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ABSTRACT-The magneto hydrodynamic unsteady flow of a visco-elastic (Rivlin-Ericksen) fluid through an 

inclined channel with two parallel flat plates in a porous medium  moving with oscillatory motion under the 

influence of magnetic field with heat transfer including heat generating sources or heat absorbing sinks, while 

one of these two plates is adiabatic is studied in this paper. Pertubation method is applied to obtain the 

expression for the velocity and temperature distribution in oscillatory motion. The effect of magnetic parameter, 

Prandtl number, source or sink, elastic parameter, Froude’s number, Grasshoff number, porous medium 

parameter on velocity distribution is discussed with the aid of graphs. The effect of Prandtl number and source 

or sink term on the temperature distribution is observed. 

 

Keywords: Magnetic field, Porous Medium Froude’s number, Grasshoff number, Prandtl number and 

temperature distributions  
 

INTRODUCTION 

 [3] Bhattacharjee.A and Borkakati A.  K. (1984) have studied the heat transfer in a hydro magnetic flow 

between  two   porous disks one rotating and other at rest, under uniform suction, when the lower plate is 

adiabatic ( which is given and  well-known by [2] Schlichting, 1968).  [4] Chakraborty S.  And Borkakati 

A.  K. (1998) has investigated MHD and     flow and heat transfer of a dusty visco-elastic fluid down an 

inclined channel in porous medium. The MHD flow and heat   transfer of dusty Rivlin-Eriksen   second 

order fluids in an inclined channel in porous medium was studied by [5] Chakraborty S. and Borkakati A.  

K. (1998).  [7] S. Ahmed and N. Ahmed (2004) have investigated the two dimensional MHD oscillatory 

flow along a uniformly moving infinite vertical porous plate bounded by porous medium.   The unsteady 

MHD flow  and heat transfer over a continuous porous moving horizontal surface in the presence of  an 

oscillating free stream and heat source was studied by [8] P. R.  Sharma, Y. N. Guar and R. P. Sharma 
(2004). The MHD flow and heat transfer of Rivlin-Ericksen fluid through an inclined channel, with heat 

sources or sinks when the plates are moving with transient velocity while the one of these two plates is 

adiabatic was investigated by[6]G. Badosa and 

A. K. Borkakati (2002). 

 

     A study on the magneto hydrodynamic unsteady flow of a visco-elastic fluid through an inclined channel 

with two parallel flat plates moving with oscillatory motion under the influence of magnetic field with heat 

transfer including heat generating sources or heat absorbing sinks, while one of these two plates is adiabatic is 

made in this paper.  

 

  
 

MATHEMATICAL FORMULATION 

 

Consider two dimensional incompressible electrically conducting visco-elastic fluid flow in oscillatory motion 

through an inclined channel between two parallel flat plates which are at a distance 2h apart under the influence 

of a uniform transverse magnetic field. We assume that the x′-axis along a straight line mid-way between the 

two plates, the y′ –axis perpendicular to it.  A magnetic field of uniform strength B0 is assumed to be applied in 

y′- direction.  Let u′ be the velocity component along the direction of the x′ – axis and the other components of 

the velocity be zero. 

 

     To write down the governing equations the following conditions are considered: 
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(i). The plates are infinitely long, so that the fluid velocity u′ is the function of y′ and t only.  

  

(ii). The temperature is uniform with in the fluid particles and the buoyancy force is considered in the equation 

of motion of the fluid.     

 
(iii). The flow between the plates is fully developed.              

 

(iv).The conductivity of the fluid is assumed to be very small so that the induced magnetic field is neglected. 

 

(v). The Hall Effect and viscous dissipation are assumed to be neglected. 

 

(vi). Only electro-magnetic body force (Lorenz force) is considered. 

 

(vii). Initially i.e., at time t = 0, the plates and the fluid are at zero temperature (i.e., T=0) and there is no flow 

within the channel.  At time t>0 the temperature of the plate y= +h changes to 0




y

T
, and the temperature  of 

the plate y = -h changes accordingly to T = T0 (Tw – To )e
-iωt , where Tw and To  are  temperature of the plates 

and ω  0 is a real number, denoting the decay factor. 
 

 

      If  is density of the fluid, B0    is uniform magnetic field applied transversely to the plate, electrical 

conductivity of the fluid , coefficient of kinematics viscosity υ, specific heat of the fluid cp, coefficient of thermal 

expansion , acceleration due to gravity g,  pressure p′ , coefficient of elasticity k0 ,  coefficient of viscosity 0, the 
source or sink term S′ , then under the above assumptions, the governing equations of continuity, motion and energy 

for the unsteady flow of visco-elastic incompressible electrically conducting fluid between two non-conducting 

parallel plates in the presence of magnetic field  are 
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The boundary conditions of the problem are given by  
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In order to bring out the essential features of the equation of this problem, we now consider the following non-

dimensional parameters as given by [5] Shih-I Pai (1961). 
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Substituting the non-dimensional parameters in the equation   (1) to (3), we get 
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Where 
C

R   is the elastic parameter, M is the magnetic field parameter, 
r

F  is the Froude number, 
r

p  is the 

Prandtl number and S is the source /sink term. 

