On (N+K) Power Class (Q) Operators in the Hilbert Space - I

K.M.Manikandan^{#1}, Dr. T.Veluchamy^{*2} ^{#1}Assistant Professor & HOD, Department of Mathematics, Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, India

^{*2} Retired Principal, Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, India.

Abstract - This article is focussed on characterizing new theorems and verifying examples on some properties of operators in (n+k) power class (Q) for any $k \ge 0$ and for particular integer n in the Hilbert Space. Further we introduce a new class of n power quasi n normal operator acting on the complex Hilbert space H.

Mathematics Subject Classification: 47B20

Keywords - Normal operator, class (Q) operator, n - power class (Q) operator, (n+k) power class (Q) operator.

I. INTRODUCTION

Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators acting on H. A.A.S. Jibril [1], in 2008 introduced the class of n – power normal operators as a generalization of normal operators. The operator T is called n – power normal if T^n commutes with T^* , i.e. $T^nT^* = T^*T^n$ and is denoted by [nN]. In 2010, Adnan A.S. Jibril [2], introduced class (Q) operators acting on the Hilbert space. An operator T \in L(H) is in class (Q) if it satisfies the condition $T^{*2}T^2 = (T^*T)^2$. In 2012, S. Panayappan and N. Sivamani [3] defined n power class (Q) operators on the Hilbert space. An operator T \in L(H) is satisfies the condition $T^{*2}T^{2n} = (T^*T^n)^2$. In 2013, Krutan Rasimi, Luigi Gjoka [4] gave some results related to n power class (Q) operators acting on infinite complex separable Hilbert space. In the year 2014 Dr. T. Veluchamy, K.M.Manikanadan and T.Ramesh [5] investigated some characterization of n power class (Q) operators on Hilbert space using MATLAB. A bounded linear operator T on a complex Hilbert space H is n-power quasi n-normal if $T^n(T^*T^n) = (T^*T^n)T^n$ that is T^n commutes with T^*T^n for some integer n.

In general (n+k) power class(Q) operator need not be a normal operator. Let us prove this result by giving the following example. By substituting n = 2 and k = 0 we claim that $T = \begin{pmatrix} -i & 0 \\ 2 & i \end{pmatrix}$ is 2 power class(Q) operator but not normal. Further we can prove that T is not 3 power class(Q)operator but 2 power quasi 2 normal operator. **Example 2.1:**

Consider the operator $T = \begin{pmatrix} -i & 0 \\ 2 & i \end{pmatrix}$ acting on C^2 which is 2 power class(Q) and T is not normal operator, but not 3 power class(Q) operator and 2 power quasi 2 normal operator *Solution:*

On direct matrix multiplication operations, we show that $T^{*2}T^4 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = (T^*T^2)^2$. Hence, T is 2 power class(Q operator. Further we show that $T^*T = \begin{pmatrix} 5 & 2i \\ -2i & 1 \end{pmatrix}$ and $TT^* = \begin{pmatrix} 1 & -2i \\ 2i & 5 \end{pmatrix}$. $T^*T \neq TT^*$ and therefore T is not normal operator. In addition we can verify that $T^{*2}T^6 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $(T^*T^3)^2 = \begin{pmatrix} 29 & 12i \\ -12i & 5 \end{pmatrix}$. Here $T^{*2}T^6 \neq (T^*T^3)^2$, and therefore T is not 3 power class (Q) operator. Further, we can prove that T is 2 power quasi 2 normal operator by verifying $T^2(T^*T^2) = \begin{pmatrix} i & 2 \\ 0 & -1 \end{pmatrix} = (T^*T^2)T^2$

The following example shows that an operator of 3 power class (Q) need not be of 2 power class (Q). *Example 2.2:*

Consider the operator $T = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ acting on R^2 which is 3 power class(Q)but not class (Q)operator, not 2 power class(Q), but 3 – normal operator. Solution:

On direct matrix multiplication operations, we can verify that $T^{*^2}T^2 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \neq \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} = (T^*T)^2$ and therefore T is not class (Q) operator and $T^{*^2}T^4 = \begin{pmatrix} -1 & -2 \\ 0 & -1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} = (T^*T^2)^2$, and therefore T is not 2 power class (Q) operator. Further, we can show that, $T^{*^2}T^6 = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} = (T^*T^3)^2$ and therefore T is 3 power class (Q) operator. Also, $T^3T^* = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = T^*T^3$ this implies that T is 3 normal operator.

