On (N+K) Power Class(Q) Operators in the Hilbert Space - II

K.M.Manikandan ${ }^{\# 1}$, Dr. T.Veluchamy ${ }^{* 2}$
${ }^{\text {\#1 }}$ Assistant Professor \& HOD,
Department of Mathematics, Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, India
${ }^{* 2}$ Retired Principal,
Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, India.

Abstract

This article is focussed on characterizing new theorems and verifying examples on some properties of operators in $(n+k)$ power class $(Q) f o r$ any $k \geq 0$ and for particular integer n in the Hilbert Space. Also, we characterize a condition for an operator T in class (Q) on H, in addition it is complex conjugate operator on H. Finally we introduce quasi n - posi normal operators on the Hardy space and the new characterizations were done. Mathematics Subject Classification: 47B20, 47A05.

Keywords:Normal operator, class (Q) operator, $n-\operatorname{power}$ class (Q) operator, $(n+k)$ power class (Q) operatorand complex symmetric operator.

I. INTRODUCTION

Let H be a Hilbert space and $\mathrm{L}(\mathrm{H})$ be the algebra of all bounded linear operators acting on H. A.A.S. Jibril [1], in 2008 introduced the class of n - power normal operators as a generalization of normal operators. The operator T is called n - power normal if T^{n} commutes with T^{*}, i.e. $T^{n} T^{*}=T^{*} T^{n}$ and is denoted by [nN]. In 2010, Adnan A.S. Jibril [2], introduced class (Q) operators acting on the Hilbert space. An operator $T \in L(H)$ is in class (Q) if it satisfies the condition $T^{*^{2}} T^{2}=\left(T^{*} T\right)^{2}$. In 2012, S. Panayappan and N. Sivamani [3] defined n power class (Q) operators on the Hilbert space. An operator $T \in L(H)$ is said to be n power class (Q) if it satisfies the condition $T^{*^{2}} T^{2 n}=\left(T^{*} T^{n}\right)^{2}$. In 2013, Krutan Rasimi, Luigj Gjoka [4] gave some results related to n power class (Q) operators acting on infinite complex separable Hilbert space.In the year 2014 Dr. T. Veluchamy, K.M.Manikanadan and T.Ramesh [5] investigated some characterization of n power class (Q) operators on Hilbert space using MATLAB

In the year 2015, Sen Zhu and Jiayin Zhao [7] explored the structure of the skew symmetric operators with disconnected spectra. They used complex symmetric operators on the Complex separable Hilbert space H. A map C on H is said to be an anti unitary operator if C is conjugate, linear, invertible and $\langle C x, C y\rangle=$ $\langle y, x\rangle$ forall $x \in H$.If, in addition, $\mathrm{C}^{-1}=\mathrm{C}$, then C is called a conjugation. In our work we use the definitions skew symmetric and complex symmetric operators given by S.M. Zagorodnyuk in [8]. An operator $T \in B(H)$ is said to be skew symmetric if there exists conjugation C on H such that $\mathrm{CTC}=-\mathrm{T}^{*}$. T is said to be complex symmetric if $\mathrm{CTC}=\mathrm{T}^{*}$ for some conjugation C on H.Finally we characterize a condition for an operator T in class (Q) on H , in addition it is complex conjugate operator on H .
In third section, we introduce Quasi n posinormal operator as an extension of Quasi posi normal operator. An operator T in a Hilbert space H is quasi n posinormal if $\left(\mathrm{TT}^{*}\right)^{2 \mathrm{n}} \leq \mu\left(T^{*^{2}} T^{2}\right)^{n}$. We derive new theorems on quasi n posinormal operators acting on the weighted Hardy Hilbert space.

Let f be an analytic map on the open disk D given by the Taylors series $f(z)=a_{0}+a_{1} z+a_{2} z_{2}+\ldots$ Let β $=\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be a sequence of positive numbers with $\beta_{0}=1$ and $\beta_{n+1} / \beta_{n} \rightarrow 1$ as $n \rightarrow \infty$. The set $H^{2}(\beta)$ of formal complex power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $||f||_{\beta}^{2}=\infty \sum_{n=0}^{\infty}\left|a_{n}\right|^{2} \beta_{n}^{2}<\infty$. is a Hilbert space of functions analytic in the unit disk with the inner product. $<f, g>_{\beta}=\sum_{\mathrm{n}=0}^{\infty} a_{n} \overline{b_{n}} \beta_{n}^{2}$ for f as above and $\mathrm{g}(\mathrm{z})=\sum_{\mathrm{n}=0}^{\infty} b_{n} z^{n}$. Let D be the open unit disc in the complex plane and let $\mathrm{T}: \mathrm{D} \rightarrow \mathrm{D}$ be an analytic self map of the unit disc and consider the corresponding composition operator C_{T} acting on $H^{2}(\beta)$ ie., $C_{T} f=f \circ T, f \in H^{2}(\beta)$. The operator C_{T} is not necessarily defined on all of $\mathrm{H}^{2}(\beta)$.

II. MAIN RESULTS

In general $(\mathrm{n}+\mathrm{k})$ power class (Q) operator need not be a normal operator. In the following theorem we show that an $(\mathrm{n}+\mathrm{k})$ power class $(\mathrm{Q}$ and quasi $(\mathrm{n}+\mathrm{k})$ normal operator T is $(\mathrm{n}+1+\mathrm{k})$ power class (Q) operator.

Theorem 2.1

If T is $(\mathrm{n}+\mathrm{k})$ power class (Q) and T is quasi $(\mathrm{n}+\mathrm{k})$ normal, then T is $(\mathrm{n}+1+\mathrm{k})$ power class (Q).

Proof:

Given T is $(\mathrm{n}+\mathrm{k})$ power class $(\mathrm{Q}) . \therefore T^{*^{2}} T^{2(n+k)}=\left(T^{*} T^{n+k}\right)^{2}$
Post multiply by T^{2} on both sides,

$$
\begin{align*}
T^{*^{2}} T^{2(n+k)} T^{2} & =\left(T^{*} T^{n+k}\right)^{2} T^{2} \\
& =T^{*} T^{n+k} T^{*} T^{n+k} T T-
\end{align*}
$$

Since T is quasi $(\mathrm{n}+\mathrm{k})$ normal, we get

$$
\mathrm{T}\left(T^{*} T^{n+k}\right)=\left(T^{*} T^{n+k}\right) T
$$

Becomes $T^{*^{2}} T^{2(n+k+1)}=T^{*} T^{n+k} T\left(T^{*} T^{n+k}\right) T$

$$
=T^{*} T^{n+k+1} T^{*} T^{n+k+1}
$$

$=\left(T^{*} T^{n+k+1}\right)^{2}$. Therefore T is $(\mathrm{n}+1+\mathrm{k})$ power class (Q) for any $\mathrm{k} \geq 0$.

