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Abstract 
                   Laminar mixed convection flow of an incompressible, electrically conducting, viscous fluid with 

variable viscosity and variable thermal conductivity through two parallel horizontal walls under the influence 

of variable magnetic field is studied. Arrhenius model is used to express variable viscosity and thermal 
conductivity. In this model, the variable viscosity, and also the thermal conductivity decrease exponentially with 

temperature. The fluid is subjected to a constant pressure gradient and an external magnetic field 

perpendicular to the plates. The plates are maintained at different but constant temperatures. Approximation 

technique is used to obtain the solution of the coupled non-linear equations of the velocity field and the 

temperature distribution. The expressions for skin-friction and heat transfer rate are also derived. The effects of 

parameters of engineering importance on velocity field and temperature distribution are discussed graphically, 

while effects on skin-friction and rate of heat transfer are presented in tabular form and discussed. 

   

 

 

Nomenclature 

 B  variable magnetic field,  

0B   constant magnetic field, when 
1

T T  ,  

p
C   specific heat at constant pressure, 

E c   Eckert number,  

h   width of the channel, 

m
k    dimensional permeability,  

m
k   permeability parameter, 

T
K    variable thermal conductivity, 

0
T

K   thermal conductivity, when 
1

T T  , 

M   magnetic parameter, 

N u   rate of heat transfer, 

'
'

'

p
P

x

 
  

 
 constant pressure gradient, 

P  non-dimensional pressure, 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 55  Number 7 - March 2018 

 

ISSN: 2231-5373                                 http://www.ijmttjournal.org                             Page 464 

 

P r   Prandtl number, 

T '    dimensional fluid temperature,  

T   non-dimensional fluid temperature, 

' '

1 2,T T   temperatures of the lower and upper walls, 

u '    velocity of the fluid along the channel, 

u   non-dimensional velocity of the fluid, 

mu   mean velocity of the fluid, 

', 'x y   dimensional coordinate system, 

,x y   non-dimensional coordinates, 

 

Greek symbols 

   viscosity parameter, 

,  '
   small positive constants,  

   thermal conductivity parameter, 

0
    constant viscosity, when 

1
T T  , 

'    variable viscosity of the fluid, 

   density of the fluid, 

   electrical conductivity of the fluid, 

   non-dimensional skin-friction.  

 

 

Introduction 

The convection flow of an incompressible, electrically conducting fluid between two infinite parallel 

stationary plates in the presence of magnetic field has been studied in numerous ways due to its important 

applications in MHD pumps, MHD generators, flow meters etc. Most of these studies are based on constant 

physical properties of the fluid. However, some physical properties of the fluid are function of temperature. 

Therefore, consideration of  constant properties is a good approximation so long as small differences in 

temperature are involved. More accurate prediction of the flow and heat transfer properties can be achieved by 

considering the variation of physical properties with temperature. In fact, viscosity of many fluids vary with 

temperature. Therefore, the results drawn from flow of such fluids with constant viscosity are not applicable to 

the fluid flows with temperature dependent viscosity. Hence, it is necessary to take into account the variation of 

viscosity, to predict a better estimation of the flow and heat transfer behavior. The flow of fluids considering 
temperature dependent viscosity are of immense importance in chemical engineering, bio-chemical engineering 

and petroleum industries [1,2] to predict the results more accurately. 

Ling and Lybbs [3] presented a very interesting theoretical investigation of the temperature dependent 

fluid viscosity influence on the forced convection through a porous medium bounded by an isothermal flat plate. 

The fluid viscosity was modeled as an inverse linear function of the fluid temperature, which is a suitable model 

for many liquids including water and crude oil. Rao and Pop [4] investigated the same model envisaging 

transient free convection flow over a plate submersed in fluid saturated porous medium. Kafoussius and 

