is the mapping $T / M: M \rightarrow M$ defined by $(T / M) y=T y$.Thus T / M is themapping y-> Ty restricted to M.
([6]: Theorem 5: Page No. 159) If M reduces T, then $(T / M)^{*}=T^{*} / M$
([6] Definition 1: Page no. 156) A closed linear subspace M is said to be invariant under the operator T if $T(M$ $) \subset \mathrm{M}$.
([6] Definition 3: Page no. 158) A closed Linear subspace M is said to reduce the operator T incase both M and M^{\perp}
are invariant under T . ie., $\mathrm{T}(\mathrm{M}) \subset \mathrm{M}$ and $\mathrm{T}\left(M^{\perp}\right) \subset M^{\perp}$.

Proposition 2.3:

If $\mathrm{T} \in(\mathrm{n}+\mathrm{k})$ power $\operatorname{class}(Q)$ then so are
(i) $\lambda \mathrm{T}$ for any real number λ.
(ii) for any $\mathrm{S} \in L(H)$ that is unitarily equivalent to T .
(iii) The restriction T / M of T to any closed subspace M of H that reduces T .

Proof:

(i) Since $\mathrm{T} \in(\mathrm{n}+\mathrm{k})$ power class (Q) we get, $T^{*^{2}} T^{2(n+k)}=\left(T^{*} T^{n+k}\right)^{2}$.

Replace T by $\lambda \mathrm{T}$ we get

$$
\begin{aligned}
(\lambda T)^{*^{2}}(\lambda T)^{2(n+k)} & =(\lambda T)^{*}(\lambda T)^{*}(\lambda T)^{n+k}(\lambda T)^{n+k} \\
& =\bar{\lambda} T^{*} \bar{\lambda} T^{*} \lambda^{n+k} T^{n+k} \lambda^{n+k} T^{n+k} \\
& =\lambda T^{*} \lambda T^{*}\left(\lambda^{n+k}\right)^{2} T^{n+k} T^{n+k} \quad[\because \lambda i s r e a l \lambda=\bar{\lambda}] \\
& =\lambda^{2}\left((\lambda T)^{*}(\lambda T)^{n+k}\right)^{2} . \therefore \lambda T \in(\mathrm{n}+\mathrm{k}) \text { power class }(Q) .
\end{aligned}
$$

(ii) $\mathrm{S} \in L(H)$ is unitarily equivalent to T , then there is a unitary operator $\mathrm{U} \in L(H)$ such that $S^{2 n}=U^{*} T^{2 n} U=>S^{*}=U^{*} T^{*} U ; S^{2(n+k)}=U^{*} T^{2(n+k)} U$
$S^{*^{2}} S^{2(n+k)}=U^{*} T^{*} U U^{*} T^{*} U U^{*} T^{2(n+k)} U$
$=U^{*} T^{*} T^{*} T^{2(n+k)} U$

$$
=U^{*} T^{*^{2}} T^{2(n+k)} U--------(1)
$$

and $\left(S^{*} S^{n+k}\right)^{2}=\left(U^{*} T^{*} U U^{*} T^{(n+k)} U\right)^{2}$
$=U^{*} T^{*} U U^{*} T^{(n+k)} U U^{*} T^{*} U U^{*} T^{(n+k)} U$
$=U^{*} T^{*} T^{(n+k)} T^{*} T^{(n+k)} U$ $=U^{*}\left(T^{*} T^{(n+k)}\right)^{2} U$
Since $T \in(n+k)$ power class (Q) we have
$T^{* 2} T^{2(n+k)}=\left(T^{*} T^{n+k}\right)^{2}$
From equations (1), (2) and (3) we get
$S^{*^{2}} S^{2(n+k)}=\left(S^{*} S^{n+k}\right)^{2}$. Thus $\mathrm{S} \in(\mathrm{n}+\mathrm{k})$ power class (Q).
(iii) By [1 Theorem 3, P.No. 158]

$$
\begin{aligned}
(T / M)^{*^{2}}(T / M)^{2(n+k)} & =\left(T^{*^{2}} / M\right)\left(T^{2(n+k)} / M\right) \\
& =\left(T^{*^{2}} T^{2(n+k)} / M\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(T^{*} T^{n+k}\right)^{2} / M \\
= & \left((T / M)^{*}(T / M)^{n+k}\right)^{2}
\end{aligned}
$$

Thus $T / M \in(\mathrm{n}+\mathrm{k})$ power class (Q).