Theorem 2.2:

If an operator T on C^{2} is both invertible and ($2+\mathrm{k}$) normal operator then the following results hold. (i) T is $(2+\mathrm{k})$ power class (Q), (ii) T is not quasi $(\mathrm{n}+\mathrm{k})$ normal and (iii) T is not $(3+\mathrm{k})$ power class (Q).

Proof:

(i) To prove T is $(2+\mathrm{k})$ power class (Q), we have to prove that $T^{*^{2}} T^{2(2+k)}=\left(T^{*} T^{2+k}\right)^{2}$

$$
\begin{aligned}
T^{*^{2}} T^{2(2+k)} & =T^{*} T^{*} T^{2+k} T^{2+k} \\
& =T^{*} T^{2+k} T^{*} T^{2+k} \quad(\because \mathrm{~T} \text { is }(2+\mathrm{k}) \text { normal }) \\
& =\left(T^{*} T^{2+k}\right)^{2} . \quad \therefore T \in(2+k) \text { power class }(\mathrm{Q}) .
\end{aligned}
$$

(ii) First we prove the result for $\mathrm{n}=2$. We have to prove that $T\left(T^{*} T^{2+k}\right) \neq\left(T^{*} T^{2+k}\right) T$

$$
\text { Now consider } \begin{aligned}
T\left(T^{*} T^{2+k}\right) & =T T^{2+k} T^{*} \quad[\because \mathrm{~T} \text { is }(2+\mathrm{k}) \text { normal }] \\
& =T^{3+k} T^{*} \neq\left(T^{*} T^{2+k}\right) T . \therefore \text { Tis not quasi }(2+\mathrm{k}) \text { normal operator. }
\end{aligned}
$$

Next, we have to prove that $T\left(T^{*} T^{n+k}\right) \neq\left(T^{*} T^{n+k}\right) T$

$$
\begin{align*}
& T\left(T^{*} T^{n+k}\right)=T\left(T^{*} T^{2+k+n-2}\right) \quad\left[\because \mathrm{T} \text { is invertible } T^{-2} \text { exists }\right] \\
&=T T^{*} T^{2+k} T^{n-2} \\
&=T T^{2+k} T^{*} T^{n-2}[\because \mathrm{~T} \text { is (2+k) normal }] \\
&=T^{3+k} T^{*} T^{n-2}-------(1) \tag{1}\\
&\left(T^{*} T^{n+k}\right) T=T^{*} T^{n+k} T \\
&=T^{*} T^{2+k} T^{n-2} T \\
&=T^{2+k} T^{*} T^{n-1}----(2)
\end{align*}
$$

Equations (1) and (2) are not same. Therefore we get, T is not quasi $(\mathrm{n}+\mathrm{k})$ normal.
(iii) Next, we prove that T is not $(3+\mathrm{k})$ power class (Q) operator.
$T^{*^{2}} T^{2(3+k)}=T^{*} T^{*} T^{3+k} T^{3+k}$

$$
\begin{aligned}
& =T^{*} T^{*} T^{2+k} T T^{3+k} \\
& =T^{*} T^{2+k} T^{*} T T^{3+k} \\
& =T^{*} T^{2+k} T^{*} T^{2+k} T^{2} \\
& =\left(T^{*} T^{2+k}\right)^{2} T^{2} \neq\left(T^{*} T^{3+k}\right)^{2} . \quad \text { Hence the proof. }
\end{aligned}
$$

The above theorem can be verified by putting $\mathrm{k}=0$ and $\mathrm{T}=\left(\begin{array}{cc}i & 2 \\ 0 & -i\end{array}\right)$.

Example 2.3

Consider the operator $\mathrm{T}=\left(\begin{array}{cc}i & 2 \\ 0 & -i\end{array}\right)$ acting on C^{2} which is 2 normal, 2 power class(Q), not quasi 2 normal and not 3 power class(Q).

Solution:

$\operatorname{Now} T^{*}=\left(\begin{array}{cc}-i & 0 \\ 2 & i\end{array}\right)$ and by direct decomposition we show that $T^{2} T^{*}=\left(\begin{array}{cc}i & 0 \\ -2 & -i\end{array}\right)=T^{*} T^{2}$ and therefore T is 2 normal operators. Now again by direct de composition we show that $T^{*^{2}} T^{4}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=\left(T^{*} T^{2}\right)^{2}$ and
therefore T is 2 power class (Q) operator. Further we show that $T\left(T^{*} T^{2}\right)=\left(\begin{array}{cc}-5 & -2 i \\ 2 i & -1\end{array}\right) \neq\left(\begin{array}{cc}-1 & 2 i \\ -2 i & -5\end{array}\right)=$ $\left(T^{*} T^{2}\right) T$ and therefore T is not quasi 2 normal and finally we can verify that $\quad T^{*^{2}} T^{6}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \neq$ $\left(T^{*} T^{3}\right)^{2}=\left(\begin{array}{cc}5 & -12 i \\ 12 i & 29\end{array}\right)$ and therefore T is not 3 power class (Q) operator.
In the following theorem we prove that if an invertible operator T is $(n+k)$ power class (Q) then it is $(\mathrm{n}+\mathrm{k})$ normal operator for any $\mathrm{k} \geq 0$.

Theorem2.4:

Let T be bounded linear operator. If T is $(\mathrm{n}+\mathrm{k})$ power $\operatorname{class}(Q)$ operator and has inverse then T is $(\mathrm{n}+\mathrm{k})$ normal operator for any $\mathrm{k} \geq 0$.

Proof:

Let $\mathrm{T} \in L(H)$ and let T be a $(\mathrm{n}+\mathrm{k})$ power class (Q) operator. ie., $T^{*^{2}} T^{2(n+k)}=\left(T^{*} T^{n+k}\right)^{2}$
We can write that $T^{*^{2}} T^{2(n+k)}=T^{*} T^{n+k} T^{*} T^{n+k}------(1)$
Since T has inverse, T^{*} has also inverse and it is $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$
Multiply equation (1) from the left by $\left(T^{*}\right)^{-1}$, we get $T^{*} T^{2(n+k)}=T^{n+k} T^{*} T^{n+k}$
This relation is equivalent to $T^{*} T^{n+k} T^{n+k}=T^{n+k} T^{*} T^{n+k}------(2)$
Multiply equation (2) by ($\mathrm{n}+\mathrm{k}$) times with T^{-1} from right, we get $T^{*} T^{n+k}=T^{n+k} T^{*}$ which shows that T is $(\mathrm{n}+\mathrm{k})$ normal operator for any $\mathrm{k} \geq 0$.

Theorem2.5

LetT be bounded linear operator on H . If T is $(\mathrm{n}+2 \mathrm{k})$ power class (Q) operator and in the same time is 2 power quasi n normal operator, then T is $(\mathrm{n}+2 \mathrm{k}+2)$ power class (Q) operator for any $\mathrm{k} \geq 0$.