The following theorems and definitions are used to derive third part of proposition 2.3.

([6]: Theorem 3: Page No. 158)

Let M be a closed linear subspace of H.

(i) If M is invariant under the operator T, then T_M is an operator in the Hilbert space H and $||T_M|| \le ||T||$. (ii) If M is invariant under the operator S and T, then it is invariant under S+T, ST and λ Tmoreover, $(S+T)_M = (S_M) + (T_M)$, $(ST)_M = (S_M)(T_M)$, $(\lambda T)_M = \lambda(T_M)$ holds. ([6] Definition 2: Page no. 158)

Let M be a closed Linear subspace invariant under the operator T. The restriction of T to M is the mapping $T/_M: M \to M$ defined by $(T/_M)y = Ty$. Thus $T/_M$ is themapping y-> Ty restricted to M.

([6]: Theorem 5: Page No. 159) If M reduces T, then $(T/_M)^* = T^*/M$

([6] Definition 1: Page no. 156) A closed linear subspace M is said to be invariant under the operator T if T(M)⊂M.

([6] Definition 3: Page no. 158) A closed Linear subspace M is said to reduce the operator T incase both M and M^{\perp}

are invariant under T. ie., $T(M) \subset M$ and $T(M^{\perp}) \subset M^{\perp}$.

Proposition 2.3:

If $T \in (n+k)$ power class(Q) then so are

(i) λT for any real number λ .

(ii) for any $S \in L(H)$ that is unitarily equivalent to T.

(iii) The restriction T/M of T to any closed subspace M of H that reduces T.

Proof:

(i) Since $T \in (n+k)$ power class(Q) we get, $T^{*^2}T^{2(n+k)} = (T^*T^{n+k})^2$. Replace T by λ T we get $(\lambda T)^{*^{2}}(\lambda T)^{2(n+k)} = (\lambda T)^{*}(\lambda T)^{*}(\lambda T)^{n+k}(\lambda T)^{n+k}$ $= \overline{\lambda} T^* \overline{\lambda} T^* \lambda^{n+k} T^{n+k} \lambda^{n+k} T^{n+k}$ $= \lambda T^* \lambda T^* (\lambda^{n+k})^2 T^{n+k} T^{n+k} [\because \lambda isreal \lambda = \overline{\lambda}]$ = $\lambda^2 ((\lambda T)^* (\lambda T)^{n+k})^2 \therefore \lambda T \in (n+k)$ power class(Q). (ii) $S \in L(H)$ is unitarily equivalent to T, then there is a unitary operator $U \in L(H)$ such that $S^{2n} = U^*T^{2n}U \Longrightarrow S^* = U^*T^*U; S^{2(n+k)} = U^*T^{2(n+k)}U$ $S^{*2}S^{2(n+k)} = U^{*}T^{*}UU^{*}T^{*}UU^{*}T^{2(n+k)}U$ $= U^*T^*T^*T^{2(n+k)}U$ $= U^* T^{*^2} T^{2(n+k)} U -----(1)$ and $(S^* S^{n+k})^2 = (U^* T^* U U^* T^{(n+k)} U)^2$ $= U^*T^*UU^*T^{(n+k)}UU^*T^*UU^*T^{(n+k)}U$ $=U^{*}T^{*}T^{(n+k)}T^{*}T^{(n+k)}II$ $=U^{*}(T^{*}T^{(n+k)})^{2}U$ (2) Since $T \in (n+k)$ power class(Q) we have $T^{*2}T^{2(n+k)} = (T^*T^{n+k})^2$ From equations (1), (2) and (3) we get $S^{*^2}S^{2(n+k)} = (S^*S^{n+k})^2$. Thus $S \in (n+k)$ power class(Q). (iii) By [1 Theorem 3, P.No. 158] $(T/_{M})^{*^{2}} (T/_{M})^{2(n+k)} = (T^{*^{2}}/_{M})(T^{2(n+k)}/_{M})$ $= (T^{*^{2}}T^{2(n+k)}/_{M})$

$$= \frac{(T^*T^{n+k})^2}{M}$$

= $((T_M)^*(T_M)^{n+k})^2$

Thus $T/_M \in (n+k)$ power class(Q). Theorem 2.4:

If the sum of two bounded linear operators is (2+k) normal then their sum is (2+k) power class (Q) operator.

