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Abstract — It is well known that many infectious diseases like influenza, H1N1, and many more are periodic. 

Such type of diseases reappears in the society in either same or similar manner. Therefore, in this article, we 
proposed an SEQIR model by introducing the effective contact rate function to predict and control the spread of 

such types emerging and re-emerging contagious disease. Infectious diseases spread through close contact. 

Therefore, we formulate an effective contact rate function to control the spread of infectious diseases or an 

epidemic. Numerical simulation of the model has been performed with the help of fourth order Runge- Kutta 

method to illustrate the effect of our control strategy. 
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I. INTRODUCTION 

 

Control of emerging contagious infectious disease is a very difficult task for doctors and health agencies, 

Therefore, in mathematical epidemiology literature, many mathematical model and strategies like SIS [10], SIR 

[2, 8, 16], SEIR [10, 19], SEIRS [18], SVEIR [1] and many more models (where S, V, E, I and R denotes the 

population of susceptible, vaccinated, exposed, infected and recovered individuals respectively) have been 

proposed by various researcher.  

 

In epidemiology literature, many diseases are periodic i.e. they reappear in the society like Chikungunya, Swine 
flu, SARS and many more [12, 15] in either same or similar manner. In this article, we are trying to control the 

spread of such type of contagious diseases in the society if this kind of diseases reappears. The whole study of 

this article is based on prediction and control of such kind periodic diseases. It is also well-known fact that many 

diseases, such as influenza, measles, whooping cough, etc., exhibit seasonal (periodic) fluctuations, [8, 11, and 

17] and spread of the disease depends on the contact rate. Contact rate was considered as a parameter before 

Juhan Zhang et al. [6] have considered time varying periodic effective contact rate for the control of rabies in 

China. In this paper, we proposed an SEQIR model, which is a five-compartment model, by introducing 

effective contact rate as a periodic function of time t, to control the spread of disease. The spread of contagious 

disease mainly depends on the effective contact between susceptible and infected individuals. Effective contact 

rate is sometimes known as a transmission rate [9] between susceptible and infectious. In this article, we take 

effective contact rate as a periodic function of time because the spread of such kind of diseases depends on the 
periodic contact, for example, contacts between students and teachers in school. We describe the spread control 

of the infection in the society with the help of action time. Action time or period has been introduced in this 

manuscript which may be defined as “A time taken by the health agencies to control the spread of infection from 

infected to susceptible individuals by various means such as by increasing the immunity of infected and 

susceptible, vaccination of both susceptible and infected, yoga etc.”  

 

When analyse a new outbreak, the researcher usually starts with the SIR and SEIR model. Here we proposed 

SEQIR model for new emerging contagious infectious disease. It is known that the behaviour of nonlinear 

differential equation model system can be explored by fourth-order Runge- Kutta method [4, 5, and 7]. 

Therefore, we use Runge-Kutta method to solve the model numerically. 

 

The rest of paper is organised as follows: A SEQIR mathematical model in Section 2. Effective contact rate 
function is described in Section 3. Basic properties of solutions are given in Section 4. The numerical simulation 

and discussion are in Section 5. Finally, the conclusion is summarised in Section 6. 

II. A SEQIR MODEL FOR INFECTIOUS DISEASE 

 

In this section, we have proposed an SEQIR model for the transmission of emerging contagious diseases. For 

this, the total population is divided into five compartments: susceptible  exposed , quarantined , 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 55  Number 7 - March 2018 

 

ISSN: 2231-5373                                 http://www.ijmttjournal.org                             Page 505 

 

infective  and recovered .The parameters  are recruitment rate per day, the 

effective contact rate, rate of development of clinical, rate of quarantine, Quarantine individual’s recovery rate, 

disease induced mortality rate, infected individual’s recovery rate and natural mortality rate respectively. We 

assume that the quarantined population is not suffering severity of the disease and the whole quarantined 

population will recover. And also, it is assumed that quarantined individuals do not transmit the infection. Our 

motive is to control the spread of emerging contagious disease using a mathematical model. For this, we have 

assumed that susceptible individuals can be infected only through contact with infectious individuals. Therefore, 

instead of considering  as a parameter, we have formulated an effective contact rate which is a function of 

time .The progression of infection through different compartments shown with help of block diagram, which is 

given below. 