Proof:

Let T be a bounded linear operator on H .
Suppose T is $(\mathrm{n}+2 \mathrm{k})$ power class (Q) operator then from the definition we get
$T^{*^{2}} T^{2(n+k)}=\left(T^{*} T^{n+k}\right)^{2}$ \qquad
Also, given that, T is 2 power quasi n normal operator
$\therefore T^{2}\left(T^{*} T^{n}\right)=\left(T^{*} T^{n}\right) T^{2}-----(2)$
We have to prove that $T^{*^{2}} T^{2(n+2 k+2)}=\left(T^{*} T^{n+2 k+2}\right)^{2}$

$$
\begin{array}{rlr}
T^{*^{2}} T^{2(n+2 k+2)} & =T^{*^{2}} T^{2(n+2 k)} T^{4} \\
& =\left(T^{*} T^{n+2 k}\right)^{2} T T T T \\
& =T^{*} T^{n+2 k} T^{*} T^{n+2 k} T T T T \\
& =T^{*} T^{n} T^{2 k} T^{*} T^{n} T^{2 k} T T T T \\
& =T^{*} T^{n} T^{2 k} T^{*} T^{n} T^{2 k} T^{2} T^{2} & \\
& =T^{*} T^{n} T^{2 k} T^{*} T^{n} T^{2} T^{2 k} T^{2} \\
& =T^{*} T^{n} T^{2 k} T^{*} T^{n} T^{2} T^{2 k} T^{2} & \left.\left[\because T^{2 k} T^{2}=T^{2} T^{2 k}\right]\right] \\
& =T^{*} T^{n} T^{2 k} T^{2} T^{*} T^{n} T^{2 k} T^{2} \\
& =T^{*} T^{n+2 k+2} T^{*} T^{n+2 k+2} \\
& =\left(T^{*} T^{n+2 k+2}\right)^{2} . \quad \text { Hence } \mathrm{T} \in(\mathrm{n}+2 \mathrm{k}+2) \text { power class }(Q) \text { operator. }
\end{array}
$$

In the next theorem we prove that the product of doubly commuting $(\mathrm{n}+\mathrm{k})$ power class (Q) operators S and T is again $(\mathrm{n}+\mathrm{k})$ power class (Q) operator.

Theorem 2.6:

Let T and S be bounded Linear operators on $L(H)$. If T and S are $(n+k)$ power class (Q) operators that doubly commutes ie., $\mathrm{TS}=\mathrm{ST}$ and $\mathrm{T} S^{*}=S^{*} T$ then operator TS is $(\mathrm{n}+\mathrm{k})$ power class (Q) operator.
Proof:
Let T and S be $(\mathrm{n}+\mathrm{k})$ power class (Q) operators. Thereefore, From the definition, we have $T^{*^{2}} T^{2(n+k)}=$ $\left(T^{*} T^{n+k}\right)^{2}$ and $S^{*^{2}} S^{2(n+k)}=\left(S^{*} S^{n+k}\right)^{2}$ holds.Let T doubly commutes with S ie., $\mathrm{TS}=\mathrm{ST}$ and $\mathrm{T} S^{*}=S^{*} T$. We have to prove that $\left.(T S)^{*^{2}}(T S)^{2(n+k)}=\left[(T S)^{*}(T S)^{n+k}\right)\right]^{2}$.
Consider, $(T S)^{*^{2}}(T S)^{2(n+k)}=S^{*} T^{*} S^{*} T^{*} T S T S \ldots . . T S$ upto $2(\mathrm{n}+\mathrm{k})$ times
Since T doubly commutes with S, we can write
$(T S)^{*^{2}}(T S)^{2(n+k)}=S^{*} S^{*} T^{*} T^{*} T S T S \ldots . . T S$ up to $2(\mathrm{n}+\mathrm{k})$ times

$$
\begin{aligned}
& =S^{*} S^{*} T^{*} T^{*} S T T S ~ \ldots . . T S u p \text { to } 2(n+k)-1 \text { times }[\text { Since } \mathrm{TS}=\mathrm{ST}] \\
& =S^{*} S^{*} T^{*} S T^{*} T T S T S \ldots \ldots . T S 2(n+k)-1 \text { times } \quad\left[\text { Since } \mathrm{T} * \mathrm{~S}=\mathrm{ST}^{*}\right. \\
& =S^{*} S^{*} S T^{*} T^{*} T T S T S \ldots . . T S \quad 2(n+k)-1 \text { times } \quad\left[\text { Since } \mathrm{T}^{*} \mathrm{~S}=\mathrm{ST}^{*}\right]
\end{aligned}
$$

By successive remove on the left of each of S we get

$$
\begin{aligned}
& =\left[\begin{array}{llll}
S^{*} S^{*} S S \ldots . S 2(n+k) \text { times }
\end{array}\right] T^{*} T^{*} T T \ldots \ldots T \\
& =S^{*} S^{2(n+k)} T^{*^{2}} T^{2(n+k)} \\
& =\left(S^{*} S^{n+k}\right)^{2}\left(T^{*} T^{n+k}\right)^{2}
\end{aligned}
$$

$[\because$ SandTare $(n+k)$ powerclass (Q) operators $]$

$$
\begin{array}{ll}
=S^{*} S^{n+k} S^{*} S^{n+k} T^{*} T^{n+k} T^{*} T^{n+k} & \\
=S^{*} S^{n+k} S^{*} T^{*} S^{n+k} T^{n+k} T^{*} T^{n+k} & {\left[\because S^{n+k} T^{*}=T^{*} S^{n+k}\right]} \\
=S^{*} S^{n+k} T^{*} S^{*} S^{n+k} T^{n+k} T^{*} T^{n+k} & {\left[\because T^{*} S^{*}=S^{*} T^{*}\right]} \\
=S^{*} T^{*} S^{n+k} S^{*} S^{n+k} T^{n+k} T^{*} T^{n+k} & {\left[\because S^{n+k} T^{*}=T^{*} S^{n+k}\right]} \\
=S^{*} T^{*} S^{n+k} S^{*} T^{n+k} S^{n+k} T^{*} T^{n+k} & {\left[\because S^{n+k} T^{n+k}=T^{n+k} S^{n+k}\right]} \\
=S^{*} T^{*} S^{n+k} T^{n+k} S^{*} S^{n+k} T^{*} T^{n+k} & {\left[\because S^{*} T^{n+k}=T^{n+k} S^{*}\right]} \\
=S^{*} T^{*} S^{n+k} T^{n+k} S^{*} T^{*} S^{n+k} T^{n+k} & {\left[\because S^{n+k} T^{*}=T^{*} S^{n+k}\right]} \\
=(\mathrm{TS})^{*}(\mathrm{ST})^{n+k}(\mathrm{TS})^{*}(\mathrm{ST})^{n+k} & \\
=(\mathrm{TS})^{*}(\mathrm{~T} S)^{n+k}(\mathrm{TS})^{*}(\mathrm{TS})^{n+k} & {[\because T S=S T]} \\
=\left((\mathrm{TS})^{*}(\mathrm{TS})^{n+k}\right)^{2} . \quad \therefore \mathrm{TS} \text { is }(\mathrm{n}+\mathrm{k}) \operatorname{power} \operatorname{class}(Q) .
\end{array}
$$

