Conjugate Secondary Normal Matrices with Conjugate Secondary Normal Submatrices

Dr. R.Raja

P.G. Assistant in Mathematics, Govt. Girls Hr. Sec. School, Papanasam.

Tamil Nadu, India.

Abstract:

In studying, the reduction of a complex $n \ge n$ matrix A to its Hessenbery form by the Arnoldi algorithm, T.Huckle [2] discovered that an irreducible Hessenbery normal matrix with a normal leading principal $m \ge m$ submatrix, where 1 < m < n, actually is tridiagonal. We prove a similar assertion for the con-s-normal matrices, which play the same role in the theory of s-unitary congruences as the conventional s-normal matrices in the theory of

s-unitary similarities.

AMS Classification: 15A21, 15A09, 15457

Keywords: s-normal matrix, con-s-normal matrix, con-s-normal submatrix, s-unitary, irreducible tridiagonal matrix.

1. Introduction

Let C_{nxn} be the space of nxn complex matrices of order n. For $A \in C_{n\times n}$, let A^{T} , \overline{A} , A^{*} , A^{s} , $A^{\theta} \left(= \overline{A}^{s} \right)$ and A^{-1} denote the transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of matrix A respectively. The conjugate secondary transpose of A satisfies the following properties such as $\left(A^{\theta}\right)^{\theta} = A$, $\left(A + B\right)^{\theta} = A^{\theta} + B^{\theta}$, $\left(AB\right)^{\theta} = B^{\theta}A^{\theta}$. etc

Definition 1

A matrix $A \in C_{n \times n}$ is said to be normal if $AA^* = A^*A$.

Definition 2

A Matrix $A \in C_{n \times n}$ is said to be conjugate normal (con-normal) if $AA^* = \overline{A^*A}$.

Definition 3

A matrix $A \in C_{n \times n}$ is said to be secondary normal (s-normal) if $AA^{\theta} = A^{\theta}A$.

Definition 4

A matrix $A \in C_{n \times n}$ is said to be unitary if $AA^* = A^*A = I$.

Definition 5

A matrix $A \in C_{n \times n}$ is said to be *s*-unitary if $AA^{\theta} = A^{\theta}A = I$.

Definition 6 [3]

A matrix $A \in C_{n \times n}$ is said to be a conjugate secondary normal matrix (con-*s*-normal) if $AA^{\theta} = \overline{A^{\theta}A}$ where $A^{\theta} = \overline{A}^{s}$(1)

2. Let $A \in M_n(C)$ $(n \ge 3)$ be a block matrix of the form

$$A = \begin{pmatrix} B & C \\ D^{\theta} & E \end{pmatrix}, \qquad \dots (2)$$

where $B \in M_m(C)$ (1 < m < n), whereas X and D are m x (n-m) matrices. Assume that A is s-normal but neither s-hermitian nor s-skew hermitian. The case where B is s-normal is unusual, and, in this case, the structure of A is quite specific. For instance, in studying the reduction of A to its Hessenberg form H by the Arnoldi algorithm, if the matrix H is irreducible and its leading principal submatrix H_m (1 < m < n) is normal, then, H actually is a tridiagonal matrix. In [1], this fact was stated and proved as a purely matrixtheoretic theorem without any reference to the Arnoldi algorithm.

Now, instead of s-unitary similarities, consider s-unitary congruences, that is, transformations of the form

$$A \rightarrow Q^{s} A Q, Q^{\theta} Q = I.$$

Slightly modifying the standard reduction to Hessenberg form by plane rotations or Householder reflections, one can easily show that every complex matrix can also be brought to a Hessenberg matrix by a sequence of elementary s-unitary congruences. We apply such a sequence to a con-s-normal matrix A, that is, to a matrix satisfying the relation (1).

In particular, s-unitary congruences preserve the property of being a con-s-normal matrix.

Assume that a con-s-normal matrix A is reduced to an irreducible Hessenberg matrix whose leading principal submatrix of order m (1 < m < n) also is con-s-normal. Our aim is to prove the following assertion, which is an analogue of the Huckle theorem.

Theorem 1

Let $A \in M_n(C)$ $(n \ge 3)$ be an irreducible con-s-normal matrix in Hessenberg form. (For definiteness, assume that A is an upper Hessenberg matrix.) If its leading principal submatrix of order m (1<m<n) also is con-s-normal, then the matrix A actually is tridiagonal.

Proof

Let A be partitioned as in (2). Then, in view of the condition

$$BB^{\theta} = B^{\theta}B \qquad \dots (3)$$

By (1) amounts to the three matrix relations

$$C C^{\theta} = D D^{\theta} \qquad \dots (4)$$

$$BD + CE^{\theta} = B^{\theta}C + \overline{DE}, \qquad \dots (5)$$

$$D^{\theta}D + EE^{\theta} = \overline{C^{\theta}C} + \overline{E^{\theta}E} \qquad \dots (6)$$

Since A is an irreducible Hessenberg matrix, the only nonzero entry of the block D occurs in position (m, 1). We will show that X has the same structure.