Williams [5] studied the effect of temperature dependent viscosity on the free convection boundary layer flow 

past a vertical isothermal plate. Kafoussius and Rees [6] extended the work [5] and examined numerically, the 

effect of temperature dependent viscosity on the mixed convection laminar boundary layer flow along a vertical 

isothermal plate. Singh et al. [7] investigated effects of temperature dependent viscosity on heat transfer rate 
envisaging unsteady free convection flow along a vertical isothermal and non-isothermal plate embedded in a 

fluid saturated porous medium. Hazarika and Phukan [8] extended the study [7] to investigate effects of variable 

temperature dependent viscosity considering continuous moving isothermal and non-isothermal plate using 
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Karmann-Pohlhausen integral method. Hussain et al. [9] discussed the effects of radiation on free convection 

flow with temperature dependent viscosity in presence of magnetic field past a vertical porous plate. Bagai [10] 

obtained a similarity solution for the analysis of the steady free convection boundary layers over a non-

isothermal axi-symmetric body embedded in a fluid saturated porous medium and discussed the effect of 

temperature dependent viscosity on heat transfer rate with internal heat generation.  

Barakat [11] investigated the effect of variable viscosity on the flow and heat transfer about a fluid 
underling axi-symmetric spreading surface in the presence of an axial magnetic field envisaging that the 

viscosity of the fluid vary as an inverse linear function of temperature and the magnetic field strength is 

inversely proportional to the radial coordinate . Sequentially, Cheng [12] discussed effect of temperature 

dependent viscosity on natural convection heat transfer from a horizontal isothermal cylinder of elliptic cross-

section, whereas Molla et al. [13] investigated natural convection flow from an isothermal circular cylinder with 

temperature dependent viscosity. Attia [14] discussed the effect of temperature dependent viscosity on steady 

Hartmann flow with ion-slip. Attia [15] also studied effect of temperature dependent viscosity on transient 

MHD flow and heat transfer between two parallel plates. Kankane and Gokhale [16] used Arrhenius model 

(commonly known as exponential model) to study fully developed flow through a horizontal channel. 

Pantokratoras [17] discussed effects of variable viscosity with variable Prandtl number on forced and mixed 

convection boundary layer flow along a flat plate. Pantokratoras [18] further discussed the effects of variable 

viscosity and variable Prandtl number on non-Darcian forced convection heat transfer over a flat plate. Attia 
[19] investigated unsteady Couette flow and heat transfer of an electrically conducting fluid envisaging 

temperature dependent viscosity and thermal conductivity. Recently, Singh et al. [20, 21] have extended the 

work [19] to discuss the flow in a horizontal channel embedded in a homogeneous porous medium envisaging 

Arrhenius model. Recently, Singh and coworkers [21-24] have examined MHD convective flow in horizontal 

channel with different flow and thermal restrictions. More recently, Singh et al [25, 26] also investigated MHD 

convective flow past a vertical porous plate and discussed the effects of variable suction/injection and variable 

permeability and also effects of variable suction/injection as well as radiation respectively. However, in these 

studies the variation in viscosity with temperature is not taken into account.   

 In fact, for most realistic fluids, the viscosity shows a rather pronounced variation with temperature. A 

decrease in temperature causes the viscosity of the liquid to increase and there is a substantial correlation 

between the viscosity and the corresponding thermal expansion of the fluid. Therefore, the object of the present 
work is to study free convection flow of a viscous, electrically conducting, incompressible fluid with 

temperature dependent viscosity and variable thermal conductivity through a long horizontal channel under the 

influence of magnetic field envisaging viscous dissipation and Joule heating. Arrhenius model is considered in 

order to account for the temperature dependent viscosity [19] as well as for variation in thermal conductivity. 

The coupled non-linear equations of momentum and energy are solved using approximation technique following 

Ganji et al. [21]. The variations in velocity field and temperature distribution are discussed graphically, while 

skin-friction and rate of heat transfer are discussed with the help of tables for different numerical values of the 

parameters of engineering importance. The results of the study are in well agreement with those of Kankane and 

Gokhale [16], Singh et al. [20] and Gupta [22] have been deduced as particular case of the present study. The 

configuration suggested in this model enhances the utility of the model of Attia [19] and is a good 

approximation in some practical situations such as heat exchangers, flow meters and pipes that connect system 

components. 