Theorem 2.4:

If the sum of two bounded linear operators is $(2+\mathrm{k})$ normal then their sum is $(2+\mathrm{k})$ power class (Q) operator.
The product of any two operators on the complex Hilbert space is $(2+\mathrm{k})$ power class (Q) operator if their product is $(2+\mathrm{k})$ normal.

Proof:

Let S and T be operators on Hilbert space H . Given $\mathrm{S}+\mathrm{T}$ is $(2+\mathrm{k})$ normal operator. Therefore from the definitionwe $\operatorname{get}(S+T)^{*}(S+T)^{2+k}=(S+T)^{2+k}(S+T)^{*}$
(i) We have to prove that
$(S+T)^{*^{2}}(S+T)^{2(2+k)}=\left((S+T)^{*}(S+T)^{2+k}\right)^{2}$.
Consider

$$
\begin{aligned}
&(S+T)^{*^{2}}(S+T)^{2(2+k)}=(S+T)^{*}(S+T)^{*}(S+T)^{2+k}(S+T)^{2+k} \\
&=(S+T)^{*}(S+T)^{2+k}(S+T)^{*}(S+T)^{2+k} \\
&=\left((S+T)^{*}(S+T)^{2+k}\right)^{2} \quad[\because(\mathrm{~S}+\mathrm{T}) \text { is }(2+\mathrm{k}) \text { normal }]
\end{aligned}
$$

Therefore, $(\mathrm{S}+\mathrm{T})$ is $(2+\mathrm{k})$ power class (Q) operator.
(ii) Given ST is $(2+\mathrm{k})$ normal operator. Therefore from the definition we get $(S T)^{*}(S T)^{2+k}=(S T)^{2+k}(S T)^{*}$

$$
\text { Consider, } \quad \begin{aligned}
(S T)^{*^{2}}(S T)^{2(2+k)}= & (S T)^{*}(S T)^{*}(S T)^{2+k}(S T)^{2+k} \\
& =(S T)^{*}(S T)^{2+k}(S T)^{*}(S T)^{2+k} \quad[\because(\mathrm{ST}) \text { is }(2+\mathrm{k}) \text { normal } \\
& =(S T)^{*^{2}}(S T)^{2+k}(S T)^{2+k}
\end{aligned}
$$

Hence ST is also ($2+\mathrm{k}$) power class (Q) operator.
The following proposition shows that an operator T of 2 power class (Q) need not be of class (Q) such that $T^{2}=0$.

Proposition2.5:

If $\mathrm{T} \in(n+k)$ power class (Q) such that $T^{2}=0$, then it is not necessarily that $\mathrm{T}=0$. Consider $\mathrm{T}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ acting on R^{2} which is not normal.

Proof:

We verify the theorem for $\mathrm{n}=2, \mathrm{k}=0$. On direct matrix multiplication operations we can verify that $T^{* 2} T^{2}=$ $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \neq\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(T^{*} T\right)^{2}$. Therefore T is not class (Q). But $T^{* 2} T^{4}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\left(T^{*} T^{2}\right)^{2}$. Hence T is 2 power class (Q). Further $T^{*} T \neq T T^{*}$, hence T is not normal. Hence, we conclude that, $T \notin(Q)$ But, $T \in 2$ power class (Q) and T is not normal.
The following theorem shows that an operator of $(n+k)$ normal is $(n+k)$ power class (Q) operator.