Theorem 2.7

Let T and S be bounded Linear operators on $\mathrm{L}(\mathrm{H})$. If T and S are $(\mathrm{n}+\mathrm{k})$ power class (Q) operators that doubly commutes ie., $\mathrm{TS}=\mathrm{ST}$ and $\mathrm{T} S^{*}=S^{*} T$ under the same conditions operator (ST) is $(\mathrm{n}+\mathrm{k})$ power class (Q) operator.

Proof:

Given, T and S are $(\mathrm{n}+\mathrm{k})$ power $\operatorname{class}(Q)$ operators. ie., $T^{*^{2}} T^{2(n+k)}=\left(T^{*} T^{n+k}\right)^{2}$ and $S^{*^{2}} S^{2(n+k)}=$ $\left(S^{*} S^{n+k}\right)^{2}$
Let T doubly commutes with S ie., $\mathrm{TS}=\mathrm{ST}$ and $\mathrm{T} S^{*}=S^{*} T$. We have to prove that $(S T)^{*^{2}}(S T)^{2(n+k)}=$ [$\left.\left.(S T)^{*}(S T)^{n+k}\right)\right]^{2}$
Consider L.H.S.
$(S T)^{*^{2}}(S T)^{2(n+k)}=T^{*} S^{*} T^{*} S^{*} S T S T \ldots . S T \quad 2(n+k)$ times.
Since T doubly commutes with S, we can write

$$
\begin{aligned}
(S T)^{*^{2}}(S T)^{2(n+k)} & =T^{*} T^{*} S^{*} S^{*} S T S T \ldots . . S T 2(\mathrm{n}+\mathrm{k}) \text { times } & & \\
& =T^{*} T^{*} S^{*} S^{*} T S S T \ldots . S T 2(n+k)-1 \text { times } & & {[\because T S=S T] } \\
& =T^{*} T^{*} S^{*} T S^{*} S S T S T \ldots \ldots . S T 2(n+k)-1 \text { times } & & {[\because \mathrm{S} * \mathrm{~T}=\mathrm{TS} *] } \\
& =T^{*} T^{*} T S^{*} S^{*} S S T S T \ldots . S T 2(n+k)-1 \text { times } & & {[\because S * \mathrm{~T}=\mathrm{TS} *] }
\end{aligned}
$$

By successive remove on the left of each of T we get

$$
\begin{aligned}
& =T^{*} T^{*} T T \ldots \ldots T 2(n+k) \text { times }^{*} S^{*} S S \ldots . . S 2(n+k) \text { times } \\
& =T^{*^{2}} T^{2(n+k)} S^{*} S^{2(n+k)} \\
& =\left(T^{*} T^{n+k}\right)^{2}\left(S^{*} S^{n+k}\right)^{2}
\end{aligned}
$$

[$\because S$ and T are $(n+k)$ power class(Q)operators]

$$
\begin{array}{ll}
=T^{*} T^{n+k} T^{*} T^{n+k} S^{*} S^{n+k} S^{*} S^{n+k} & \\
=T^{*} T^{n+k} T^{*} S^{*} T^{n+k} S^{n+k} S^{*} S^{n+k} & {\left[\because T^{n+k} S^{*}=S^{*} T^{n+k}\right]} \\
=T^{*} T^{n+k} S^{*} T^{*} T^{n+k} S^{n+k} S^{*} S^{n+k} & {\left[\because T^{*} S^{*}=S^{*} T^{*}\right]} \\
=T^{*} S^{*} T^{n+k} T^{*} T^{n+k} S^{n+k} S^{*} S^{n+k} & {\left[\because T^{n+k} S^{*}=S^{*} T^{n+k}\right]} \\
=T^{*} S^{*} T^{n+k} T^{*} S^{n+k} T^{n+k} S^{*} S^{n+k} & {\left[\because T^{n+k} S^{n+k}=S^{n+k} T^{n+k}\right]} \\
=T^{*} S^{*} T^{n+k} S^{n+k} T^{*} T^{n+k} S^{*} S^{n+k} & {\left[\because S^{n+k} T^{*}=T^{*} S^{n+k}\right]} \\
=T^{*} S^{*} T^{n+k} S^{n+k} T^{*} S^{*} T^{n+k} S^{n+k} & {\left[\because T^{n+k} S^{*}=S^{*} T^{n+k}\right]} \\
=(\mathrm{ST})^{*}(\mathrm{TS})^{n+k}(\mathrm{ST})^{*}(\mathrm{TS})^{n+k} & {[\because T S=S T]} \\
=(\mathrm{ST})^{*}(\mathrm{ST})^{n+k}(\mathrm{ST})^{*}(\mathrm{ST})^{n+k} & \\
\left.=\left[(S T)^{*}(S T)^{n+k}\right)\right]^{2} . \text { Hence, ST is }(\mathrm{n}+\mathrm{k}) \text { power class }(Q) \text { operator. }
\end{array}
$$

Theorem 2.8:

If T is $(\mathrm{n}+\mathrm{k})$ power class (Q) operator such that T doubly commute with an isometric operator S , then TS is $(\mathrm{n}+\mathrm{k})$ power class (Q) operator.

Proof:

Given, T is $(\mathrm{n}+\mathrm{k})$ power class (Q) operator.
Therefore from the definition we have $T^{*^{2}} T^{2(n+k)}=\left(T^{*} T^{n+k}\right)^{2}$
$(T S)^{*^{2}}(T S)^{2(n+k)}=S^{*} T^{*} S^{*} T^{*} T S T S$.....TS $2(\mathrm{n}+\mathrm{k})$ times

$$
\begin{aligned}
& =S^{*} S^{*} T^{*} T^{*} S T S T T S T S \ldots T S 2(n+k)-2 \text { times } \quad\left[\because T^{*} S^{*}=S^{*} T^{*} \text { andTS }=S T\right] \\
& =S^{*} S^{*} T^{*} S T^{*} T S T T S \ldots \ldots . T S 2(n+k)-2 \text { times } \quad\left[\because \mathrm{T}^{*} \mathrm{~S}=\mathrm{ST}^{*}\right] \\
& =S^{*} S^{*} S T^{*} T^{*} T S T T S T S \ldots . . T S 2(n+k)-2 \text { times } \quad\left[\because \mathrm{T}^{*} \mathrm{~S}=\mathrm{ST}^{*}\right] \\
& =S^{*} S^{*} S T^{*} T^{*} S T T T S T S \ldots . . T S \quad 2(n+k)-2 \text { times } \quad[\because T S=S T] \\
& =S^{*} S^{*} S T^{*} S T^{*} T^{2} T S T S \ldots . . T S \quad 2(n+k)-2 \text { times } \quad\left[\because \mathrm{T} * \mathrm{~S}=\mathrm{ST}^{*}\right] \\
& =S^{*} S^{*} S S T^{*} T^{*} T^{2} \text { TSTS } \ldots . . T S \quad 2(n+k)-2 \text { times } \quad\left[\because \mathrm{T} * \mathrm{~S}=\mathrm{ST}^{*}\right] \\
& =S^{*} I S T^{*} T^{2} T S T S \ldots . . T S 2(n+k)-2 \text { times } \quad[\because S \text { is isometry we get, } \mathrm{S} * \mathrm{~S}=
\end{aligned}
$$

I]

$$
\begin{aligned}
& =S^{*} S T^{*^{2}} T^{2} T S T S \ldots . . T S \\
& =\mathrm{I} T^{*^{2}} T^{2} T S T S \ldots . T S \\
& =T^{*^{2}} T^{2} T S T S \ldots . . T S \quad 2(n+k)-2 \text { times } \\
& 2(n+k)-2 \text { times }
\end{aligned}
$$

Repeating the above procedure, we get

$$
\begin{array}{lr}
=T^{*^{2}} T^{2} T^{2(n+k)-2} S S \ldots . S 2(n+k)-2 \text { times } & \\
=T^{*} T^{2(n+k)} S S \ldots S 2(n+k)-2 \text { times } & \\
=\left(T^{*} T^{n+k}\right)^{2} S^{2(n+k)-2} & \\
=T^{*} T^{n+k} T^{*} T^{n+k} S^{2(n+k)-2} & \\
=S^{*} S T^{*} S^{n+k-1} T^{n+k} S^{*} S T^{*} S^{n+k-1} T^{n+k} & \\
=S^{*} T^{*} S^{n+k-1} T^{n+k} S^{*} T^{*} \mathrm{SS}^{n+k-1} T^{n+k} & \\
=(T S)^{*}(\mathrm{~S} T)^{n+k}(T S)^{*}(\mathrm{~S} T)^{n+k} & \\
=(T S)^{*}(T S)^{n+k}(T S)^{*}(T S)^{n+k} & \\
\left.\left.=(\because S)^{*}(T S)^{n+k}\right)^{2} . \therefore T S \in(\mathrm{~T}+\mathrm{T}) \operatorname{sower}=\mathrm{ST}^{*}\right] \\
\hline(Q)] \\
&
\end{array}
$$

Further in this chapter we introduce a new class of operator called n power quasi n normal operator acting on a complex Hilbert space. This operator is the generalization ofn power quasi normal operator.

Definition 2.9

Let $L(H)$ be the algebra of all bounded linear operators on a Hilbert space H. An operator $T \in L(H)$ is said to be n power quasi n normal operator if it satisfies the following condition $T^{n}\left(T^{*} T^{n}\right)=\left(T^{*} T^{n}\right) T^{n}$ for some natural number n.

Example 2.10:

Consider the operator $\mathrm{T}=\left(\begin{array}{cc}i & 2 \\ 0 & -i\end{array}\right)$ acting on which is 2 power class (Q) and 2 power quasi 2 normal operator.

Solution:

Now $T^{*}=\left(\begin{array}{cc}-i & 0 \\ 2 & i\end{array}\right)$ and by direct decomposition, we show that $T^{*^{2}} T^{4}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=\left(T^{*} T^{2}\right)^{2}$ and therefore T is 2 power class (Q) operator. Further we show that $T^{2}\left(T^{*} T^{2}\right)=\left(\begin{array}{cc}-i & 0 \\ 2 & i\end{array}\right)=T^{*} T^{4}$ and therefore T is 2 power quasi 2 normal operator.

Theorem 2.11:

Let T be an invertible operator acting on three dimensional complex Hilbert space for any $\mathrm{k} \geq 0$. If T is $(2+\mathrm{k})$ power $\operatorname{class}(\mathrm{Q})$ then T is $(2+\mathrm{k})$ normal and hence T^{2+k} is normal.

Proof:

Suppose T is $(2+\mathrm{k})$ power class (Q) then $T^{*^{2}} T^{2(2+k)}=\left(T^{*} T^{2+k}\right)^{2}$ is true. We can write this equation as, $T^{* 2} T^{2(2+k)}=\left(T^{*} T^{2+k}\right)^{2}=T^{*} T^{2+k} T^{*} T^{2+k}$. If T has inverse then T^{*} also has inverse and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$. Pre multiply by $\left(T^{*}\right)^{-1}$ from the left, we get $T^{*} T^{2(2+k)}=T^{2+k} T^{*} T^{2+k}$ and this implies that $T^{*} T^{2+k} T^{2+k}=$ $T^{2+k} T^{*} T^{2+k}$

Multiply (2+k) times with T^{-1} from the right we get, $T^{*} T^{2+k}=T^{2+k} T^{*}$ and hence T is (2+k) normal. Further, it is well known that T is n normal operator if and only if T^{n} is normal operator. Hence, here T is $(2+\mathrm{k})$ normal implies that $T^{(2+k)}$ is normal.
Theorem 2.12 If a quasi normal operator T on C^{2} is $(2+\mathrm{k})$ normal operator then it is 2 power class (Q) operator.

Proof:

We prove that T is $(3+\mathrm{k})$ power class (Q) operator.

$$
\begin{array}{rlrl}
\left(T^{*} T^{3+k}\right)^{2} & =\left(T^{*} T^{3+k}\right)\left(T^{*} T^{3+k}\right) & \\
& =T^{*} T^{2+k} T\left(T^{*} T\right) T^{2+k} & & \\
& =T^{*} T^{2+k}\left(T^{*} T\right) T T^{2+k} & & {[\because T \text { is quasi normal }]} \\
& =T^{*} T^{*} T^{2+k} T T T^{2+k} & & \\
& =T^{* 2} T^{3+k} T^{3+k} & & \\
& =T^{*} T^{2(3+k)} . & \left.\left(T^{*} T^{3+k}\right)^{2}=\left(T^{*} T^{3+k}\right)^{2} \text { Hence } \mathrm{T} \text { is }(3+\mathrm{k}) \text { pormal }\right]
\end{array}
$$

operator.
Theorem 2.13:
Let T be a class (Q) operator on H . If T is complex symmetric operator, then the following condition $T^{2} T^{*^{2}}=$ $\left(T T^{*}\right)^{2}$ hold.