 

1. Formulation of the problem 

We consider fully developed laminar flow of an electrically conducting, viscous, incompressible fluid 

taking into account the temperature dependent viscosity and temperature dependent thermal conductivity. It is 

assumed that the fluid flows between two long parallel horizontal channel walls.  Let 2h be the width of the 

horizontal channel walls, assumed to be electrically non-conducting and kept at two constant temperatures, 
'

1
T  

for the lower cold wall and 
'

2
T  for the upper hot wall respectively (

2 1
T T  ). The heat transfer takes place 

from upper hot wall to the lower cold wall by conduction through the fluid [14]. Also, there is a heat generation 

due to both, the Joule and viscous dissipations [19]. The viscosity and also the thermal conductivity of the fluid 

is assumed to vary with temperature. These are defined as  
0 1

f T    and  
2

0
T T

K K f T  , 

respectively. For practical reasons, which are found to be suitable for many realistic fluids of engineering 

interest [27, 28], the viscosity and thermal conductivity is assumed to vary exponentially with temperature. 

Hence, functions  
1

f T   and   
2

f T   take the form    1 1
f T e T T

 
     and 
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   2 1
f T e T T

 
    , respectively [16, 29]. A constant pressure gradient 

'
'

'

p
P

x

 
  
 

 is applied in the 

x  - direction and the magnetic field  0 1
2

B B e x p T T
 

    
 

 is applied in the positive y  - direction, 

i.e., normal to the flow field. The constant magnetic field 
0

B  is chosen such that the induced magnetic field is 

neglected [30]. The no-slip condition at the walls implies that the fluid velocity has neither a z  - component nor 

an x  - component at the wall 0y    and the wall y h  . Since the walls are long enough in the x  - and z  - 

directions, the physical variables are invariant in these directions, the problem is essentially one dimensional 

with velocity component  u y   along the x  - axis. The physical model and the coordinate system of the 

problem are shown in Fig. 1. 

 

Under the present configuration, the flow can be shown to be governed by the following system of 

coupled non-linear equations [30]. 

2' '
' ' ' 0

' ' m

d d u
P u B u

d y d y k

 
       

 

.                                    (1) 

2

2 2
0

T

d d T ' d u '
K ' B u

d y ' d y ' d y '

   
        

   

.                           (2) 

 The terms in the left hand side of Eq. (1) represent, respectively, the pressure gradient, viscous forces, 
Darcy velocity and Lorentz force, while in Eq. (2), the terms in the left-hand side represent, respectively, the 

thermal diffusion, viscous dissipation and Joule dissipation.  

The boundary conditions of the velocity field and the temperature distribution relevant to the problem 

[31] are: 

 0u '   , 
1

'
T ' T  at 0y '  ,  

0u '  ,  
2

'
T ' T  at y ' h .          (3) 

The problem is simplified by writing Eqs. (1) - (2) in the non-dimensional form. We define the 

following non-dimensional variables and parameters:  
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m

u '
u

u
 ,        

y '
y

h
 ,            

0

'
 


, 

0

T
T

T

K
K

K


 ,        

2

m
m

k
k

h


 , 

p
P

x





,        

1

2 1

'

' '

T ' T
T

T T






      

2

0

'

m

P h
P

u



,      2 1

T T      ,     

 2 1

' '
' T T    ,         

 

2

' '
2 1

m

p

u
E c

C T T





,       
2 2

0

0

M B h





,   

0

0 p

T

C

P r
K



 . 

The symbols and parameters are defined in the nomenclature. 

In terms of the above non-dimensional variables and parameters, the Eqs. (1) and (2), take the form: 

 
1

0
T T T

m

d d u
e e u M e u P

d y d y k

      
    

 

.    (4) 

 

2

2
0

T Td d T d u
e P r E c P r E c M e u

d y d y d y

     
      

   

.   (5) 

Eqs. (4) - (5), can be written as follows: 

  
2

1

2
0

T

m

d u d T d u
M k u P e

d y d yd y

 
      .                                                   (6) 

 
 

2 22
2

2
0

TTd T d T d u
P rE c e P rE cM e u

d y d yd y

     
        

   

.                   (7) 

The boundary conditions (3) in non-dimensional form are: 