Note that for every $i (1 \le i \le n)$, the 2-norm of the i^{th} row of A is equal to the 2-norm of its i^{th} column. This follows from the equality of the diagonal entries $\{AA^{\theta}\}_{ii}$ and $\{\overline{A^{\theta}A}\}_{ii}$. The same fact is valid for the submatrix *B* as well. Assuming that $1 \le i \le m - 1$, we find that

$$\sum_{j=1}^{n} \left| a_{ji} \right|^{2} = \sum_{j=1}^{m} \left| a_{ji} \right|^{2} = \sum_{j=1}^{m} \left| a_{ij} \right|^{2} = \sum_{j=1}^{n} \left| a_{ij} \right|^{2}$$

Whence $a_{ij} = 0, i = 1, ..., m - 1, j = m + 1, ..., n$

Thus, the right-hand portions of the first m-l rows of A are zero vectors. On the contrary, the zero subvectors of rows m+1, ..., n are their left-hand portions corresponding to the positions $1 \le j \le m$. In particular, this means that

$$\left\{AA^{\theta}\right\}_{m-1,j} = 0, \qquad j = m+2,...,n$$

It follows that

 $\left\{\overline{A^{\theta}A}\right\}_{m=1,i} = a_{m,m=1}\overline{a}_{mj} = 0, \qquad j = m+2,...,n$ Since A is irreducible, we have $a_{m,m-1} \neq 0$, whence $a_{mj} = 0$, j = m + 2, ..., n

 D^{θ}

Thus, we have shown that $a_{m,m+1}$ is the only nonzero entry in the block C. Now the equality of the 2norms of the mth row and column in A implies that

$$\left|a_{m,m-1}\right|^{2} + \left|a_{m,m+1}\right|^{2} = \sum_{j=1}^{m-1} \left|a_{jm}\right|^{2} + \left|a_{m+1,m}\right|^{2} \qquad \dots (7)$$

A similar equality for the submatrix B yields

$$\left|a_{m,m-1}\right|^{2} = \sum_{j=1}^{m-1} \left|a_{jm}\right|^{2} \qquad \dots (8)$$

Comparing (7) and (8), we conclude that

$$\left|a_{m,m+1}\right| = \left|a_{m+1,m}\right| \qquad \dots (9)$$

It follows that

$$D = C^{\theta}C \qquad \dots (10)$$

(the only nonzero entry of each of these matrices occurs in position (1,1) and is equal to $|a_{m+1,m}|^2 = |a_{m,m+1}|^2$). E also submatrix substituting (10) into (6), By we obtain that the con-s-normal.

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 55 Number 7 - March 2018

Now, assuming that m < n-1, we show that the leading principal submatrix B_{m+1} is con-s-normal as well. Indeed, the equality $\left\{B_{m+1}B_{m+1}^{\theta}\right\}_{m+1,m+1} = \left\{\overline{B_{m+1}^{\theta}B_{m+1}}\right\}_{m+1,m+1}$ is implied by (9), whereas for the other pairs (i, j) we have

$$\left\{B_{m+1}B_{m+1}^{\theta}\right\}_{ij} = \left\{AA^{\theta}\right\}_{ij} = \left\{\overline{A^{\theta}A}\right\}_{ij} = \left\{\overline{B_{m+1}^{\theta}B_{m+1}}\right\}_{ij}$$

Thus, the fact that the submatrix *B* is con-s-normal implies that B_{m+1} has the same property and, in addition, its last column has tridiagonal structure. Applying the same argument to B_{m+1} , then to B_{m+2} , and so on, we conclude that all the columns in *A* with indices greater than m have tridiagonal form.

It remains to verify that the submatrix *B* is tridiagonal. Observe that only the last two entries in column m+1 of B_{m+1} are nonzero; hence we have

$$\left\{B_{m+1}^{\theta}B_{m+1}\right\}_{m+1,i} = 0, \qquad j = 1, \dots, m-2$$

It follows that $b_{m+1,m}\overline{b}_{jm} = \left\{B_{m+1}B_{m+1}^{\theta}\right\}_{m+1,j} = 0, \ j = 1,...,m-2$

Whence $b_{jm} = 0$, j = 1, ..., m - 2

Thus, the fact that B_{m+1} is con-s-normal implies that the last column in *B* has tridiagonal structure. Show that the leading principal submatrix B_{m-1} also is con-s-normal. This will allow us to apply the same argument as above to the pairs $(B, B_{m-1}), (B_{m-1}, B_{m-2})$, and so on. Ultimately, this will prove that *B* is tridiagonal.

The relations
$$\left\{BB^{\theta}\right\}_{mm} = \left\{\overline{B^{\theta}B}\right\}_{mm}$$
 and $\left\{BB^{\theta}\right\}_{m-1,-1} = \left\{\overline{B^{\theta}B}\right\}_{m-1,m-1}$

Imply that

$$\left|a_{m,m-1}\right| = \left|a_{m-1,m}\right|$$
 and $\left|a_{m-1,m-2}\right|^2 = \sum_{j=1}^{m-2} \left|a_{j,m-1}\right|^2$,

That is,

$$\left\{ B_{m-1} B_{m-1}^{\theta} \right\}_{m-1,m-1} = \left\{ \overline{B_{m-1}^{\theta} B_{m-1}} \right\}_{m-1,m-1}$$

Since B is a Hessenberg matrix and since its last column has tridiagonal structure, we conclude that the equalities

$$\left\{B_{m-1}B_{m-1}^{\theta}\right\}_{ij} = \left\{BB^{\theta}\right\}_{ij} = \left\{\overline{B}^{\theta}B\right\}_{ij} = \left\{\overline{B}_{m-1}^{\theta}B_{m-1}\right\}_{ij}$$

hold for the other pairs (i,j) as well. This shows that B_{m-1} is con-s-normal which completes the proof of the theorem.

References

- 1. Elsner, L. and Ikramov, Kh.D., "On normal matrices with normal principal submatrices." Zap. Nauchn. Semin. POMI, 229 (1995), 63-94.
- 2. Huckle, T., "The Arnoldi method for normal matrices." SIAM. J. Matrix Anal. Appl., 15, No. 2 (1994), 479-489.
- 3. Krishnamoorthy, S. and Raja, R., "On Con-s-normal matrices." International J. of Math. Sci. and Engg. Appls., Vol.5 (II), (2011), 131-139.