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Abstract 
                  Let (G, *) be a group. We define  Operator power graph Γop(G) , Intersection operator graph 
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properties of G can effect on the graph theoretical properties of  Γop(G) , ΓIO(G), ΓOI(G) . Some 

characterizations for fundamental properties of these graphs have been obtained  and we characterize certain 

classes of  Operator graphs corresponding to some groups of special order then compare  these graphs finally. 
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1.INTRODUCTION 
  To any group  G ,we assign a graph and investigating algebraic properties of the group using graph  

theoretical concepts. There are many papers on assigning a graph to a group or ring and thereby investigating 

algebraic properties of the group or  ring using the ssociated graph.  The Cayley Graph of finite groups was first 

introduced by Arthur Cayley in 1878. Max Dehn in his unpublished lectures on group theory from 1909-10 

reintroduced Cayley graphs under the name Gruppenbild (group diagram), which led to the development of 

geometric group theory of today. The non-commuting graph ΓG was first introduced by Paul Erdos, In 2002, the 

directed power graph of a semigroup  was defined by Kelarev and Quinn . Andrea Lucchini and Attila Maroti 

have worked on the graph called generating graph .In 2011, the Subgroup intersection graph of a group was  

defined by T.Tamilchelvam and M. Sattanathan.   

              Let G be a group with identity e . The order of the group G is the number of elements in G and is 

denoted by  O(G) . The order of an element a in a group G is the smallest positive integer k such that ak = e . If 
no such integer exists, we say a has infinite order. The order of an element a is denoted  O(a) . Let p be a prime 

number. A group G with o(G) = pk for some k ∈  +, is called a p-group. We consider simple graphs which are 

undirected, with no loops or multiple edges. For and graph Γ=(V,E), V denotes  the set of all vertices and E 

denotes the set of all edges in Γ. The degree of a vertex v in Γ is the number of edges incident to v and we 

denote by deg(v) . A  vertex of degree 0 is known as an isolated vertex of  Γ. A simple graph Γ is said to be 

complete if every pair of distinct vertices of Γ are adjacent in Γ.  

 

  2. 1. OPERATOR POWER  GRAPH 

 

Definition 2.1.1 Let (G,*) be a group with binary operation *. The Operator power graph Γop (G) is graph with 

V(Γop(G)) = G and the distinct vertices x and y are adjacent in Γop (G) iff either  x=(x*y)n  or y = (x*y)m  

Proposition 2.1.2 Let (G,*) be a group with n elements.The identity element e of G has degree n-1 and for any 

non- self inverse element x   x and x-1 are non- adjacent in Γop (G) 

 

Theorem 2.1.3  Гop(G) is complete   iff  G    Z1  or  Z2   

  If G  has a self-inverse element, Гop(G) cannot be complete. Suppose every element of G is self-inverse. Let  

x,y  G such that  x ≠e; y≠e .then o(x)= o(y) =o(x* y)  and hence x and y  are non-adjacent which is a 
contradiction. 

 

Proposition 2.1.4 Let G be a finite group of order n with no self-inverse element. Then number of edges in             

Гop (G) ≤ (n-1)2 /2 

Proof: Deg Гop (G)(e) = n-1 and deg Гop (G) (x) ≤ n-2 . The degree sum ≤(n-1)2 and hence the result. 

 

Theorem 2.1.5  Let G be a finite group order in and q be the number of edges in Гop (G)    
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 q=   (n-1)2 /2 iff G is a group of prime order. 

Proof: deg Гop(a) = n-2 for all vertices aє G-e . Every element of G has a unique prime order and hence G is a 

group of prime order. 

 Conversely, let G=<a>. G=<a>=<a2>.=<a3>=… =  <an-1>  . Then deg Гop (G)(a i ) = n-2   and the result  

follows.   

 
Theorem 2.1.6 Let G be a cyclic graph of order 2p. Where p is a prime and p≥3. Then the number of edges of 

Гop (G) is equal to (3p2-4p+3)/2 

Proof: Let  A={0},  B={1,3,5…..p-2,….2p-1} , B={2,4,6…,2p-2},D={p}.  The elements of  B  are generators  

of  G. The elements of C have an order p and the element in D has order 2. Every element  is adjacent to 

all elements in C other than p-x and the elements in A. Every element  in C is adjacent to all in elements  in C 

other than its inverse and adjacent to the element  in D. 