Theorem2.6:

If $T \in L(H)$ is $(n+k)$ normal, then $T \in(n+k)$ power class (Q).

Proof:

Since T is $(\mathrm{n}+\mathrm{k})$ normal then $T^{*} T^{n+k}=T^{n+k} T^{*}$
Pre multiply by T^{*} and post multiply by T^{n+k} on both sides we get
$T^{*} T^{*} T^{n+k} T^{n+k}=T^{*} T^{n+k} T^{*} T^{n+k}$
$\Rightarrow T^{*^{2}} T^{2(n+k)}=\left(T^{*} T^{n+k}\right)^{2}$.
Therefore, we get $T \in(n+k)$ power class (Q).

Proposition 2.7:

Let T be an operator acting on three dimensional complex Hilbert space. Then T is $(2+\mathrm{k})$. power class (Q) but it is not $(2+\mathrm{k})$ normal. Example: $=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.

Solution:

For $\mathrm{k}=0$ and $\mathrm{n}=2$ we can prove that T is not normal but it is 2 power class (Q).

By direct decomposition we get $T T^{*}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $T^{*} T=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. Since, $T T^{*} \neq T^{*} T, \mathrm{~T}$ is not normal. Further we can show that $T^{*^{2}} T^{4}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=\left(T^{*} T^{2}\right)^{2}$. Therefore $T \in 2$ powerclass (Q).

Proposition 2.8:

Let T be an operator acting on 2 dimensional complex Hilbert space. Then T is 2 power class (Q) but it is not 3 power class (Q). Example: $\mathrm{T}=\left(\begin{array}{cc}i & 2 \\ 0 & -i\end{array}\right)$.

Solution:

On direct matrix multiplication operations, we show that $T^{* 2} T^{4}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=\left(T^{*} T^{2}\right)^{2}$. Hence, T is 2 power class (Q operator. Further we show that $T T^{*}=$ $\left(\begin{array}{cc}5 & 2 i \\ -2 i & 1\end{array}\right)$ and $T^{*} T=\left(\begin{array}{cc}1 & -2 i \\ 2 i & 5\end{array}\right) . \quad T^{*} T \neq T T^{*}$ and therefore T is not normal operator. In addition we can verify that $T^{*^{2}} T^{6}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\left(T^{*} T^{3}\right)^{2}=\left(\begin{array}{cc}5 & -8 i \\ 8 i & 13\end{array}\right)$. Here $T^{*^{2}} T^{6} \neq\left(T^{*} T^{3}\right)^{2}$, and therefore T is not 3 power class (Q) operator.

Definition 2.9:

Let E be a normal Linear space and $L(E)$ denote the set of all bounded Linear operators on E.
An operator $\mathrm{T} \in L(E)$ is said to be regular if and only if there exists $\mathrm{S} \in L(E)$ such that $\mathrm{TS}=\mathrm{ST}=\mathrm{I}$ such an operator S is called inverse of T so that $\mathrm{S}=T^{-1}$.
In general, $(\mathrm{n}+\mathrm{k}+1)$ power class (Q) operators need not be $(\mathrm{n}+\mathrm{k})$ power class (Q),

Lemma 2.10:

Let $\mathrm{T} \in L(E)$ the operator T is regular if and only if it is a linear transformation of E into itself. If T is regular then the inverse mapping T^{-1} is in $\mathrm{L}(\mathrm{E})$ and is the inverse of T in the sense of the definition.
We provethe following characterization using above lemma and definition.

Theorem2.11:

Let T be an operator acting on two dimensional complex Hilbert space H . Then T is $(3+\mathrm{k})$ power class (Q) butit is not $(2+\mathrm{k})$ power class (Q) operator. While attempting to prove this problem the generalized version for the above problem is formed and restated as follows.
Let T be the class of $(\mathrm{n}+1+\mathrm{k})$ power class (Q) operator acting on infinite complex separable Hilbert space H for any $\mathrm{k} \geq 0$. If T is normal, then in $\mathrm{T} \in(n+k)$ power class (Q).

