A Note on Generalized Skew Derivations on Rings

Asma $\mathrm{Ali}^{\# 1}$, Kapil Kumar ${ }^{* 2}$, MD Hamidur Rahaman ${ }^{\# 3}$
\#Professor Department of Mathematics Aligarh Muslim University, Aligarh (India)

Abstract

In this article we investigate the structure of a ring R with involution of second kind admitting a generalized skew-derivation G satisfying one of the following: (i) $G\left(\left[x, x^{*}\right]\right)+\left[x, x^{*}\right] \in Z(R)$ (ii) $G\left(x \circ x^{*}\right) \in Z(R)$ (iii) $G([x, x *]) \mp x \circ x * \in Z(R)$ (iv) $G\left(x \circ x^{*}\right) \bar{\mp} x \circ x^{*} \in Z(R)$ (v) $G\left(x \circ x^{*}\right) \mp\left[x, x^{*}\right] \in Z(R)$ for all $x \in R$.

Keywords :- Prime rings, *-prime rings, skew derivations, generalized skew derivations.

I. Introduction

Throughout the paper R will represent an associative ring with center $Z(R)$. For any $x, y \in R$ the symbol $[x, y]$ will denote the commutator $x y-y x$; while the symbol $x^{\circ} y$ will stand for anti-commutator $x y+y x . R$ is prime if $\mathrm{aRb}=0$ implies $\mathrm{a}=0$ or $\mathrm{b}=0$. An additive map $*: \mathrm{R} \rightarrow \mathrm{R}$ is called an involution if $*$ is an anti-automorphism of order 2 ; that is $\left(x^{*}\right)^{*}=x$ for all $x \in R$. R is *-prime if $a R b^{*}=0$ implies $a=0$ or $b=0$. An element x in a ring R with involution * is said to be hermitian and skew-hermitian elements of R will be denoted by $H(R)$ and $S(R)$, respectively. The involution is said to be of the firest kind if $Z(R) \subseteq H(R)$, otherwise it is said to be of second kind. In the later case $Z(R) \cap S(R) \neq(0)$. An additive mapping $d: R \rightarrow R$ is said to be a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. An additive map $F: R \rightarrow R$ is a generalized derivation if their exists a derivation d such that $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$. All derivations are generalized derivations.

Let R be an associative ring and α be an automorphism of R. An additive mapping $D: R \rightarrow R$ is called a skewderivation of R if $D(x y)=D(x) y+\alpha(x) D(y)$ for all $x, y \in R$ and α is called an associated automorphism of D. An additive mapping $G: R \rightarrow R$ is said to be a generalized skew-derivation of R if there exists a skew-derivation D of R with associated automorphism α such that $G(x y)=G(x) y+\alpha(x) D(y)$ for all $x, y \in R$. The definition of generalized skew-derivation is a unified notion of skew-derivation and generalized derivation, which are considered as classical additive mappings of non-associative algebras. The behaviour of these has been investigated by many researchers from various views, see [1-5]. In [6, Theorem 2], Daif and Bell proved that if R is a semiprime witha nonzero ideal I and d is a derivation of R such that $d([x, y]=[x, y]$ for all $x, y \in I$, then $I \subseteq Z(R)$. In particular if R is a prime ring, then R must be commutative. Recently in [7] Filippis and Huang studied the situation $(\mathrm{F}([\mathrm{x}, \mathrm{y}]))^{\mathrm{n}}$ $=[x, y]$ for all $x, y \in I$, where I is a nonzero ideal in a prime ring R, F is a generalized derivation of R and $n \geq 1$, a fixed integer. In this case they conclude that either R is commutative or $n=1$: $d=0$ and $F(x)=x$ for all $x \in R$.

Motivated by the aforementioned results in this paper we prove some theorems for a generalized skewderivation of a ring with involution of second kind.