Sum of the degrees of all vertices = 2p-1+(p-1) (p-1) +(p-1) (2p-3)+ p = 3p2-4p+3. 

 

Theorem  2.1.7  Let G be a cyclic group of order P2 where p is an odd prime. Then the number of edges of  

Гop(G)  is (p −1)(p3 −1))/2 
Proof: The vertex set of G can be partitioned into three sets A,B and C  such that  A= {0}   B= {p,2p,3p,  …          

(p-1)p} and C= G-A-B. degГOP (G) (0) =p2-1 .The  elements of C are generators of G and the elements of  B 

have order p. Let x, y  B. Since A∪B is a subgroup of G, either x+y  B or x+y= 0. Hence for all x in B, x is 

adjacent to all elements other than its inverse in B. Let x  B and y  C, then x + y  C. Therefore for all x in 

B, x is adjacent to all elements in C. Therefore for all x  B,deg ГOP (x) = 1 + p −3 + p(p −1) = p2 −2. Clearly an 

element in C is adjacent to all elements in A and B. For each x in C, x is not adjacent to  p -x, 2p -x, . . ., p2 -x, 
which are in C and  hence the  result is got by taking the degree sum .  

 

2.2. INTERSECTION  OPERATOR GRAPH   

 

Definition 2.2.1 Let (G,*) be a group. The Intersection operator graph  ГIO (G) of G is a graph with                   

V(ГIO (G))= G and the vertices x &y are adjacent  iff  <x> ∩<y>  <x*y> 
 

Result 2.2.2 The identity element e of G has  degree n-1 and for any non- self inverse element  x   x and x-1 

are non- adjacent in ГIO (G) 

 

Proposition 2.2.3  Let (G, *) be a group. Any two elements of distinct prime order are adjacent in ГIO (G) 
Proof: Let x and y  be any two elements O(x)=p and O(y)=q, then <x>∩<y>={e}. Hence   x & y are adjacent. 

 

 Remark 2.2.4 The converse of the Proposition need not be true. In ГIO (Z5),  2 and 4 are adjacent but                  

o(2) = o(4) =5 

 

Theorem 2.2.5 Let G be any group. ГIO (G)  is complete if and only if every element of G is a self-inverse 

element. 

Proof: Assume that every element of G is a self-inverse element .Let x, yє G .< x >∩< y >= {e}. Therefore < x 

>∩<y > <x*y>. Hence x and y are adjacent in  ГIO (G) .Since x and y are arbitrary , any two elements in G are 
adjacent in ГIO (G).  Suppose G has a non- self-inverse element x, x and x-1 are non-adjacent in ГIO (G) , which is 

a contradiction  and hence  the result  follows. 

  

Theorem 2.2.6  Let  G be  a group. ГIO (G) is a star graph if and only if G   Z2 or Z3  

Proof: Clearly if G   Z2 or Z3, then the corresponding ГIO (G) is a star graph.Conversely assume that                        
ГIO (G) = K1,n. Since the identity element ′e′ has a full degree, any two non-identity elements are non-adjacentin 

ГIO (G). Suppose that G has an element x of order k such that k >3. < x >={e, x, x2, x3, . . . , xk−2, xk−1}. Since x * 
xk−2 = xk−1 = x-1, < x >=<x *xk−2 > ,x and  xk−2 are adjacent, which is a contradiction. Suppose that G has  atleast 

two distinct subgroups of order either 2 or 3. Let x, y  G be any two elements of order 2 such that < x >≠< y >. 

Clearly,< x >∩< y >= {e}. Therefore < x >∩< y >< x * y >. Hence x and y  are adjacent in ГIO (G) which is a 

contradiction. Therefore G has a unique subgroup of order either 2 or 3. Hence G   Z2 or Z3 

 

Theorem 2.2.7  Let G a group. The girth of  ГIO (G) is 3 if and only if G  Z2 or Z3  

Proof: Assume that G Z2 or Z3 . By  the previous Theorem G is not a star graph. Also the identity element ′e′ 

has a full degree, there exits two elements a, b in G such that they are adjacent in ГIO (G)). Therefore e, a, b form 

a cycle in ГIO (G). Hence the girth of ГIO (G) is 3  
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Conversely, assume that the girth of ГIO (G) is 3. Suppose not, G   Z2 or Z3. Then ГIO (G) is a star graph, which 
is a contradiction to the assumption that the girth of ГIO (G) is 3. 