0u   , 0T    at 0y  ,  

0u  ,  1T    at 1y  .      (8) 

 

2. Solution of the problem 

Eqs. (4) - (5) represent a system of coupled non-linear differential equations. In order to solve the non-

linear system, we expand u and T in powers of E c , under the assumption 1E c  , which is valid for 

incompressible fluids [27]. Hence, the velocity and temperature can be expressed as follows: 

  
0 1

2
..... .u u E c u o E c         and        

0 1

2
... . . .T T E c T o E c    .  (9) 

Introducing (9) in (4) - (5) and equating the constant term, as well as the coefficients of E c , neglecting 

the coefficients of  
2

o E c , we obtain: 

 0 010
0 0

T T

m

d ud
e k M e u P

d y d y

    
    

 

,                                (10) 

    0 0101
1 1 0 1

0
T T

m

d ud ud
e T k M e u u T

d y d y d y

      
        

   

        (11) 
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 0 0
0

T d Td
e

d y d y

 
 

 

,        (12)                  

0 0 0

2

20 01
1 0

0
T T Td T d ud Td

e T P r e P r M e u
d y d y d y d y

         
        

     

      (13) 

Introducing (9), the boundary conditions (6) are transformed to: 

0
0u  ,          

1
0u  ,        

0
0T  ,          

1
0T   at 0y  , 

0
0u  ,          

1
0u  ,        

0
1T  ,           

1
0T   at  1y  .           (14) 

The solution of Eqs. (10) - (13) satisfying the corresponding boundary conditions (14) are obtained as 
follows: 

 
0

1T y           (15) 

 1 2
0 1 2 1

m y m y y
u C e C e K e

 
                                                   (16) 

 
     1 2

2 2

1 3 4 2 3 4

m y m y yy
T C C y e K e K e K e

         
      

               
     1 2 1 2

5 6 7

m m y m y m y
K e K e K e

        
       (17)     

 
   1 23 4

1 5 6 2 7 2 8

m y m ym y m y
u y C e C e K e K e

   
     

   
 

2 9

y
K e

   
  

 1
3 0 3 1

m y
K y K e


   

 2
3 2 3 3

m y
K y K e


    

                 
 

3 4 3 5

y
K y K e

   
 

   1 2
3 3

3 6 3 7

m y m y
K e K e

       
   

      
   1 2

22

3 8 3 9

m m yy
K e K e

       
 

 1 2
2

4 0

m m y
K e

    
  

                    
   1 2

2 2

4 1 4 2

m y m y
K e K e

   
 

 1
4 3

m y
K e

   
  

                                            
   2 1 2

4 4 4 5

m y m m y
K e K e

      
  .  (18)  

The constants are defined in the appendix. 

 

3. Skin-friction and rate of heat transfer 

The skin-friction (  ) at the lower wall ( 0y  ) and upper wall ( 1y  ) is given by: 

 
0 1

0 1
0 1 0 10 1

y ,
y , y ,y ,

d u d ud u
E c

d y d y d y
 

    
       

    

   (19) 

 
0y 

  1 1 2 2 1 4 8
m C m C K E cK     .                                             (20) 

    1 2
1 1 2 2 1 4 91

m m

y
m C e m C e K e E cK

 


      .                               (21) 

The rate of heat transfer ( N u ) at the lower wall ( 0y  ) and upper wall ( 1y  ) is given by: 
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 
0 1

0 1
0 1 0 10 1

y ,
y , y ,y ,

d T d Td T
N u E c

d y d y d y
 

    
      
    

   (22) 

  5 00
1

y
N u E cK


   .                         .                                     (23) 

  5 11
1

y
N u E c K


   .                                                                                (24) 

4. Verification of the results for simple cases 

1. When hydromagnetic force is zero, i.e., 0M  , the fluid flow is simulated by in the presence of 

homogeneous porous medium, the results obtained are similar to those of Singh et al. [20].  

2. In the limit, when 
m

k   , the fluid flows in purely fluid regime, i.e., in absence of porous medium. 

In addition, if the term of Joule heating is ignored in Eq. (2), the results obtained are exactly the same 

to those obtained by Singh et al. [29], except notations. 