II. Main Result Page Layout

Fact 1: Let R be a prime ring of characteristic not 2 with involution * of second kind. If R is prime and $S(R) \cap Z(R) \neq(0)$, then $D(h)=0$ for all $h \in H(R) \cap Z(R)$ implies that $D(z)=0$ for all $z \in Z(R)$. Indeed, if $D(h)=0$ for all $h \in H(R) \cap Z(R)$, replacing h by k^{2} where $k \in S(R) \cap Z(R)$, then we have $D(k) k=0$ for all $k \in S(R) \cap Z(R)$ since α is an automorphism. As conclusion, we get $D(z)=0$ for all $z \in Z(R)$.

Theorem 2.1 Let R be a prime ring of characteristic not 2 with involution * of second kind. If R admits a generalized skew-derivation G associated with a skew-derivation D with an automorphism $\alpha: R \rightarrow R$ such that $G\left(\left[x, x^{*}\right]\right)+\left[x, x^{*}\right] \in Z(R)$ for all $x \in R$, then either R is commutative or $[\alpha([x, y]) D(x), x]=0$ for all $x \in R$.

Proof. Assume that

$$
\begin{equation*}
\mathrm{G}\left(\left[\mathrm{x}, \mathrm{x}^{*}\right]\right)+\left[\mathrm{x}, \mathrm{x}^{*}\right] \in \mathrm{Z}(\mathrm{R}) \quad \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{2.1}
\end{equation*}
$$

Replacing x by $\mathrm{x}+\mathrm{y}$ in (2.1), we get

$$
\begin{equation*}
G\left(\left[x, y^{*}\right]\right)+G\left(\left[y, x^{*}\right]\right)+\left[x, y^{*}\right]+\left[y, x^{*}\right] \in Z(R) \quad \text { for all } x, y \in R . \tag{2.2}
\end{equation*}
$$

Substituting y^{*} for y, we find that

$$
\begin{equation*}
\mathrm{G}([\mathrm{x}, \mathrm{y}])+\mathrm{G}\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right)+[\mathrm{x}, \mathrm{y}]+\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right] \in \mathrm{Z}(\mathrm{R}) \quad \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{R} . \tag{2.3}
\end{equation*}
$$

Replacing y by yh in (2.3), where $h \in Z(R) \cap H(R) \backslash\{0\}$, we have

$$
\begin{equation*}
\left(\mathrm{G}([\mathrm{x}, \mathrm{y}])+\mathrm{G}\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right)+[\mathrm{x}, \mathrm{y}]+\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right) \mathrm{h}+\alpha([\mathrm{x}, \mathrm{y}]) \mathrm{D}(\mathrm{~h})+\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right) \mathrm{D}(\mathrm{~h}) \in \mathrm{Z}(\mathrm{R}) \tag{2.4}
\end{equation*}
$$

By equation (2.3), we have

$$
\begin{equation*}
\alpha([\mathrm{x}, \mathrm{y}]) \mathrm{D}(\mathrm{~h})+\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right) \mathrm{D}(\mathrm{~h}) \in \mathrm{Z}(\mathrm{R}) \quad \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{R} . \tag{2.5}
\end{equation*}
$$

This implies that

$$
\left[\alpha([x, y]) D(h)+\alpha\left(\left[y^{*}, x^{*}\right]\right) D(h), r\right]=0 \quad \text { for all } r, x, y \in R .
$$

This gives

$$
\left[\left(\alpha([x, y])+\alpha\left(\left[y^{*}, x^{*}\right]\right)\right) D(h), r\right]=0 \quad \text { for all } r, x, y \in R .
$$

This implies

$$
\left[\alpha([\mathrm{x}, \mathrm{y}]) \mathrm{D}(\mathrm{~h})+\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right), \mathrm{r}\right] \mathrm{D}(\mathrm{~h})=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

Therefore, either $\left[\alpha([x, y]) D(h)+\alpha\left(\left[y^{*}, x^{*}\right]\right), r\right]=0$ or $D(h)=0$ for $h \in Z(R) \cap H(R) \backslash\{0\}$.
Suppose that

$$
\begin{equation*}
\left.[\alpha([\mathrm{x}, \mathrm{y}]))+\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{2.6}
\end{equation*}
$$