Proof:

If T is complex symmetric operator, then by definition we get, $\mathrm{CTC}=\mathrm{T}^{*}, \mathrm{~T}=\mathrm{CT} * \mathrm{C}$ and $C^{2}=I$. It follows that $T^{*} T^{2}=\mathrm{CTC} \mathrm{CTC} \mathrm{CT}{ }^{*} \mathrm{CCT}^{*} \mathrm{C}=C T^{2} T^{*}{ }^{2} \mathrm{C}$ and $\left(T^{*} T\right)^{2}=\mathrm{CTC} \mathrm{CT}^{*} \mathrm{C} \mathrm{CTC} \mathrm{CT}^{*} \mathrm{C}=\mathrm{C}\left(T T^{*}\right)^{2} \mathrm{C}$. Also it is given that T is class (Q) operator therefore $T^{*^{2}} T^{2}=\left(T^{*} T\right)^{2}$ implies that $C T^{2} T^{*^{2}} C=\mathrm{C}\left(T T^{*}\right)^{2} \mathrm{C}$. On pre multiply and post multiply by C on both sides and using the involuntary property of $\mathrm{C}\left(C^{2}=I\right)$ we get the required condition.

Section 3.0:

In this section we derive theorems based on quasi n posinormal operator on Hardy space.
Definition 3.1:[9] An operator T in a Hilbert space H is called posinormal if $\mathrm{TT}^{*} \leq \mathrm{c}^{2} \mathrm{~T}^{*} \mathrm{~T}$ for some $\mathrm{c}>0$.
Definition 3.2 :[9] An operator T in a Hilbert space H is quasi posinormal if $\left(T^{*}\right)^{2} \leq \mathrm{c}^{2} T^{* 2} T^{2}$
Definition 3.3: An operator T in a Hilbert space H is quasi n posinormal if $\left(\mathrm{TT}^{*}\right)^{2 \mathrm{n}} \leq\left(T^{*^{2}} T^{2}\right)^{n}$
Remark: quasi n - posinormal operator and n - quasi posinormal operator have the same definition.
Theorem 3.4:If C_{T} is a hyponormal composition operator then it is quasi n posinormal.
Proof:
C_{T} is quasi n posinormal if $\left(C_{T} C_{T}^{*}\right)^{n} \leq \mu C_{T}^{* 2 n} C_{T}^{2 n}$ for some $\mu>1$

$$
\begin{aligned}
<\left(\left(C_{T} C_{T}^{*}\right)^{n}-\mu C_{T}^{*^{2 n}} C_{T}^{2 n}\right) f, f> & =<\left(C_{T} C_{T}^{*}\right)^{n} f, f>-<\mu C_{T}^{*^{2 n}} C_{T}^{2 n} f, f> \\
& =\left\|C_{T}^{*} f\right\|^{2 n}-\mu\left\|C_{T} f\right\|^{4 n}, \forall f \in H^{2}(\beta)
\end{aligned}
$$

Let $f=k_{o}^{\beta}$ we have $\left\|C_{T}^{*} k_{o}^{\beta}\right\|_{\beta}^{2 n}-\mu\left\|C_{T} k_{o}^{\beta}\right\|_{\beta}^{4 n}=\left\|k_{T(o)}^{\beta}\right\|_{\beta}^{2 n}-\mu\left\|k_{o}^{\beta}\right\|_{\beta}^{4 n}=\left\|k_{o}^{\beta}\right\|_{\beta}^{2 n}-\mu\left\|k_{o}^{\beta}\right\|_{\beta}^{4 n}=1-\mu \leq 0$
$\left\|C_{T}^{*} k_{o}^{\beta}\right\|_{\beta}^{2 n} \leq \mu\left\|C_{T} k_{o}^{\beta}\right\|_{\beta}^{4 n}$ and therefore C_{T} is quasi n posinormal.
Theorem: $3.5 C_{T}$ is quasi n posinormal if and only if $\left\|\left(C_{T} C_{T}^{*}\right)^{*^{n}} k_{o}^{\beta}\right\|_{\beta}^{2} \leq \mu\left\|C_{T}^{2} k_{o}^{\beta}\right\|_{\beta}^{2}$

Proof:

C_{T} is n quasi posinormal if $\left(C_{T} C_{T}^{*}\right)^{2 n}-\mu\left(C_{T}^{*^{2}} C_{T}^{2}\right)^{n} \leq 0$ for $\mu>1$

$$
\begin{aligned}
& \Leftrightarrow<\left(\left(C_{T} C_{T}^{*}\right)^{2 n}-\mu\left(C_{T}^{* 2} C_{T}^{2}\right)^{n}\right) f, f>\leq 0 \\
& \Leftrightarrow<\left(C_{T} C_{T}^{*}\right)^{2 n} f, f>-\mu<\left(C_{T}^{* 2} C_{T}^{2}\right)^{n} f, f>\leq 0 \\
& \Leftrightarrow<\left(C_{T} C_{T}^{*}\right)^{n}\left(C_{T} C_{T}^{*}\right)^{n} f, f>-\mu<C_{T}^{2} f, C_{T}^{2} f>\leq 0 \\
& \Leftrightarrow<\left(C_{T} C_{T}^{*}\right)^{n} f,\left(C_{T} C_{T}^{*}\right)^{n} f>-\mu\left\|C_{T}^{2} f\right\|^{2} \leq 0 \\
& \Leftrightarrow\left\|\left(C_{T} C_{T}^{*}\right)^{* n} f\right\|^{2}-\mu\left\|C_{T}^{2} f\right\|^{2} \leq 0 \text { forallf } \in H^{2}(\beta)
\end{aligned}
$$

Let $f=k_{o}^{\beta}$ we have, $\left\|\left(C_{T} C_{T}^{*}\right)^{*^{n}} k_{o}^{\beta}\right\|_{\beta}^{2}-\mu\left\|C_{T}^{2} k_{o}^{\beta}\right\|_{\beta}^{2} \leq 0$
which implies that, $\left\|\left(C_{T} C_{T}^{*}\right)^{*^{n}} k_{o}^{\beta}\right\|_{\beta}^{2} \leq \mu\left\|C_{T}^{2} k_{o}^{\beta}\right\|_{\beta}^{2}$ forallf $\in H^{2}(\beta)$