 

The dimensionless form of the boundary conditions are given by  
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SOLUTION OF THE EQUATIONS 

  

The equation (6) shows that u is a function of y and t only or a constant.  Also equation (7) shows that 

the velocity u is independent of x and therefore u is a function of y and t only.  Thus, the term 
x

p




 

must be a constant or the function of t only. 
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                Substituting equation (10) then the equation (7) becomes  
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In order to solve the equations (8) and (11) under the boundary conditions (9) we consider 

     u = f(y)
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e
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 ,     T = g(y) 
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The corresponding boundary conditions are  
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 Substituting (12) in the equations (8) and (11), we get 
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Now, solving the equations (14) and (15) using the boundary conditions (13) and substituting in the 
equations (12), we get 
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But  U =  f(y)
ti

e
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Substituting eqn. (19)  we get   
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Fig.1 

The velocity distribution for the different values of M = 1.5,2.5 and  7.5 against the variable y is plotted by 

considering the different parameter values as 5.0
r

p , S=0.5, 3.0
c

R , 

0.5,0.1,0.1,0.1,0.1,0.3
0


rer

GtRhF   and 
0

30  
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Fig. 2 

The velocity profile for different values of Prandtl number ,5.0
r

p  0.25, 0.025 for the values of  

5.1M 0.5,0.1,0.1,0.1,0.1,0.3,3.0,5.0
0


rerc

GtRhFRS   and 
0

30  

 

 

 

 
Fig.3 

This figure  has been found by drawing the velocity distribution of  u  for various values of source of sink term 

5.0,3.0,1.0S  when M = 1.5, 

,0.5,0.3,5.0,0.1,0.1,0.1,0.1,3.0,5.0
0


rrecr

GFSRthRp   and 
0

30 . 
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Fig.4The fluid velocity u against the variable y for different values of elastic parameter 1.0
c

R , 0.3, 0.5 when 

M=1.5, 0.5,0.3,5.0,0.1,0.1,0.1,0.1,5.0
0


rrer

GFSRthp   and
0

30 . 

 

 
Fig.5 

The velocity distribution is plotted against the variable y for different values of Grasshoff number 5
r

G ,10, 

15 when M=1.5 

0.1,0.3,3.0,0.1,0.1,0.1,5.0,5.0
0


ercr

RFRthSp  and
0

30 .     
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Fig.6      The variation of velocity u is plotted against the variable u for different values of Froude’s number 

5.0,1.0
r

F  when M=0.5, 0.5,0.1,0.1,0.1,0.1,3.0,5.0,5.0
0


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GthRRSp   

and
0

30 . 

 

 

 
 

Fig.7 

The velocity distribution has been obtained by plotting the graph against the variable y for various values of 

Reynolds’s number 1
e

R , 2 when M=1.5, 

0.1,0.1,0.1,0.3,0.5,3.0,5.0,5.0
0

 thFGRSp
rrcr

  and
0

30 . 
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Fig.8 
The velocity distribution has been obtained by plotting the graph against the variable y for various values of 

porous medium parameter Da = 2, 21 when M=1.5, 

0.1,0.1,0.1,0.1,0.3,0.15,3.0,5.0,5.0
0


errcr

RthFGRSp   and
0

30 . 

 

 

 

 

Fig.9  :- The temperature profile for different values of Prandtl number 25.0,5.0
r

p  is plotted against the 

variable y when 0.1 , t=1.0, S=0.1. 
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Fig.10:-The temperature distribution has been drawn against the variable y for various values of S=0.05, 0.1 and 

0.5 when 0.1,5.0  
r

p and t = 1.0. 

 

 

 

 

 

 

RESULTS AND DISCUSSION 

 

1.  Velocity profile for different values of magnetic parameter M. 

 

     The velocity profile increases with the increase of Magnetic parameter M in      

     Oscillatory motion where as the velocity decreases with increase of Magnetic   

     Parameter M in the transilatory motion.  The velocity profile is zero when y = 0 and     

     For smaller values of M, the increase in velocity is small and for large values of M,   

     The velocity profile is considerably high. 

 

 
2.  Velocity profile for different values of Prandtl number  pr .      

           

     The velocity profile for different values of Prandtl number pr is plotted against the    

     Variable y.  It is observed that the velocity of the fluid increases with the decrease of   

     The Prandtl number in oscillatory motion as in the case of transilatory motion.                                      

     It is almost zero at the plate y = 0 and it decreases considerably between the plates y =  

     - 1.5 and y = 0 and it increases from the plate y = 0. 