Proof:

Given T is $(\mathrm{n}+1+\mathrm{k})$ power class (Q) operator.
$\therefore T^{*^{2}} T^{2(n+1+k)}=\left(T^{*} T^{(n+1+k)}\right)^{2}$ is true. Further, we have

$$
T^{*^{2}} T^{2(n+k)} T^{2}=T^{*} T^{n+1+k} \cdot T^{*} T^{n+1+k}
$$

$=T^{*} T^{n+k} T \cdot T^{*} T^{n+k} T$
$=T^{*} T^{n+k} T^{*} T T^{n+k} T[\because \mathrm{~T}$ is normal $]$
$=T^{*} T^{n+k} T^{*} T^{1+n+k} T$
$=T^{*} T^{n+k} T^{*} T^{n+k} T . T$
$=T^{*} T^{n+k} T^{*} T^{n+k} T^{2}$
If T is invertible, then post multiply by T^{-1} on both sides we get

$$
\begin{aligned}
& T^{*^{2}} T^{2(n+k)} T^{2} T^{-1}=\left(T^{*} T^{n+k}\right)^{2} T^{2} T^{-1} \\
& T^{*} T^{2(n+k)} T=\left(T^{*} T^{n+k}\right)^{2} T
\end{aligned}
$$

Again post multiply by T^{-1} we get

$$
T^{*^{2}} T^{2(n+k)}=\left(T^{*} T^{n+k}\right)^{2} . \text { Hence } \mathrm{T} \text { is }(\mathrm{n}+\mathrm{k}) \text { power class }(\mathrm{Q})
$$

In the following example, we show that a 3 power class (Q) operator need not be 2 power class (Q).
The following examplesupports that $(3+\mathrm{k})$ power class (Q) operator need not be $(2+\mathrm{k})$ power class (Q) operator for $\mathrm{k}=0$.
Example 2.12:
An operator $T=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)$ acting on 2 dimensional complex separable Hilbert Space H is 3 power class (Q) but not 2 power class(Q).

Solution:

By using matrix multiplication we can show that obtain the values of $T^{*^{2}} T^{2}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right) \neq\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)=\left(T^{*} T\right)^{2}$ and therefore $T \notin 2$ powerclass (Q).Also, $T^{*^{2}} T^{6}=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)=\left(T^{*} T^{3}\right)^{2}$ and hence $T \in 3$ powerclass (Q). In the following example we show that an operator of 3 power class (Q) is 2 power class (Q).

Example 2.13:

Let $T=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ be 3 power class (Q) operator acting on 2 dimensional complex separable Hilbert Space H. If T is regular then T is 2 power class (Q).

Solution:

$T=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), T^{*}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) ; \quad T T^{*}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) . \quad$ Further, $\quad T^{*} T=I$ and $T T^{*}=T^{*} T=I . \quad \therefore \mathrm{T}$ is regular.
Also,
$T^{*} T=T T^{*} . \therefore$ is normal. Further, $T^{*^{2}} T^{4}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(T^{*} T^{2}\right)^{2}$ and therefore, $T \in 2 \operatorname{powerclass}(Q)$.Also, $T^{*^{2}} T^{6}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(T^{*} T^{3}\right)^{2}$ and therefore $T \notin 3$ power class (Q).
In the following theorem we show that an $(\mathrm{n}+\mathrm{k})$ power class $(\mathrm{Q}$ and quasi $(\mathrm{n}+\mathrm{k})$ normal operator T is $(\mathrm{n}+1+\mathrm{k})$ power class(Q) operator.