 

 Proposition 2.2.8 Let G be a finite group of order n with no  self-inverse element and q be the number of edges 

in ГIO (G) . Then q ≤ (n-1)2/2.Moreover, this bound is sharp. 

We characterize the groups G for which the associated graph ГIO (G) attains this bound. 

 

Theorem 2.2.9  Let G be a finite abelian group of order n and q be the number of edges in ГIO (G ). Then                  
q = (n−1)2/2  if and only if every element of  G is of order p, where p is an odd prime number. 

Proof: Deg  ГIO (G)(a) = n −2 for all vertices a G−{e} and deg ГIO (G) (e) = n−1. 

Let a є G−{e} be any element of order k. Then k is a prime number and every element of G is of  unique prime 

order.Conversely, assume that every element other than identity is of order p. Since G is abelian, G   Zp×Zp×. . 
. ×Zp. deg ГIO (G)(e) = n −1. Let a and b two elements of G such that b ≠a-1 . clearly < a >∩< b >=< a > or{e}. 

Therefore, < a >∩< b >  < a *b >. a and b are adjacent.Hence a is adjacent to all other elements in G other than 
its  inverse. 

 

Theorem 2.2.10 Let  G be an abelian group of order pn.  ГIO (G) ≈K1,2,2,...,k times, where  k = pn-1/2  if and only 

if G   Zp×Zp×. . .×Zp. 
Proof: Let G be an abelian group of order pn. Assume that ГIO (G) ≈K1,2,2,...,ktimes, where           k = pn-1/2  . 

Clearly the number of  edges of the graph ГIO  (G) is (pn-1)2/2.Every element of G is of order p and hence G   
Zp×Zp×. . . ×Zp. 

Conversely, assume that G   Zp×Zp×. . .×Zp. Therefore, for every a G − {e}, a is not adjacent to a−1 only. 
Therefore, we can partition the vertex set of (G) into k + 1 sets, suchthat the identity element e belongs to a 

single partition and for the remaining k sets, each set contains the pair of elements a and  a -1.  

 

2.3  OPERATOR  INTERSECTION GRAPH 

 

Definition 2.3.1 Let (G, *) be a group with binary operation ‘∗′. The Operator Intersection graph ΓOI(G) of G is 

a graph with V (ΓOI(G)) = G−e , where e is an identity element of G and two distinct vertices x and y are 

adjacent in ΓOI(G) if and only if < x ∗ y >⊆< x > ∩ < y > . 

Proposition 2.3.2 For any non self- inverse element x ∈ G, x and  x-1
  are adjacent in ΓOI(G) 

Theorem 2.3.3 Let (G, ∗) be a group. Let x ∈ G. x is an isolated vertex in ΓOI(G) if and only if x is a self- 

inverse element of G . 

Proof: Let (G, *) be a group. Let x be an isolated vertex in ΓOI(G) . We have to prove that x is a self- inverse 

element of G. Suppose not, x is non self- inverse element of G.  x is adjacent to x−1, which is a contradiction. 

Conversely assume that, x is a self- inverse element of G. Clearly < x > ∩ < y >= {e} or < x > for all y ∈ G. 

Also for all y ∈ G ,< x * y> < x > or {e}. Hence x is an isolated vertex in ΓOI(G)  

Proposition 2.3.4 Let (G, *) be a group. Any two elements of distinct prime order are non-adjacent in ΓOI(G).  

Proof: Let (G, ∗) be a group with identity element e. Let x, y ∈ G be any two elements such that O(x) = p and 

O(y) = q, where p, q are distinct prime. Clearly < x > ∩ < y >= {e}. Therefore < x ∗ y > < x > ∩ < y >. Hence 

the result follows. 

Theorem  2.3.5 Let G be any group. ΓOI(G) is complete if and only if G is a cyclic group of prime order. 

Proof: Let G be a cyclic group of prime order p. Clearly, every element of G other than identity is a generator of 

G. Let x ∈ G − e. x and x−1 are adjacent. Let y ∈ G − e be an element other than x−1. Clearly < x ∗ y >=< x > ∩           
< y >. Therefore x and y are adjacent in ΓOI(G). Hence ΓOI(G) is complete.Conversely assume that ΓOI(G) is 

complete. Let p and q be two distinct prime such that p|O(G) and q|O(G). By Cauchy’s Theorem, G has two 

elements  x, y  such that O(x) = p and O(y) = q. Clearly < x > ∩ < y >= {e}. Therefore x and y are non adjacent 

in ΓOI(G) and O(G) = p for some prime p.  