3. In absence of magnetic field, i.e., when 0M  , the term due to Joule dissipation is ignored and 

m
k   , the results obtained are exactly the same to those obtained by Kankane and Gokhale [16], 

except notations. 

Table-1 

Comparison of present numerical values of the velocity with numerical values of  

Attia [19] at middle of the channel walls for different values of  

  and  ( 0 0M . , 1 .0P r  , 0 .0 0 1E c  and 1 0 0
m

k  ) 

 

 

 

 

 

 

Table-2 

Variations in velocity u at middle ( 0 5y . ) of the channel walls ( 0M  )  

for different values of   and  ( 1 .0P r  , 0.001E c  and 1 0 0
m

k  ) 

 

 

 

 

 

 

 

 

 

 

Table3 

Variations in velocity u at middle ( 0 5y . ) of the channel walls ( 1 0M . ) 

for different values of   and  ( 1 .0P r  , 0 .001E c   and 1 0 0
m

k  ) 

          0 .0   0 .1   0 .3   0 .4   0 .5   

0 .0   1.97863 2.12184 2.30164                           2.50708                           2.56641                           

0 .1   2.00978 2.18016 2.38861 2.61025 2.68071 

0 .3     2.04934 2.24634 2.47192 2.73976 2.81148 

0 .4   2.07976 2.31743   2.57207   2.87163   2.91921 

 Attia [19] Present case 

        0 .0   0 .1   0 .5   0 .0   0 .1   0 .5   

0 .0   2.0777 2.1551 2.5245 2.18719 2.38176 3.02167 

0 .1   2.0777 2.1542 2.5163 2.22943 2.44187 3.26463 

0 .5   2.0777 2.1514 2.4920 2.31027 2.60609 3.53169 

          0 .0   0 .1   0 .3   0 .4   0 .5   

0 .0   2.18719 2.38176 2.63431                           3.94594                           3.02167                           

0 .1   2.22943 2.44187 2.78352 3.15179 3.26463 

0 .3     2.26614 2.51852 2.80474 3.17318 3.31942 

0 .4   2.29196 2.57347   2.89942     3.30964     3.48630 

0 .5   2.31027 2.60609 2.93796 3.34102 3.53169 
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0 .5   2.08014 2.35465 1.60928 2.61997 3.20864 

Table-4 

Variations in temperature T at middle ( 0 5y . ) of the channel walls ( 0M  ) 

for different values of   and  ( 0 0M . , 0 001E c .  and 1 0P r . )  

          0 .0   0 .1   0 .3   0 .4   0 .5   

0 .0   2.18719 2.36654 2.57916                           2.81972                           2.88789                          

0 .1   2.22738 2.44721 2.69854 2.97793 3.08938 

0 .3     2.26935 2.52693 2.81763 3.13927 3.28386 

0 .4   2.29198 2.56942   2.88937   3.23275   3.41579 

0 .5   2.31053 2.60819 2.94991 3.31989 3.51397 

Table-5 

Variations in temperature T at middle of the channel walls for different values  

of   and  ( 0 5y . , 1 0M . , 0 01E c . and 1 0P r . )  

          0 .0   0 .1   0 .3   0 .4   0 .5   

0 .0   1.97863 2.19348 2.47819                              2.83107                           2.91687                           

0 .1   2.00811   2.25174 2.56782 2.95996 3.06198 

0 .3     2.06973 2.34682 2.68591 3.10989 3.24682 

0 .4   2.09728 2.40963   2.77864   3.22619   3.39189 

0 .5   2.11934 2.42109 2.80715 3.26827 3.44524 

 

Table-6 

Variations in skin-friction (  ) and heat transfer rate (Nu) at the lower channel  

wall ( 0y  ) for different values of   and   

      ( 1 .0P r  , 1 0 0mk   and 0 .001E c  ) 