Theorem: 3.6 C_{r} is n quasi posinormal if and only if $\left(P_{v}^{2}\right)^{2 n} \leq \mu\left(h_{2} E\left(\pi_{2}^{2}\right) o T^{-2}\right)^{n}$ a.e
Proof:
C_{r} is n quasi posinormal if $\left(C_{r} C_{r}^{*}\right)^{2 n} \leq \mu\left(C_{r}^{*^{2}} C_{r}^{2}\right)^{n}$

$$
\begin{aligned}
& \Leftrightarrow<\left(\left(C_{r} C_{r}^{*}\right)^{2 n}-\mu\left(C_{r}^{*^{2}} C_{r}^{2}\right)^{n}\right) f, f>\leq 0 \\
& \Leftrightarrow \int\left[\left(P_{v}^{2}\right)^{2 n}-\mu\left(h_{2} E\left(\pi_{2}^{2}\right) o T^{-2}\right)^{n}\right]|f|^{2} d \lambda>\leq 0 \text { forevery } E \in \Sigma \\
& \Leftrightarrow\left(P_{v}^{2}\right)^{2 n} \leq \mu\left(h_{2} E\left(\pi_{2}^{2}\right) o T^{-2}\right)^{n} \text { a.e }
\end{aligned}
$$

Theorem: 3.7 $C_{s, t}$ is n quasi posinormal if and only if $\left.\quad\left(P_{v(s, t)}^{2}\right)^{2 n} \leq \mu h_{2 n} E\left(\pi_{2(s, t)}^{2}\right) o T^{-2}\right)^{n}$ Proof:
$C_{s, t}$ is n quasi posinormal if $\left(C_{(s, t)} C_{(s, t)}^{*}\right)^{2 n} \leq \mu\left(C_{(s, t)}^{*^{2}} C_{(s, t)}^{2}\right)^{n}$

$$
\begin{aligned}
& \Leftrightarrow<\left(\left(C_{(s, t)} C_{(s, t)}^{*}\right)^{2 n}-\mu\left(C_{(s, t)}^{*^{2}} C_{(s, t)}^{2}\right)^{n}\right) f, f>\leq 0 \\
& \Leftrightarrow \int\left[\left(P_{v(s, t)}^{2}\right)^{2 n}-\mu\left(h_{2} E\left(\pi_{2(s, t)}^{2}\right) o T^{-2}\right)^{n}\right. \\
& \Leftrightarrow P_{v(s, t)}^{4 n} \leq \mu\left(h_{2} E\left(\pi_{2(s, t)}^{2}\right) o T^{-2}\right)^{n}
\end{aligned}
$$

Theorem: 3.8 $C_{s, t}{ }^{*}$ is n quasi posinormal if and only if $h_{2 n}\left(E\left(\pi_{(s, t)}^{2}\right) \circ T^{-l}\right)^{2 n} \leq \mu \pi_{2}^{2}\left(h_{2} o T^{2}\right)^{n}$
Proof:
$C_{s, t}{ }^{*}$ is n quasi posinormal if $\left(C_{(s, t)}^{*} C_{(s, t)}\right)^{2 n} \leq \mu\left(C_{(s, t)}^{2} C_{(s, t)}^{*^{2}}\right)^{n}$

$$
\begin{aligned}
& \Leftrightarrow<\left(\left(C_{(s, t)}^{*} C_{(s, t)}\right)^{2 n}-\mu\left(C_{(s, t)}^{2} C_{(s, t)}^{*^{2}}\right)^{n}\right) f, f>\leq 0 \\
& \Leftrightarrow \int\left[h _ { 2 n } \left(E\left(\left(\pi_{(s, t)}^{2}\right) o T^{-l}\right)^{2 n}-\mu\left(\pi_{2}\left(h_{2} o T^{2}\right) E\left(\pi_{2} f\right)^{n}\right]|f|^{2} d h \leq 0 \text { for every } E \in \sum\right.\right. \\
& \Leftrightarrow h_{2 n}\left(E\left(\pi_{(s, t)}^{2}\right) o T^{-l}\right)^{2 n}-\mu \pi_{2}^{2}\left(h_{2} o T^{2}\right)^{n} \leq 0 \\
& \Leftrightarrow h_{2 n}\left(E\left(\pi_{(s, t)}^{2}\right) o T^{-l}\right)^{2 n} \leq \mu \pi_{2}^{2}\left(h_{2} o T^{2}\right)^{n}
\end{aligned}
$$

Characterzation on the generalized Aluthge Transformation

Definition: Generalized Aluthge Transform

For an operator $\mathrm{T}=\mathrm{U}|\mathrm{T}|$, define \widetilde{T} as follows $\widetilde{T}_{s, t}=|T|^{s} U|T|^{t}$ for s and $\mathrm{t}>0$ which is called the generalized Aluthge transform of T. In particular, $\widetilde{T}=|T|^{1 / 2} U|T|^{1 / 3}$ is called Aluthge transform of T.
Theorem: 3.9 $C_{r}{ }^{*}$ is n quasi posinormal if and only if $h_{2 n}\left(E\left(\prod_{r}^{2}\right) o T^{-1}\right)^{2 n} \leq \mu\left(\prod_{2}^{2}\left(h_{2} o T^{2}\right)\right)^{n}$
Proof:
$C_{r}{ }^{*}$ is n quasi posinormal if $\left(C_{r}^{*} C_{r}\right)^{2 n} \leq \mu\left(C_{r}^{2} C_{r}^{*^{2}}\right)^{n}$

$$
\begin{aligned}
& \Leftrightarrow<\left(\left(C_{r}^{*} C_{r}\right)^{2 n}-\mu\left(C_{r}^{2} C_{r}^{*^{2}}\right)^{n}\right) f, f>\leq 0 \\
& \Leftrightarrow \int\left[h_{2 n}\left(E\left(\pi^{2} o T^{-l}\right)^{2 n}-\mu\left(\pi_{2}\left(h_{2} o T^{2}\right) E\left(\pi_{2} f\right)\right)^{n}\right]|f|^{2} d \lambda \leq 0 \text { for every } E \in \sum\right. \\
& \Leftrightarrow \int\left[h_{2 n}\left(E\left(\pi^{2} o T^{-l}\right)^{2 n}-\mu\left(\pi_{2}^{2}\left(h_{2} o T^{2}\right)\right)^{n}\right]|f|^{2} d \lambda \leq 0\right. \\
& \Leftrightarrow h_{2 n}\left(E\left(\pi^{2} o T^{-l}\right)^{2 n} \leq \mu\left(\pi_{2}^{2}\left(h_{2} o T^{2}\right)\right)^{n}\right.
\end{aligned}
$$

CONCLUSION

The algebra of all bounded Linear operators on a Hilbert space H is taken for the research work and the following findings on the class of $(\mathrm{n}+\mathrm{k})$ power class (Q) operators are given.