                  

 

 

 

                   

 

                                            

           

           

       

   

                                                     

 

Figure 1: Progression of infection from susceptible  through latent (E), quarantined (Q), infected 

 and recovered  compartments for the model. 

 

The rate of change of the population in each compartment is given by the following system of nonlinear 

differential equations 

                      (1) 

                     (2) 

                        (3) 

           (4) 

                       (5) 

 

Where ,  and is an 

effective contact rate function.  The total population size is . 

 

The explanation of above model parameters is listed in Table 1. 

 

Parameter Description Value Source 

 
Recruitment rate  per day Assumption 

 
Natural mortality rate  per day [1] 

 
Rate of development of 

clinical symptoms 
 per day [2] 

 
Disease-induced 

mortality rate 
per day [1] 

 
Infective Recovery rate  per day [2] 

 Action time 2 to 21days Assumption [13,14] 

 Spread controlling 

parameter 

(c + 1) days Estimation 

R I 

Q 

E S 
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Rate of quarantined  per day Assumption 

 
Quarantined individual’s 

recovery rate 

0.075 per day Assumption 

                         

Table 1: Parameters description and values used in simulation 

 

III. EFFECTIVE CONTACT RATE FUNCTION  

 

This section will be used to formulate effective contact rate function. It is understood that the only way of 

transmission of contagious Infectious disease is close contact between susceptible and infectious individuals and 

also the probability of getting a disease is not constant at any point of time. Since the occurrence of many 

contagious infectious diseases like Chikungunya, SARS and many more are seasonal and prevalent during 

starting of the winters in many countries and its transmissions are very fast, therefore contact rate will be 

considered as a periodic function of time. Following assumptions have been made to formulate the effective 

contact rate function: 

 

1). It has been observed from the literature and data, that intensity of the infection of periodic contagious 

infectious disease goes up till a certain period of time. 
 

2). Prime reason for the spread of disease is contact between infected and susceptible individuals which happens 

to be in a periodic manner for example in college, office etc. Therefore, effective contact rate should increase 

with time in a periodic manner. 

 

3). Also, it is considered that effective contact rate cannot be completely zero at any time . 

 

A force of infection  will be considered with periodically ('seasonal') varying contact rate i.e. 

 

,          (5) 

with period  equal to one year.  

Hence effective contact rate function  has been modeled as follows 

 

      (6) 

Where  is also a Periodic function of time with period  

 

For the purpose of simulations effective contact rate function  has been modeled as follows: 

 

                                         (7) 

where  represent the spread controlling parameter to minimize the infection of disease on the society and   

represents an action time, which is “A time taken by the health agencies to control the spread of infection from 

infected to susceptible individuals by various means such as by increasing the immunity of infected and 

susceptible, vaccination of both susceptible and infected, yoga etc.” We are taking the values of   greater and 

equal to 2 days, which is the minimum incubation period of contagious diseases like Ebola, SARS and many 

more.  It has been assumed that minimum action time to control the spread of the disease should not be less than 

incubation period, and therefore c can take minimum value as 2 days. The spread controlling parameter will 

always depend on the action time. 

 

IV. BASIC PROPERTIES OF THE MODEL 

 

The model Equations  monitors the human populations, it is assumed that all state variables and 

parameters of the model are nonnegative i.e.  and  

Theorem 1: The variables of the model equation (1)-(5) with positive real data will remain positive for all 

time . 
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Proof: Let }. Thus, . It follows 

from the first equation of the model i.e. equation (1) that 

 
which can be re-written as, 

                             . 

Hence, 

,  

So that 

. 

Similarly,  and . 

 

Lemma 1: The closed set 

   

is positively- invariant. 

Proof: We have  be any solution with non-negative initial conditions. Then 

        

The rate of change of the total population, obtained by adding Equations  , is given by 

,  

with . It follows that 

 

With  if and only if   

Then  

Thus  as .Therefore all feasible solution of the system (Equations ) enter 

in the region 

 
It can be shown that all solutions of system (Equations ) starting in  remain in  for all . 

Hence,  is positively invariant and it is sufficient to consider solutions in . 