The product of any two operators on the complex Hilbert space is (2+k) power class(Q) operator if their product is (2+k) normal.

Proof:

Let S and T be operators on Hilbert space H. Given S+T is (2+k) normal operator. Therefore from the definitionwe get $(S + T)^*(S + T)^{2+k} = (S + T)^{2+k}(S + T)^*$

(i) We have to prove that $(S+T)^{*^{2}}(S+T)^{2(2+k)} = ((S+T)^{*}(S+T)^{2+k})^{2}$. Consider $(S+T)^{*^{2}}(S+T)^{2(2+k)} = (S+T)^{*}(S+T)^{*}(S+T)^{2+k}(S+T)^{2+k}$ $= (S+T)^{*}(S+T)^{2+k}(S+T)^{*}(S+T)^{2+k}$ $= ((S+T)^{*}(S+T)^{2+k})^{2}$ [: (S+T)is (2+k) normal]

Therefore, (S+T) is (2+k) power class (Q) operator. (ii) Given ST is (2+k) normal operator. Therefore from the definition we get $(ST)^*(ST)^{2+k} = (ST)^{2+k}(ST)^*$ Consider, $(ST)^{*^2}(ST)^{2(2+k)} = (ST)^*(ST)^{*}(ST)^{2+k}(ST)^{2+k}$ $= (ST)^*(ST)^{2+k}(ST)^{2+k}$ [:: (ST) is (2+k)normal

$$= (ST)^{*}(ST)^{2+k} (ST)^{*}(ST)^{2+k} [: (ST) \text{ is } (2+k) \text{ norma} \\ = (ST)^{*^{2}}(ST)^{2+k} (ST)^{2+k}$$

Hence ST is also (2+k) power class (Q) operator.

The following proposition shows that an operator T of 2 power class (Q) need not be of class (Q) such that $T^2 = 0$.

Proposition2.5:

If $T \in (n + k)$ power class(Q) such that $T^2 = 0$, then it is not necessarily that T=0. Consider $T = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ acting on R^2 which is not normal.

Proof:

We verify the theorem for n=2, k=0. On direct matrix multiplication operations we can verify that $T^{*^2}T^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = (T^*T)^2$. Therefore T is not class (Q). But $T^{*^2}T^4 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = (T^*T^2)^2$. Hence T is 2 power class (Q). Further $T^*T \neq TT^*$, hence T is not normal. Hence, we conclude that, $T \notin (Q)$ But, $T \in 2$ power class (Q) and T is not normal.

The following theorem shows that an operator of (n+k) normal is (n+k) power class (Q) operator. *Theorem2.6:*

If $T \in L(H)$ is (n+k) normal, then $T \in (n+k)$ power class (Q).

Proof:

Since T is (n+k) normal then $T^*T^{n+k} = T^{n+k}T^*$

Pre multiply by T^* and post multiply by T^{n+k} on both sides we get

 $T^*T^*T^{n+k}T^{n+k} = T^*T^{n+k}T^*T^{n+k}$

$$\Rightarrow T^{*^2}T^{2(n+k)} = (T^*T^{n+k})^2.$$

Therefore, we get $T \in (n+k)$ power class (Q).

Proposition 2.7:

Let T be an operator acting on three dimensional complex Hilbert space. Then T is (2+k). power class(Q) but it

is not (2+k) normal. Example:= $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Solution:

For k = 0 and n = 2 we can prove that T is not normal but it is 2 power class (Q).

By direct decomposition we get $TT^* = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $T^*T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Since, $TT^* \neq T^*T$, T is not normal. Further we can show that $T^{*2}T^4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = (T^*T^2)^2$. Therefore $T \in 2 \ powerclass(Q)$.

Proposition 2.8:

Let T be an operator acting on 2 dimensional complex Hilbert space. Then T is 2 power class(Q) but it is not 3 power class (Q). Example: $T = \begin{pmatrix} i & 2 \\ 0 & -i \end{pmatrix}$.