      Nu 

0M   1M   0M   1M   

0.0 0.0 2.94817 2.18986 0.78594 0.89178 

0.3 0.0 2.88985 2.13687 0.83719 0.95675 

0.6 0.0 2.80769 2.06132 0.90189 1.04153 

0.9 0.0 2.69965 1.96293 0.00992 1.17384 

1.0 0.0 2.65819 1.93967 1.04193 1.22937 

0.0 0.0 2.94817 2.18986 0.78594 0.89178 

0.0 0.3 2.92795 2.17718 1.89346 1.01714 

0.0 0.6 2.89817 2.15963 2.04893 1.19935 

0.0 0.9 2.85173 2.12347 2.29932 1.45198 

0.0 1.0 2.83287 2.08109 2.23189 1.53342 

Table-7 

Variations in skin-friction (  ) and heat transfer rate (Nu)  at the upper channel  

wall ( 1y  ) for different values of   and   

( 1 .0P r  , 1 0 0mk   and 0 .001E c  ) 

      Nu 

0M   1M   0M   1M   

0.0 0.0 4.98376 3.96892 1.89365 1.71649 

0.3 0.0 5.10957 4.04387 1.76047 1.62735 
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0.6 0.0 5.21782 4.16718 1.61853 1.50982 

0.9 0.0 5.33192 4.28953 1.43698 1.41306 

1.0 0.0 5.39758 4.32984 1.24917 1.39918 

0.0 0.0 4.98376 3.96892 1.89365 1.71649 

0.0 0.3 5.87254 5.02914 1.78934 1.59912 

0.0 0.6 6.08971 5.19048 1.67819 1.48109 

0.0 0.9 6.33185 5.31576 1.56975 1.37004 

0.0 1.0 6.65672 5.45901 1.49837 1.29956 

 

6.   Results and discussion 

Analytical solutions of the non-dimensional equations of momentum and energy (4)-(5) are obtained 

and expressed in (15)-(18). The modified equations governing the flow (6)-(7) show that both the fluid velocity 

as well as the temperature distribution are governed by viscosity parameter ( ), permeability parameter (
m

k ), 

constant pressure gradient (P), thermal conductivity parameter (  ), Prandtl number (Pr), Eckert number (Ec) 

and magnetic parameter ( M ). The thermal conductivity parameter (  ) may take positive values for liquids 

such as water, benzene and crude oil, while for gases like air, helium or methane it has negative values. In order 

to get physical insight into the problem, numerical calculations are performed and the effects of different 

parameters on velocity field and temperature distribution are observed. Variations in the velocity distribution 

and temperature field are presented graphically, while variations in the skin-friction and heat transfer rate at the 

cold wall ( 0y  ) and the hot wall ( 1y  ) are presented in tabular form. The values of Prandtl number (Pr) 

are chosen to be 0.7 and 1.0 respectively, which correspond to air and electrolyte solutions; important fluids, 
which are used as energy systems and aero-space technologies [6,11]. The numerical values of the remaining 

parameters are chosen arbitrarily, but do retain physical significance in real energy system applications [14]. 

Besides, Eckert number (Ec) is included to add the dissipative effect in all flow computations with nominal 

values Ec = 0.001, 0.002, 0.003. The value of pressure gradient is constant, as such, in all the cases, a flow 

regime under constant pressure gradient is studied. The software mathematica is used for computation of the 

numerical values used in graphs and tables.  

 

Fig. 2 shows effects of thermal conductivity parameter (  ) on the profiles of temperature at the centre 

of the channel for different values of viscosity parameter ( ) for 0M   and 0  . We observe that at the 
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centre of the channel walls our results are in excellent agreement with Attia [19] in the absence of dust particles. 

In the figure, the dotted curves are for present case and solid curves are for Attia [19]. In fact, the solid particles 

gain heat energy from the fluid by conduction through their spherical surface, so that temperature is increased. 

In absence of solid dust particle, there exists pure flow region and the profiles overlap.  