 

3. Velocity profile for different values of source or sink term S. 

 

    It is found that the velocity u increases with the increase in source or sink term in  

    Oscillatory motion where as in transilatory motion the velocity decreases with increase  
    in source or sink term S.  The velocity decreases between the plates y = - 1.5 and y =  

    0 and is zero when y = 0 and velocity increases from zero as y increases from zero.  

 

4.  Velocity profile for different values of Elastic parameter Rc . 

                                                                                                                                                     

     It is shown that the velocity profile is zero at y = 0 and it decreases considerably  

     between the plates y = - 1.5 and y = 0 and increases considerably from the plate y = 0.   

     The velocity increases with the decrease in Rc in oscillatory motion while the velocity     
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      increases with the increase in Rc  in transilatory motion. 

 

5.   Velocity profile for different values of Grashoff number Gr. 

 

      The variation of velocity u is plotted against the variable y for different values of   

      Grashoff number Gr. It is observed that the velocity decreases between the plates y =  
      -1.5 and y = 0 and is zero at y = 0 and the increase in velocity is considerably high  

      from y = 0.  The velocity increases with the increase in Grashoff number in  

      Oscillatory motion. 

 

6.   Velocity profile for different values of Froude’s number Fr. 

      It is found that the velocity decreases between the plates y = -1.5 and y = 0 and it       

      is observed that the velocity is almost same for Fr  = 0.1 and Fr = 0.5 in                                  

      oscillatory motion where as in transilatory motion the velocity decreases with the     

      decrease in Froude’s number.  

   

7.  Velocity profile for different values of Reynold’s number Re. 

 
The velocity distribution has been obtained by plotting the graph against the variable y for various values of 

Reynold’s number.  The increase in velocity is considerably high from the plate y = 0.  There is no change 

in velocity for Re = 1 and Re = 2 in oscillatory motion. 

 

 

8. Velocity profile for different values of porous medium parameter Da= 2, 21. 

 

The velocity distribution has been obtained by plotting the graph against the variable y for various values of 

porous medium parameter. Tha velocity profile increases with the increase in Da that is the velocity profile 

decreases with the increase in the parameter of porous media. 

9. Temperature profile for different values of Prandtl number pr .  

 

      Temperature profile for different values of pr  is plotted against the variable y when ω   

      =1.0, t = 1.0 and S =0.1.  We notice that the temperature increases with the increase   

      in Prandtl number in oscillatory motion as well as in transilatory motion. 

 

10. Temperature profile for different values of S.  

 

      It is seen that the temperature increases with the increase in source or sink term S     
      in oscillatory motion..The variation in temperature for S =0.1 and S = 0.05 is        

      almost similar. 

 

 

  

 

 

            REFERENCES 

 

 
1. Shih-I. Pai (1961), Magenetogasdynamics and Plasma dynamics.  Springer-Verlag in Vienna, Austria; p.1-72. 

 

2. Schlichting, H. (1968).  Boundary-layer theory. McGraw-Hill publication, sixth edition; p.1-72. 

 

3.  Bhattacharjee. A and Borkakati, A. K. (1984). A note in heat transfer in a    

     Hydro magnetic flow between two porus disks one rotating and the other at  

     rest, under uniform suction, when the lower plate is adiabatic.  Bulletin of  

     Calcutta mathematical society vol.76; p.209=215. 

 

4. Chakraborty S. and Borkakati A.  K. (1998). MHD flow and heat transfer of a dusty visco-elastic fluid down and inclined 

channel in porus medium.   Indian Journal of theoretical physics.  vol.  46(no. 4) p.313-331. 

 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 55  Number 8 - March 2018 

 

ISSN: 2231-5373                          http://www.ijmttjournal.org                                    Page 592 

 

5. Chakraborty S.  And Borkakati A. K. (1998).MHD flow and heat transfer of  dusty Rivlin-Eriksen second order fluids in an 

inclined channel in porous medium. Ganita, 49(2), 173. 

 

6. G. Bodosa and A. K.  Borkakati (2002).MHD flow and heat transfer of Rivlin –Eriksen fluid through an inclined channel, with 

heat sources or sinks when the plates are moving with transient velocity while the one of these two plates is adiabatic.  Bulletin 

of pure and applied sciences vol 21E (no.2) p.451-460. 

 

7. S. Ahmed and N. Ahmed (2004). Two-dimensional MHD oscillatory flow along a uniformly moving infinite vertical porous 

plate by porous medium.  Indian Journal of pure and applied mathematics.  35(12) p.1309-1319. 

 

8. P. R. Sharma, Y. N. Gaur and R. P. Sharma (2004).Unsteady MHD oscillatory flow and heat transfer over a continuous porous 

moving horizontal surface in the presence of an oscillating free stream and heat source.  Journal of Indian Acad. Mathematics 

vol. 26. No.1.p.105-114. 

  

http://www.ijmttjournal.org/