 Proposition 2.3.6 Let (G, ∗) be a cyclic group. Any two generators of G are adjacent in ΓOI(G)  

Proof: Let (G, ∗) be a cyclic group. Let x, y ∈ G be any two generators of G. Clearly < x > ∩ < y > = G. 

Therefore < x ∗ y >⊆< x > ∩ < y >. Hence, the result follows. 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 55  Number 7 - March 2018 

ISSN: 2231-5373                                 http://www.ijmttjournal.org                             Page 501 

 

Remark 2.3.7 The converse of the Proposition is not true. Consider the group 6 . In ΓOI( 6) , 2 and 4 are 

adjacent but they are not generators of G . 

Theorem 2.3.8 Let  G be a finite group of order n= p1 p2 . . . pk  ,where p1, p2, . . . pk  are distinct primes and α1, 

α2, . . . , αk  are positive integers. Then the independence number β0(ΓOI(G)) ≥k. 

Proof: Since each pi divides o(G), by Cauchy’s Theorem, G contains the elements ai such that o(ai) = pi, for          
1 ≤i ≤k. Note that<ai>∩<aj>= {e} for all i ≠j. From this {a1, a2, . . . ak} is an independent  set of ΓOI(G) and 

hence the result follows.  

Proposition2.3.9 Let G be a finite group of order n with no self inverse element and q be number of edges in 

ΓOI(G). Then q ≥ . Moreover, this bound is sharp. 

Proof: x and x−1 are adjacent for all x ∈ G -e. Hence q ≥ . Moreover, for the group 3 , ΓOI( 3)   K1,1 and 

for this graph the bound is sharp. 

Theorem 2.3.10 Let G be a group of order n and no self inverse element. Let q be number of edges in ΓOI(G) . q 

=  if and only if G   3 × 3 × . . . × 3. 

Proof: Assume that ΓOI(G) is a graph with  edges. we get ΓOI(G) is an union of K2 . Suppose p ≥ 5 be a 

prime number such that p|O(G), then G has an element of order p and so Kp−1 is a subgraph of ΓOI(G), which is a 

contradiction. Since G has no self inverse element, O(G) must be 3n . Suppose G has an element of order 3k  for 

some k ≥ 2, then ΓOI(G) contains K9  as a sub graph, which is a contradiction. Therefore every element of G has 

order 3. Hence G  3 × 3 × . . . × 3. Conversely assume that G   3 × 3 × . . . × 3. Let x, y ∈ G such 

that  < x > ∩ < y >= {e}. Clearly x and y are non adjacent. Therefore the adjacent vertices of x  is x−1 only. 

Hence ΓOI(G) is union of K2 . 

Theorem 2.3.11 Let G be a cyclic group of order p2. Then ΓOI(G)    ∪ Kp−1 , where p is a prime and 

φ(n) is an Euler function. 

Proof: Let G be a cyclic group of order p2. Let A be the set of elements of order p and B be the set of elements 

of order p2. Since G is a cyclic group, the elements in B are generator of G. Clearly |A|=p − 1 and |B|= (p2). 

The graph induced by the set B is   and by the graph induced by the set A is Kp−1. Let x ∈ A and y ∈ B. 

Suppose x * y ∈ A. Since A∪{e} is a subgroup of order p, y ∈ A,gives a contradiction. suppose x * y ∈ B.             

< x > ∩ < y >=< x >. Therefore < x * y > < x > ∩ < y >. So x and y are non- adjacent. 

3. RELATION  BETWEEN ISOMORPHISMS OF GROUPS  AND  THEIR ASSOCIATED GRAPHS 

 

In this section, we study about relation between graph isomorphism and group isomorphism and compare               

the graphs. 

 

Theorem 3.1.1  Let G1 and G2 be two groups. If G1   G2, then ГOP (G1 )   ГOP (G2).  
Proof: Assume that f : G1 →G2 is a group isomorphism. Let x and y be any two elements in G1 such that x and y 

are adjacent in ГOP (G1). Therefore either x = (x *y)n or y = (x *y)m. Withoutloss of generality we assume that             

x = (x *y)n. Therefore f(x) =f((x*y)n). Since f is an isomorphism, f(x) = (f(x) *f(y))n, which implies that f(x), f(y) 

are adjacent in ГOP (G2). Hence ГOP (G1 )   ГOP (G2).  
 