 

 

 

Fig. 3(a) and 3(b) show the effects of viscosity parameter ( ) on velocity field in absence of magnetic 

field ( 0M  ) and in presence of magnetic field ( 1M  ), respectively, when 1 0 0
m

k  , 0 .0 0 1E c  , 

0 .0   and 1 0P r . . It is observed that increasing viscosity parameter increases the velocity and shift the 

profiles toward the lower wall. The shifting of peak of the velocity profiles toward the lower cold wall is due to 
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the contribution of second term 
d T d u

d y d y
  in the left hand side of the Eq. (6), which results from the variation 

of the viscosity with temperature. Actually speaking, this term is equivalent to a variable suction / injection 
normal to the channel walls. This implies that the suction is acted onto the lower cold wall, while the injection in 

acted onto upper hot wall: Thus, the velocity increases in the vicinity of the upper wall, which ultimately shifts 

the peak of the velocity profiles toward the lower wall. We also note that increase in magnetic parameter (M) 

reduces the velocity due to its damping effect. The application of uniform magnetic field adds an resistance term 

to the momentum equation and the Joule dissipative term to the energy equation. In fact, the hydromagnetic 

body force reduces the velocity due to presence of the term M u  of Eq. (6). This implies that the Lorentz force 

creates resistance in the fluid, which reduces the fluid velocity. That is why, hydromagnetic force is used as an 

important controlling mechanism for heat transfer processes in nuclear energy systems, where momentum can 

be reduced in temperature dependent viscosity regimes, by enhancing the magnetic field [32].     

 
 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 55  Number 7 - March 2018 

 

ISSN: 2231-5373                                 http://www.ijmttjournal.org                             Page 474 

 

 
Fig. 4(a) and 4(b) represent the effect of thermal conductivity parameter (  ) on velocity field in 

absence of magnetic field ( 0M  ) and in presence of magnetic field ( 1M  ), respectively, when 

1 0 0
m

k  , 0 .001E c  , 0   and 1 0P r . . It is observed that increasing thermal conductivity 

parameter (  ) increases the velocity, so that the velocity profiles shift toward the lower wall. The shifting of 

the peak of velocity profiles with increasing   is due to the contribution of third term in the left hand side of 

the Eq. (7), where    exists in exponential power as a multiple of temperature. This term is in existence due to 

the variation of the thermal conductivity parameter and viscous dissipation. Hence, the velocity increases with 

increase in thermal conductivity parameter. We also note that increase in magnetic parameter (M) reduces the 

velocity. In fact, the additional resistance created by the magnetic force decreases the velocity and increases the 

temperature.  
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 Fig. 5(a) and 5(b) show the effect of viscosity parameter ( ) on temperature distribution in absence 

of magnetic field ( 0M  ) and in presence of magnetic field ( 1M  ), respectively, when 1 0 0
m

k  , 

0 .001E c  , 0 .0   and 1 0P r . . It is observed that increasing viscosity parameter increases the 

temperature and profiles shift toward the upper hot wall. It is notable that increasing thermal conductivity 

parameter (  ) increases the velocity ( u ) and its gradient, which in turn, increases the viscous dissipation and 

then increases the temperatures.  The shifting of  the peak of temperature profiles are due to the  

contribution of second term in the left hand side of the Eqs. (6) and (7), namely .
d T d u

d y d y
  and 

2
d T

d y

 

  
 

 

respectively. These terms are in existence due to the variation of the viscosity and thermal conductivity with 

temperature. The term .
d T d u

d y d y
 , as explained, is equivalent to a variable suction / injection normal to the 

channel walls. This implies that injection is acted upon the upper hot wall, while the suction is acted upon the 

lower cold wall. Thus, the temperature in the vicinity of the upper wall increases more rapidly and the 

temperature profiles shift toward upper hot wall. We also note that increase in magnetic parameter (M) increases 

the temperature. The physics behind this phenomenon is that the viscous dissipation and Joule dissipation terms 

contribute a heat addition, which increases the temperature throughout the region. This confirms the useful 

properties of magnetism in controlling transient temperatures, by adjusting hydromagnetic force suitably, in 
naval, nuclear and energy systems [33].    
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. Fig. 6(a) and 6(b) show the effect of thermal conductivity parameter (  ) on temperature distribution 

in absence of magnetic field ( 0M  ) and in presence of magnetic field ( 1M  ), respectively, when 