 

The system (Equations ) is continuous and its derivative implies that solutions exist and is unique. 

Since solutions approach lies in  they are bounded and hence exist for . Therefore, the model is 

epidemiologically and mathematically well posed. 

 

V. NUMERICAL SIMULATION AND DISCUSSION 
 

In this section, we have simulated the model numerically to understand the control strategy, which depends on 

action time and other factors to minimise the effect of the disease. The numerical simulation of the model 
equations (1) -(5) has been done using Fourth order Runge- Kutta method in MATLAB 2012b. The values of 

the parameters have been given in table 1[1, 3]. 

 

In this article, we used the initial data which were used by Rachah and Torres [3] for the simulation. The total 

population N is 1, therefore   and  so that the sum of 

S, E, Q, I and R will remain equal to the total population.  

Since the aim of the present study is to assess the behaviour of periodic contagious disease by assessing the 

susceptible, exposed and infected population with respect to the action time, therefore graphs for these 

populations have been drawn by taking different values of action time. 
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Figure 2, Figure 3, Figure 4 and Figure 5 show the population of susceptible, infected and recovered individuals 

for and  days respectively.  

 

It can be seen from these figures that the peak values of infected population will be increasing when the values 

of action time are increased. Also, it can be observed from these graphs that the duration to achieve a decreased 

peak value will be increased with decreasing value of action time while the total duration for the eradication of 

the disease is almost same for all values of action time. It shows that if the time taken to take preventive 

measures is less, then the effect of the disease on the society will be reduced. 

 
Figure 2: SIR graph at . 

 
Figure 3: SIR graph at . 
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Figure 4: SIR graph at . 

 
Figure 5: SIR graph at . 

 

Figure 6 shows the population of exposed individuals with four different values of action time. It is evident 

from the figure that when we take less time to initiate preventive measures, then the population of exposed 

individuals is less in comparison of greater time taken for initiation of preventive measures.  
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Figure 6: Number of exposed individuals at various values of c. 
 

The population of quarantined individuals at various values of action time  and 20 days is shown 

in figure 7. It can be observed from figure 7 that population of quarantined individuals increase with the 

increment in the value of action time. Also the total number of quarantined population is decreasing with respect 

to the decreased value of action time. It can be understood that if time to take preventive measures is increased, 

then more number of people will need to be quarantined in the society. Preventive measures may include 

various methods such as the decreased contact rate, awareness about the disease and many more. 

 
Figure 7: Number of quarantined individuals at various values of . 

 

The population of infected individuals at various values of action time  and 20 days is shown in 

figure 8. It can be observed from figure 8 that population of infected individuals increase with the increment in 
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the value of action time. Also the total number of infected population is decreasing with respect to the decreased 

value of action time. It can be understood that if time to take preventive measures is increased, then more 

number of people will be infected in the society.  

 
Figure 8: Number of infected individuals at various values of c. 

 

Figure 9 shows effective contact rate of a contagious disease with time at different values of action time. It can 

be seen that as time increases, the area under the curve for effective contact rate with small action time is low in 

comparison of greater values of action time. Action time may be utilised to take preventive method to control 

the disease and also increasing the immunity of the susceptible to avoid them to become infected and of the 

infected to make a fast recovery. 

 

                        Figure 9: Effective contact rate  at different values of   

 

Hence, the quarantization of the not critical population before infected individual’s compartment saves the time 

and money spent on the vaccination of the individuals. Also, action time plays an important role in controlling 

the emerging contagious periodic infectious disease like SARS, EBOLA, Chikungunya and many more.  

 

VI. CONCLUSION 

 
To understand the control strategies of an epidemic, mathematical modelling can be proved more appropriate 

over statistical and experimental studies because of the limitation of data collection and experiments over 
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humans. Therefore, in this article we tried to give a new control strategy for an emerging contagious infectious 

disease with the help of a mathematical model. We have shown that with the help of model analysis, the model 

is locally asymptotically stable at Z if basic reproduction number is less than equals to one. And disease will 

become endemic at Z* if basic reproduction number is greater than one. We also conclude that if we take 

minimum time for the preventive measure to control the spread of disease, we are able to save many human 

lives. 
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