 

 

Theorem 3.1.2 Let G1 and G2    be two groups. If G1   G2 then ГOI(G1)   ГOI(G2). 

Proof:  Let x  and y be any two elements in G1 such that x and y are adjacent in ГOI(G1). Therefore  < x *y >           

< x >∩< y >. Let a ∈  < f(x) *f(y) >. There exists an element  t є G1 such that a = f(t). As f is an  isomorphism,                    

t   < x *y >. Therefore f(t) ∈  < f(x) >∩< f(y) > which implies that  f(x), f(y) are adjacent in ГOI (G2).  

Theorem 3.1.3 Let G be a group of prime order then Гop (G)    ГIO (G). 
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Proof.  Let f: G→G be an identity function.Let a & b are adjacent in Гop (G).  

Then <a>    <a*b> or  <b>  <a*b> Since G is a group of prime order, <a>= <b> =  <a*b> and                                     
hence a & b are adjacent in ГIO (G). 

 

Theorem 3.1.4 Let G be a cyclic Group of order 2p;p≥3 is prime then Гop (G)  ГIO (G).                              

Proof: Let f: G→G be an identify function & a and b are adjacent in Гop The vertex of G can be 

partitioned into four sets namely A,B,C and D such that A={0}, B = {1,3,5………p-2,….2p-1}                         
C= {2,4,6…..2p-2} and  D ={p}. a and b are adjacent  in  Гop (G) in the following cases. 

Case (i). a , b ∈    C. 

         <a> = <b>  implies  <a>∩<b>   <a*b> 

Case( ii) .    a ∈   B  ,b ∈   C 

                <a*b> =  G   implies  <a> ∩<b>  <a*b> 

Case (iii). a ∈   C ,b ∈   D 

                 <a*b> =  G   implies  <a> ∩<b>  <a*b> 

           Hence a & b are adjacent in Гop  (G) iff they are adjacent in ГIO 
 (G). 

Theorem  3.1.5  Let G be a cyclic group of order p2 where p3  is a prime then 

Гop (G)  ГIO (G).   

Proof: Let f be an identify function and a & b be two non-identity element such that a & b are adjacent in                   

Гop (G). 

Let A={0}, B={p, 2p, 3p…..(p-1)p} and C=G-A-B .a and b are adjacent in Гop(G) in the following cases. 

Case (i)  a,b   B 

 In this case  <a> =   <b>  and hence    <a> ∩<b>  <a*b> 

 Case (ii)   a,b  ∈   C 

 <a> =   <b> =  <a*b> =  G 

          <a> ∩<b>   <a*b> 

Case (iii)    a ∈    B ,  b ∈   C 

         <b> =  <a*b> =  G 

         <a> ∩<b>  <a*b> 

  a & b are adjacent in ГIO (G) and  so Гop (G)   ГIO (G). 

Theorem 3.1.6 Let G be a group such that every non-identity element of G is of order 2 or 3, then                 

ГIO(G) − {e}  . 

Proof: Let G be a group such that every non-identity element ofG is of order either 2 or 3.Let a and b be two 

non-identity elements in G. We discuss the adjacency in the following cases. 

Case (i):  o(a) = o(b) = 2.  In this case < a >∩< b >= {e}. Clearly a and b are adjacent  in ГIO(G) but a and b are 

not adjacent in ГOI(G). 

Case (ii) : o(a) = o(b) = 3 and b ≠ a-1 .In  this case < a >∩< b >= {e}. Clearly a and b are adjacent in ГIO(G)  but 

a and b are not adjacent in ГOI(G). 

Case (iii) : o(a) = o(b) = 3 and b = a-1  .In this case < a >∩< b >=< a >and < a *b >= {e}. Clearly a and b are not 

adjacent in ГIO(G) but a and b are adjacent in ГOI  (G). 

Case (iv) :o(a) = 2 and o(b) = 3 
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In this case < a >∩< b >= {e}. Clearly a and b are adjacent in ГIO(G) but a and b are not adjacent in ГOI(G). 

From the above cases it is clear that  ГIO(G) − {e}  . 

CONCLUSION 

    Characterized  the  properties of  Operator Power Graph,  Intersection operator graph  and Operator 

Intersection graphs of groups of some special order, compare them and  the isomorphic relation  between  these 

graphs  has been  established. 
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