1 0 0
m

k  , 0 .001E c  , 0 .0   and 1 0P r . . It is observed that increasing thermal conductivity 

parameter increases temperature. Again, as explained, the temperature profiles shift toward the upper hot wall 

and the shifting of the peak of temperature profiles is due to the contribution of second term in the left hand side 

of the Eqs. (6) and (7). We also note that increase in magnetic parameter (M) increases the temperature. The 

physics behind this phenomenon is that the viscous dissipation and Joule dissipation terms contribute a heat 

addition, which increases the temperature. 
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. Fig. 7 shows the effect of Prandtl number ( P r ) on temperature distribution versus non-dimensional 

y-coordinate, when 1 0 0
m

k   and 0 .001E c  . It is observed that increasing Prandtl number decreases the 

temperature. Mathematically, the Prandtl number (Pr) defines the ratio of the momentum diffusivity to the 

thermal diffusivity. Hence, higher Pr- fluids transfer heat less effectively as compared to lower Pr- fluids. 

Consequently, lower temperatures are observed in profiles II in comparison with profile I, Also it is observed 

that increasing of the viscosity parameter ( ) or thermal conductivity parameter (  ) increases the temperature 

(T). This can be attributed to the fact that the centre of the channel is colder than the upper half flow region and 

acquires heat by conduction from the upper hot plate, which increases the temperature at the centre. Hence, the 

temperature increases with increasing   or  . It is interesting to note that the Prandtl number (Pr) plays 

dominant role in declining transient temperature.     

Table-1 represents comparison of present numerical values of the velocity (u) with numerical values of 

Attia [19] at the middle of the channel walls ( 0 .5y  ) for different values of   and   choosing 0 .0M  , 

1 .0P r  , 0 .0 0 1E c   and 1 0 0mk  . We observe that at the centre of the channel walls our results are in 

good agreement with Attia [19].     

Table-2, 3 show variations in the velocity (u) at the middle of channel walls for different values of   

and   for 0M   and 1M  , respectively, when 0 5y . , 1 .0P r  , 0 .0 0 1E c  and 1 0 0
m

k  . It is 

observed that an increase in   or   increases the velocity at the middle of the channel wall, but increase in   

is more pronounced than  . At the surface of lower cold plate 0   and 0  , so that the viscosity of the 

fluid as well as thermal conductivity of the fluid becomes constant under the influence of uniform magnetic 

field. Hence, the velocity at the centre of the channel is more when 0M   as compared to 1M  .  

Table-4 and Table-5 show the variations in temperature T at the middle of channel walls for different 

values of   and   at 0M   and 1M  , respectively, when 0 5y . , 1 .0P r  , 0 .0 0 1E c  and 

1 0 0
m

k  . Again, it is observed that increase in   or   increases the temperature at the middle of the 

channel wall but increase in   is more pronounced than  . The presence of magnetic parameter (M) increases 

the temperature at the centre of the channel wall due to Joule dissipation. 

Table-6, 7 present numerical values of skin-friction (  ) and heat transfer rate (Nu) for the lower 

channel wall 0y   and the upper channel wall 1y   due to change in   and   at the magnetic parameter 

0M   and 1M  , when  0y  , 1 .0P r  , 0 .0 0 1E c  and 1 0 0
m

k  . These tables are self 

explanatory, therefore any discussion about them seems to be redundant. 

7. Conclusions 
In this paper, the flow and heat transfer of an electrically conducting, incompressible viscous fluid 

through a horizontal channel with parallel walls embedded in a homogeneous porous medium is studied in the 

presence of an external uniform magnetic field. The variations of the viscosity and thermal conductivity of the 

fluid with temperature are taken into account using Arrhenius model. The effects of different parameters 
governing the convection flow are observed. The conclusions of the study are as follows: 

 An increase in viscosity parameter ( ) increases the velocity. 

 An increase in thermal conductivity parameter (  ) increases the velocity and the effect of viscosity 

parameter ( ) is more pronounced in comparison with thermal conductivity parameter.  

 An increase in uniform magnetic field decreases the velocity.  

 An increase in viscosity parameter ( ) increases the temperature. 

 An increase in thermal conductivity parameter (  ) increases the temperature.  

 An increase in uniform magnetic field increases the temperature.  

 An increase in Prandtl number (Pr) decreases temperature.  
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