1. If T is $(n+k)$ power class (Q) and T is quasi $(n+k)$ normal, then T is $(n+1+k)$ power class $Q)$. 2. If an operator T on C^{2} is both invertible and ($2+\mathrm{k}$) normal operator then the following results hold. (i) T is $(2+\mathrm{k})$ power class (Q), (ii) T is not quasi $(\mathrm{n}+\mathrm{k})$ normal and (iii) T is not $(3+\mathrm{k})$ power class (Q).3. Consider the operator $\mathrm{T}=\left(\begin{array}{cc}i & 2 \\ 0 & -i\end{array}\right)$ acting on C^{2} which is 2 normal, 2 power class (Q), not quasi 2 normal and not 3 power class (Q). 4. Let T be bounded linear operator. If T is $(\mathrm{n}+\mathrm{k})$ power class (Q) operator and has inverse then T is $(\mathrm{n}+\mathrm{k})$ normal operator for any $\mathrm{k} \geq 0$. 5. Let T be bounded linear operator on H. If T is $(\mathrm{n}+2 \mathrm{k})$ power class (Q) operator and in the same time is 2 power quasi n normal operator, then T is $(\mathrm{n}+2 \mathrm{k}+2)$ power class (Q) operator for any $\mathrm{k} \geq 0.6$. Let T and S be bounded Linear operators on $\mathrm{L}(\mathrm{H})$. If T and S are $(\mathrm{n}+\mathrm{k})$ power class (Q) operators that doubly commutes ie., $\mathrm{TS}=\mathrm{ST}$ and $\mathrm{T} S^{*}=S^{*} T$ then operator TS is $(\mathrm{n}+\mathrm{k})$ power
class (Q) operator. 7. Let T and S be bounded Linear operators on $L(H)$. If T and S are $(\mathrm{n}+\mathrm{k})$ power class (Q) operators that doubly commutes ie., $\mathrm{TS}=\mathrm{ST}$ and $\mathrm{T} S^{*}=S^{*} T$ under the same conditions operator (ST) is ($\mathrm{n}+\mathrm{k}$) power class (Q) operator. 8. If T is $(\mathrm{n}+\mathrm{k})$ power class (Q) operator such that T doubly commute with an isometric operator S , then TS is $(\mathrm{n}+\mathrm{k})$ power class (Q) operator. 9. n power quasi n normal operator on a Hilbert space is introduced. An operator $T \in L(H)$ is said to be n power quasi n normal operator if it satisfies the following condition $T^{n}\left(T^{*} T^{n}\right)=\left(T^{*} T^{n}\right) T^{n}$ for some natural number n . 10 . An n power class (Q) operator need not be n power quasi n normal operator. This result is verified by considering the operator $\mathrm{T}=\left(\begin{array}{cc}i & 2 \\ 0 & -i\end{array}\right)$ acting on H which is 2 power class (Q) and it is not 2 power quasi 2 normal operator. 11. Let T be an invertible operator acting on three dimensional complex Hilbert space for any $k \geq 0$. If T is $(2+k)$ power class (Q) then T is $(2+k)$ normal and hence T^{2+k} is normal. 12. If a quasi normal operator T on C^{2} is $(2+\mathrm{k})$ normal operator then it is 2 power class (Q) operator. 13. Let T be a class (Q) operator on H . If T is complex symmetric operator, then the following condition $T^{2} T^{*^{2}}=\left(T T^{*}\right)^{2}$ hold. Let $\mathrm{H}^{2}(\beta)$ be a Hilbert space of functions analytic in the unit disk. Then the following charatcerizations hold. 13. If C_{T} is a hyponormal composition operator then it is quasi n posinormal. 14. C_{T} is quasi n posinormal if and only if $\left\|\left(C_{T} C_{T}^{*}\right)^{*^{n}} k_{o}^{\beta}\right\|_{\beta}^{2} \leq \mu\left\|C_{T}^{2} k_{o}^{\beta}\right\|_{\beta}^{2}$. 15. C_{r} is n quasi posinormal if $\left(C_{r} C_{r}^{*}\right)^{2 n} \leq \mu\left(C_{r}^{*^{2}} C_{r}^{2}\right)^{n} \quad$ 16. $C_{s, t}$ is $\mathrm{n} \quad$ quasi posinormal if and only if $\left.\left(P_{v(s, t)}^{2}\right)^{2 n} \leq \mu h_{2 n} E\left(\pi_{2(s, t)}^{2}\right) o T^{-2}\right)^{n}$. 17. $C_{s, t}{ }^{*}$ is n quasi posinormal if and only if $h_{2 n}\left(E\left(\pi_{(s, t)}^{2}\right) o T^{-l}\right)^{2 n} \leq$ $\mu \pi_{2}^{2}\left(h_{2} o T^{2}\right)^{n}$.18. $C_{r}{ }^{*}$ is n quasi posinormal if and only if $h_{2 n}\left(E\left(\prod_{r}^{2}\right) o T^{-l}\right)^{2 n} \leq \mu\left(\prod_{2}^{2}\left(h_{2} o T^{2}\right)\right)^{n}$.

ACKNOWLEDGEMENTS

This article is supported by UGC - Minor Research Project during 2013-2015.
Mr. K.M.mnaikandan
Principal Investigator MRP - 5016/14 (SERO/UGC)
Assistant Professor and Head, Department of Mathematics
Dr. SNS Rajalakshmi College of Arts and Science
486, Thudialur - Saravanampatti Road, Chinnavedampatti
Coimbatore - 641049

REFERENCES

[1] A.A.S. Jibril , On n - power normal Operators, The Arabian Journal for Science and Engineering Volume 33, Number 2A, 2008.
[2] Adnan and A.S. Jibril, On operators for which $T^{* 2} T^{2}=(T * T)^{2}$, International Mathematical forum, 5, 2010, No. 46, $2255-2262$.
[3] S. Panayappan, N. Sivamani, On n power class (Q) operators, Int. Journal of Math. Analysis, Vol. 6, 2012, no. 31, 1513 - 1518.
[4] Krutan Rasimi, Luigj Gjoka, Some remarks on n - power class (Q) operators, International journal of Pure and Applied Mathematics, Volume 89, No. 2, 2013, 147 - 151.
[5] Dr. T. Veluchamy, K.M.Manikanadan, T.Ramesh, Solving n power class (Q) operators using MATLAB,IOSR Journal of Mathematics (IOSR-JM), Volume 10, Issue 2 Ver. II (Mar-Apr. 2014), PP 13-16.
[6] Sterling K. Berberian, Introduction to Hilbert space, New York, Oxford University Press 1961.
[7] Sen Zhu and Jiayin Zhao, The riesz decomposition theorem for skew symmetric operators, J. Korean Math. Soc. 52 (2015), No. 2, pp. 403-416.
[8] S. M. Zagorodnyuk, On a J-polar decomposition of a bounded operator and matrices of J-symmetric and J-skew-symmetric operators, Banach J. Math. Anal. 4 (2010), no.2, 11-36.
[9] H.Crawford Rhaly, J. Math.Soc.Japan, 46, No.4 (1994), 587-605.