Conclusion:

The algebra of all bounded Linear operators on a Real (Complex) Hilbert space H is taken for the research work and the following findings on the class of $(\mathrm{n}+\mathrm{k})$ power class (Q) operators are given. 1. In general $(\mathrm{n}+\mathrm{k})$ power class (Q) operator need not be a normal operator. This result is verified through counter example. 2. A 2 power class (Q) operator is not 3 power class (Q) operator and vice versa. Hence we conclude that n power class (Q) operators are independent. 3. If $\mathrm{T} \in(\mathrm{n}+\mathrm{k})$ power class (Q) then so are (i) $\lambda \mathrm{T}$ for any real number λ. (ii) for any $\mathrm{S} \in L(H)$ that is unitarily equivalent to T . (iii) The restriction T / M of T to any closed subspace M of H that reduces T . 4. The sum and product of any two commuting operators on the complex Hilbert space are $(2+\mathrm{k})$ power class (Q) operator. 5 . If $\mathrm{T} \in(n+k)$ power class (Q) such that $T^{2}=0$, then it is not necessarily that $\mathrm{T}=0$. This result is verified by considering the operator $\mathrm{T}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ acting on R^{2} which is not normal, $\mathrm{n}=2$ and $\mathrm{k}=0.6$. If $\mathrm{T} \in \mathrm{L}(\mathrm{H})$ is $(\mathrm{n}+\mathrm{k})$ normal, then $\mathrm{T} \in(\mathrm{n}+\mathrm{k})$ power class (Q). 7. Let T be an operator acting on three dimensional complex Hilbert space. Then T is $(2+\mathrm{k})$. power class (Q) but it is not $(2+\mathrm{k})$ normal. Example: $=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ 8.Let T be an operator acting on 2 dimensional complex Hilbert space. Then T is 2 power class (Q) but it is not 3 power class (Q). Example: $\mathrm{T}=\left(\begin{array}{cc}i & 2 \\ 0 & -i\end{array}\right)$. 9 . Let T be the class of $(\mathrm{n}+1+\mathrm{k})$ power class (Q) operator acting on infinite complex separable Hilbert space H for any $\mathrm{k} \geq 0$. If T is regular and normal, then in $\mathrm{T} \in(n+k)$ power class (Q). 10. An operator $T=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)$ acting on 2 dimensional complex separable Hilbert Space H is 3 power class (Q) but not 2 power class(Q$)$. 11. Let $T=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ be 3 power class (Q) operator acting on 2 dimensional complex separable Hilbert Space H. If T is regular then T is 2 power class (Q).

ACKNOWLEDGEMENTS

This article is supported by UGC - Minor Research Project during 2013-2015.
Mr. K.M.mnaikandan
Principal Investigator MRP - 5016/14 (SERO/UGC)
Assistant Professor and Head, Department of Mathematics
Dr. SNS Rajalakshmi College of Arts and Science
486, Thudialur - Saravanampatti Road, Chinnavedampatti
Coimbatore - 641049

REFERENCES

[1] A.A.S. Jibril, On n - power normal Operators, The Arabian Journal for Science andEngineering Volume 33,Number 2A, 2008.
[2] Adnan and A.S. Jibril, On operators for which $T^{* 2} T^{2}=(T * T)^{2}$, International Mathematical forum, 5, 2010, No. 46, 2255-2262.
[3] S. Panayappan, N. Sivamani, On n power class (Q) operators, Int. Journal of Math.Analysis, Vol. 6, 2012, no. 31, 1513 - 1518.
[4] Krutan Rasimi, Luigj Gjoka, Some remarks on n - power class (Q) operators, International journal of Pure and Applied Mathematics, Volume 89, No. 2, 2013, 147 - 151.
[5] Dr. T. Veluchamy, K.M.Manikanadan, T.Ramesh, Solving n power class (Q) operators using MATLAB, IOSR Journal of Mathematics (IOSR-JM), Volume 10, Issue 2 Ver. II (Mar-Apr. 2014), PP 13-16.
[6] Sterling K. Berberian, Introduction to Hilbert space, New York, Oxford University Press 1961.