Solution:

On direct matrix multiplication operations, we show that

 $T^{*2}T^4 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = (T^*T^2)^2$. Hence, T is 2 power class (Q operator. Further we show that $TT^* =$ $\begin{pmatrix} 5 & 2i \\ -2i & 1 \end{pmatrix}$ and $T^*T = \begin{pmatrix} 1 & -2i \\ 2i & 5 \end{pmatrix}$. $T^*T \neq TT^*$ and therefore T is not normal operator. In addition we can verify that $T^{*2}T^6 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $(T^*T^3)^2 = \begin{pmatrix} 5 & -8i \\ 8i & 13 \end{pmatrix}$. Here $T^{*2}T^6 \neq (T^*T^3)^2$, and therefore T is not 3 power class (Q) operator.

Definition 2.9:

Let E be a normal Linear space and L(E) denote the set of all bounded Linear operators on E.

An operator $T \in L(E)$ is said to be regular if and only if there exists $S \in L(E)$ such that TS=ST=I such an operator S is called inverse of T so that $S = T^{-1}$.

In general, (n+k+1) power class(Q) operators need not be (n+k) power class (Q),

Lemma 2.10:

Let $T \in L(E)$ the operator T is regular if and only if it is a linear transformation of E into itself. If T is regular then the inverse mapping T^{-1} is in L(E) and is the inverse of T in the sense of the definition.

We prove he following characterization using above lemma and definition.

Theorem2.11:

Let T be an operator acting on two dimensional complex Hilbert space H. Then T is (3+k) power class (Q) but it is not (2+k) power class (Q) operator. While attempting to prove this problem the generalized version for the above problem is formed and restated as follows.

Let T be the class of (n+1+k) power class (Q) operator acting on infinite complex separable Hilbert space H for any k ≥ 0 . If T is normal, then in T $\in (n + k)$ power class (Q).

Proof:

Given T is (n+1+k) power class (Q) operator.

 $\therefore T^{*2}T^{2(n+1+k)} = (T^*T^{(n+1+k)})^2$ is true. Further, we have

$$T^{*^{2}}T^{2(n+k)}T^{2} = T^{*}T^{n+1+k} \cdot T^{*}T^{n+1+k}$$

$$= T^{*}T^{n+k}T \cdot T^{*}T^{n+k}T$$

$$= T^{*}T^{n+k}T^{*}T^{n+k}T[\because T \text{ is normal }]$$

$$= T^{*}T^{n+k}T^{*}T^{1+n+k}T$$

$$= T^{*}T^{n+k}T^{*}T^{n+k}T \cdot T$$

$$= T^{*}T^{n+k}T^{*}T^{n+k}T^{2}$$
s invertible, then post multiply by T^{-1} on both sides we get

If T is invertible, then post multiply by T^{-1} on both sides we get $m^{2}m^{2}(n+k)m^{2}m^{-1} = (m+k)^{2}m^{2}m^{-1}$

$$T^{*2}T^{2(n+k)}T^{2}T^{-1} = (T^{*}T^{n+k})^{2}T^{2}T^{2}$$

$$T^{*^{2}}T^{2(n+k)}T = (T^{*}T^{n+k})^{2}T$$

Again post multiply by T^{-1} we get

 $T^{*2}T^{2(n+k)} = (T^*T^{n+k})^2$. Hence T is (n+k) power class (Q)

In the following example, we show that a 3 power class (Q) operator need not be 2 power class (Q). The following examplesupports that (3+k) power class (Q) operator need not be (2+k) power class (Q) operator for k = 0.

An operator $T = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ acting on 2 dimensional complex separable Hilbert Space H is 3 power class(Q) but not 2 power class(Q).

Solution:

By using matrix multiplication we can show that obtain the values of $T^{*2}T^2 = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \neq \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} = (T^*T)^2$ and therefore $T \notin 2$ powerclass(Q). Also, $T^{*2}T^6 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = (T^*T^3)^2$ and hence $T \in 3$ powerclass(Q). In the following example we show that an array C^2 In the following example we show that an operator of 3 power class (Q) is 2 power class (Q).