Substituting ys for y, where $s \in S(R) \cap Z(R) \backslash\{0\}$, we obtain

$$
\left[\alpha([\mathrm{x}, \mathrm{y}])-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right), \mathrm{r}\right] \alpha(\mathrm{s})=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Replacing r by rr', we get

$$
\left[\alpha([\mathrm{x}, \mathrm{y}])-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right), \mathrm{r}\right] \mathrm{R} \alpha(\mathrm{~s})=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

Using primeness of R , we get

$$
\begin{equation*}
\left[\alpha([\mathrm{x}, \mathrm{y}])-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} . \tag{2.7}
\end{equation*}
$$

Now adding (2.6) and (2.7) and using the fact that R is not of characteristic 2 , we have

$$
[\alpha([\mathrm{x}, \mathrm{y}]), \mathrm{r}]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

Substituting yx for y , we obtain

$$
\alpha([\mathrm{x}, \mathrm{y}])[\mathrm{r}, \alpha(\mathrm{x})]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Again replacing r by $\mathrm{r} \alpha(\mathrm{y})$ we get $\alpha([\mathrm{x}, \mathrm{y}]) \mathrm{R} \alpha([\mathrm{x}, \mathrm{y}])=0$. Using primeness of R we get $\alpha([\mathrm{x}, \mathrm{y}])=0$. This implies that $[x, y]=0$ for all $x, y \in R$. Hence R is commutative.

On the other hand if $D(h)=0$ for all $h \in Z(R) \cap H(R) \backslash\{0\}$, by Fact 1 we have $D(z)=0$ for all $z \in Z(R)$. Now replacing y by ys in (2.3), where $s \in Z(R) \cap S(R) \backslash\{0\}$, we obtain

$$
\left(G([x, y]) s-G\left(\left[y^{*}, x^{*}\right] s\right)+[x, y] s-\left[y^{*}, x^{*}\right] s\right) \in Z(R)
$$

That is

$$
\begin{equation*}
\left(G([x, y])-G\left(\left[y^{*}, x^{*}\right]\right) s+[x, y] s-\left[y^{*}, x^{*}\right] s\right) \in Z(R) . \tag{2.8}
\end{equation*}
$$

Multiplying (2.3) by s from right and adding (2.8), we get

$$
2(G([x, y])+[x, y]) s \in Z(R)
$$

Since R is not of characteristic 2 , we have

$$
\begin{equation*}
(G([x, y])+[x, y]) s \in Z(R) \quad \text { for all } x, y \in R . \tag{2.9}
\end{equation*}
$$

This gives that

$$
\begin{equation*}
(G([x, y])+[x, y]) \in Z(R) \quad \text { for all } x, y \in R \tag{2.10}
\end{equation*}
$$

and hence

$$
\begin{equation*}
[(G([x, y])+[x, y], r]=0 \quad \text { for all } x, y, r \in R \tag{2.11}
\end{equation*}
$$

Replacing y by yx in (2.11), we get

$$
[(G([x, y]) x+\alpha([x, y])) D(x)+[x, y] x, r]=0 \quad \text { for all } x, y, r \in R .
$$

Next replacing r by x and using (2.11), we obtain

$$
[\alpha([\mathrm{x}, \mathrm{y}]) \mathrm{D}(\mathrm{x}), \mathrm{r}]=0 \quad \text { for all } \mathrm{x}, \mathrm{y}, \mathrm{r} \in \mathrm{R}
$$

Theorem 2.2 Let R be a prime ring of characteristic not 2 with involution * of second kind. If R admits a generalized skew-derivation G associated with a skew-derivation D with an automorphism $\alpha: R \rightarrow R$ such that $G\left(x^{\circ} x^{*}\right) \in Z(R)$ for all $x \in R$, then either R is commutative or $\left[\alpha\left(x^{2}\right) D(x), x\right]=0$ for all $x \in R$.