Example 2.13:

Let $T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ be 3 power class (*Q*) operator acting on 2 dimensional complex separable Hilbert Space H. If T is regular then T is 2 power class (*Q*).

 $T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, T^* = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; \quad TT^* = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$ Further, $T^*T = I$ and $TT^* = T^*T = I$. \therefore T is regular. Also,

$$T^*T = TT^*$$
. $\therefore T$ is normal. Further, $T^{*2}T^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (T^*T^2)^2$ and therefore,

 $T \in 2 \text{ power class}(Q)$. Also, $T^{*2}T^6 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (T^*T^3)^2$ and therefore $T \notin 3$ power class (Q).

In the following theorem we show that an (n+k) power class (Q and quasi (n+k) normal operator T is (n+1+k) power class(Q) operator.

Conclusion:

The algebra of all bounded Linear operators on a Real (Complex) Hilbert space H is taken for the research work and the following findings on the class of (n+k) power class (Q) operators are given. 1. In general (n+k) power class(Q) operator need not be a normal operator. This result is verified through counter example. 2. A 2 power class (Q) operator is not 3 power class (Q) operator and vice versa. Hence we conclude that n power class (Q) operators are independent. 3. If $T \in (n+k)$ power class(Q) then so are (i) λT for any real number λ . (ii) for any S $\in L(H)$ that is unitarily equivalent to T. (iii) The restriction T/M of T to any closed subspace M of H that reduces T. 4. The sum and product of any two commuting operators on the complex Hilbert space are (2+k) power class (Q) operator. 5. If $T \in (n + k)$ power class (Q) such that $T^2 = 0$, then it is not necessarily that T = 0. This result is verified by considering the operator $T = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ acting on R^2 which is not normal, n = 2 and k = 0.6. If $T \in L(H)$ is (n+k) normal, then $T \in (n+k)$ power class (Q). 7. Let T be an operator acting on three dimensional complex Hilbert space. Then T is (2+k). power class(Q) but it is not (2+k)

normal. Example: = $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ 8.Let T be an operator acting on 2 dimensional complex Hilbert space. Then T is 2 power class (Q) but it is not 3 power class (Q). Example: T = $\begin{pmatrix} i & 2 \\ 0 & -i \end{pmatrix}$. 9. Let T be the class of (n+1+k) power class (Q) operator acting on infinite complex separable Hilbert space. H for any k \ge 0. If T is regular and normal, then in $T \in (n + k)$ power class (Q). 10. An operator $T = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ acting on 2 dimensional complex separable Hilbert Space H is 3 power class (Q) but not 2 power class(Q). 11. Let $T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ be 3 power class (Q) operator acting on 2 dimensional complex separable Hilbert Space H. If T is regular then T is 2 power class (Q).

ACKNOWLEDGEMENTS

This article is supported by UGC - Minor Research Project during 2013 - 2015. Mr. K.M.mnaikandan Principal Investigator MRP - 5016/14 (SERO/UGC) Assistant Professor and Head, Department of Mathematics Dr. SNS Rajalakshmi College of Arts and Science 486, Thudialur - Saravanampatti Road, Chinnavedampatti Coimbatore - 641 049

REFERENCES

[1] A.A.S. Jibril, On n - power normal Operators, The Arabian Journal for Science and Engineering Volume 33, Number 2A, 2008.

[2] Adnan and A.S. Jibril, On operators for which T*² T² = (T*T)², International Mathematical forum, 5, 2010, No. 46, 2255 – 2262.

[3] S. Panayappan, N. Sivamani, On n power class (Q) operators, Int. Journal of Math. Analysis, Vol. 6, 2012, no. 31, 1513-1518.

[4] Krutan Rasimi, Luigj Gjoka, Some remarks on n - power class (Q) operators, International journal of Pure and Applied Mathematics, Volume 89, No. 2, 2013, 147 - 151.

[5] Dr. T. Veluchamy, K.M.Manikanadan, T.Ramesh, Solving n power class (Q) operators using MATLAB, IOSR Journal of Mathematics (IOSR-JM), Volume 10, Issue 2 Ver. II (Mar-Apr. 2014), PP 13-16.

[6] Sterling K. Berberian, Introduction to Hilbert space, New York, Oxford University Press 1961.