Proof. Suppose that G $\ddagger 0$ and

$$
\begin{equation*}
G\left(x^{\circ} x^{*}\right) \in Z(R) \quad \text { for all } x, y \in R \tag{2.12}
\end{equation*}
$$

Replacing x by $\mathrm{x}+\mathrm{y}$ in (2.12), we get

$$
\begin{equation*}
G\left(x^{\circ} y^{*}\right)+G\left(y^{\circ} x^{*}\right) \in Z(R) \quad \text { for all } x, y \in R \tag{2.13}
\end{equation*}
$$

Substituting y^{*} for y, we find that

$$
\begin{equation*}
G\left(x^{\circ} y\right)+G\left(y^{*} \circ x^{*}\right) \in Z(R) \quad \text { for all } x, y \in R \tag{2.14}
\end{equation*}
$$

Again replacing y by yh in (2.14), where $h \in Z(R) \cap H(R) \backslash\{0\}$ and using (2.14), we have

$$
\begin{equation*}
\left[\left(\alpha\left(x^{\circ} y\right)+\alpha\left(y^{*} \circ x^{*}\right)\right) D(h), r\right]=0 \quad \text { for all } x, y \in R \tag{2.15}
\end{equation*}
$$

This implies that

$$
\left[\alpha\left(\mathrm{x}^{\circ} \mathrm{y}\right)+\alpha\left(\mathrm{y}^{* \circ} \mathrm{x} *\right), \mathrm{r}\right] \mathrm{D}(\mathrm{~h})=0 \quad \text { for all } \mathrm{x}, \mathrm{y}, \mathrm{r} \in \mathrm{R} .
$$

Since R is prime, either $D(h)=0$ or $\quad\left[\alpha\left(x^{\circ} y\right)+\alpha\left(y^{*}{ }^{\circ} x^{*}\right), r\right]=0$.

Suppose that

$$
\begin{equation*}
\left[\alpha\left(x^{\circ} y\right)+\alpha\left(y^{*} \circ x^{*}\right), r\right]=0 \quad \text { for all } r, x, y \in R \tag{2.16}
\end{equation*}
$$

Replacing y by ys, where $s \in Z(R) \cap S(R) \backslash\{0\}$, we get

$$
\begin{equation*}
\left[\alpha\left(x^{\circ} \mathrm{y}\right) \alpha(\mathrm{s})-\alpha\left(\mathrm{y}^{* \circ} \mathrm{x}^{*}\right) \alpha(\mathrm{s}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} . \tag{2.17}
\end{equation*}
$$

Multiplying (2.16) by $\alpha(s)$ from right and adding (2.17), we get

$$
2\left[\alpha\left(\mathrm{x}^{\circ} \mathrm{y}\right) \alpha(\mathrm{s}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Since R is not of characteristic 2 , we get

$$
[\alpha(\mathrm{x} \circ \mathrm{y}) \alpha(\mathrm{s}), \mathrm{r}]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

This gives

$$
[\alpha(\mathrm{x} \circ \mathrm{y}) \alpha(\mathrm{s}), \mathrm{r}] \alpha(\mathrm{s})=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Primeness of R, yields that either $\left[\alpha\left(x^{\circ} y\right), r\right]=0$ or $\alpha(s)=0$. Since $\alpha(s) \neq 0$, we have $\left[\alpha\left(x^{\circ} y\right), r\right]=0$.
Replacing y by yx, we get

$$
[\alpha(x \circ y) \alpha(x), r]=0 \quad \text { for all } r, x, y \in R
$$

This gives

$$
\alpha\left(x^{\circ} y\right)[\alpha(x), r]=0 \quad \text { for all } r, x, y \in R .
$$

Replacing r by $r \alpha(z)$, we get

$$
\alpha\left(x^{\circ} y\right) r[\alpha(x), \alpha(z)]=0 \quad \text { for all } r, x, y, z \in R
$$

Using primeness of R , we get either $\alpha\left(\mathrm{x}^{\circ} \mathrm{y}\right)=0$ or $[\alpha(\mathrm{x}), \alpha(\mathrm{z})]=0$. In each case R is commutative.
Now if $D(h)=0$, by Fact 1 we conclude that $D(z)$ for all $z \in Z(R)$. Substituting y by ys in (2.14), where $\mathrm{s} \in \mathrm{Z}(\mathrm{R}) \cap \mathrm{S}(\mathrm{R}) \backslash\{0\}$, we obtain

$$
\begin{equation*}
\left(G\left(x^{\circ} y\right)-G\left(y^{*} \circ x^{*}\right)\right) s \in Z(R) \quad \text { for all } x, y \in R \tag{2.18}
\end{equation*}
$$

Multiplying (2.14) by s from right and adding (2.18), we get

$$
2(G(x \circ y)) s \in Z(R) \quad \text { for all } x, y \in R
$$

Since R is not characteristic 2, we have

$$
(G(x \circ y)) s \in Z(R) \quad \text { for all } x, y \in R .
$$

This gives that

$$
\begin{equation*}
G\left(x^{\circ} y\right) \in Z(R) \quad \text { for all } x, y \in R \text {. } \tag{2.19}
\end{equation*}
$$

That is

$$
\begin{equation*}
\left[\mathrm{G}\left(\mathrm{x}^{\circ} \mathrm{y}\right), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{2.20}
\end{equation*}
$$

Replacing y by yx in (2.20), we obtain

$$
\left[G\left(x^{\circ} y\right) x+\alpha\left(x^{\circ} y\right) D(x), r\right]=0 \quad \text { for all } x, y \in R
$$

Substituting x instead of r and using (2.20), we have

$$
[\alpha([\mathrm{x}, \mathrm{y}]) \mathrm{D}(\mathrm{x}), \mathrm{x}]=0
$$

for all $x, y \in R$.
Now replacing y by yx, we obtain

$$
\left[\alpha\left(2 x^{2}\right) D(x), x\right]=0 \quad \text { for all } x, y \in R
$$

Since R is not of characteristic 2 , we have

$$
\left[\alpha\left(\mathrm{x}^{2}\right) \mathrm{D}(\mathrm{x}), \mathrm{x}\right]=0 \quad \text { for all } \mathrm{x} \in \mathrm{R}
$$

Theorem 2.3 Let R be a prime ring of characteristic not 2 with involution * of second kind. If R admits a generalized skew-derivation G associated with a skew-derivation D with an automorphism $\alpha: R \rightarrow R$ such that $G\left(\left[x, x^{*}\right]\right) \bar{F}_{x^{\circ}} x^{*} \in Z(R)$ for all $x \in R$, then either R is commutative or $[\alpha([x, y]) D(x), x]=0$ for all $x \in R$.

Proof. Let

$$
G\left(\left[x, x^{*}\right]\right)-x^{\circ} x^{*} \in Z(R) \quad \text { for all } x, y \in R .
$$

Linearization gives

$$
\begin{equation*}
G([x, y])+G\left(\left[y^{*}, x^{*}\right]\right)-x^{\circ} y-y^{*} \circ x^{*} \in Z(R) \quad \text { for all } x, y \in R . \tag{2.21}
\end{equation*}
$$

Replacing y by yh, where $h \in Z(R) \cap H(R) \backslash\{0\}$, we get

$$
\left(\alpha([x, y])+\alpha\left(\left[y^{*}, x^{*}\right]\right)\right) D(h) \in Z(R) \quad \text { for all } x, y \in R .
$$

This implies that

$$
\begin{equation*}
\left[\alpha([\mathrm{x}, \mathrm{y}])+\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right), \mathrm{r}\right] \mathrm{D}(\mathrm{~h})=0 . \quad \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{2.22}
\end{equation*}
$$

Using primeness of R , we have either $\left[\alpha([\mathrm{x}, \mathrm{y}])+\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right), \mathrm{r}\right]=0$ or $\mathrm{D}(\mathrm{h})=0$.
Suppose that

$$
\begin{equation*}
\left.[\alpha([\mathrm{x}, \mathrm{y}]))+\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} . \tag{2.23}
\end{equation*}
$$

Now, replacing y by ys, where $s \in Z(R) \cap S(R) \backslash\{0\}$, we get

$$
\left[\alpha([\mathrm{x}, \mathrm{y}] \mathrm{s})-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right] \mathrm{s}\right), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{s}, \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

i.e.

$$
\left[\left(\alpha([\mathrm{x}, \mathrm{y}])-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right)\right) \alpha(\mathrm{s}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{s}, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

This implies that

$$
\begin{equation*}
\left[\alpha([\mathrm{x}, \mathrm{y}])-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right), \mathrm{r}\right] \alpha(\mathrm{s})=0 \quad \text { for all } \mathrm{s}, \mathrm{x}, \mathrm{y} \in \mathrm{R} . \tag{2.24}
\end{equation*}
$$

Using primeness of R , we get

$$
\begin{equation*}
\left[\alpha([\mathrm{x}, \mathrm{y}])-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} . \tag{2.25}
\end{equation*}
$$

Now adding (2.23) and (2.25), we get

$$
2[r, \alpha([x, y])]=0 \quad \text { for all } r, x, y \in R .
$$

Since R is not of characteristic 2 , we have

$$
\begin{equation*}
[\mathrm{r}, \alpha([\mathrm{x}, \mathrm{y}])]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} . \tag{2.26}
\end{equation*}
$$

Arguing in the similar manner as in Theorem 2.1, R is commutative.
On the other hand if $D(h)=0$ by Fact 1 we conclude that $D(z)=0$ for all $z \in Z(R)$.
Substituting ys for y in (2.21), where $s \in Z(R) \cap S(R) \backslash\{0\}$, we obtain

$$
\begin{equation*}
G([x, y]) s-G\left(\left[y^{*}, x^{*}\right] s-\left(x^{\circ} y\right) s+\left(y^{*} \circ x^{*}\right) s \in Z(R) \quad \text { for all } x, y, s \in R .\right. \tag{2.27}
\end{equation*}
$$

Multiplying (2.21) by s from right and adding (2.27), we get

$$
2\left(G([x, y])-\left(x^{\circ} y\right) s\right) \in Z(R) \quad \text { for all } x, y, s \in R .
$$

Since R is not of characteristic 2 , we get

$$
\left(G([x, y])-\left(x^{\circ} y\right)\right) s \in Z(R) \quad \text { for all } x, y, s \in R
$$

This gives that

$$
(G([x, y])-(x \circ y)) \in Z(R) \quad \text { for all } x, y \in R .
$$

This implies that

$$
\begin{equation*}
\left[\left(G([x, y])-\left(x^{\circ} y\right), r\right]=0 \quad \text { for all } x, y, r \in R .\right. \tag{2.28}
\end{equation*}
$$

Substituting yx for y , we get

$$
[G([x, y]) x+\alpha([x, y]) D(x)-(x \circ y) x, r]=0 \quad \text { for all } x, y, r \in R
$$

Replacing r by x and using (2.28), we obtain

$$
[\alpha([x, y]) D(x), x]=0 \quad \text { for all } x, y, r \in R
$$

Theorem 2.4 Let R be a prime ring of characteristic not 2 with involution * of second kind. If R admits a generalized skew-derivation G associated with a skew-derivation D with an automorphism $\alpha: R \rightarrow R$ such that $G\left(x^{\circ} x^{*}\right) \mp x^{\circ} x^{*} \in Z(R)$ for all $x \in R$, then either R is commutative or $\left[\alpha\left(x^{2}\right) D(x), x\right]=0$ for all $x \in R$.

Proof. By hypothesis

$$
\begin{equation*}
G\left(x^{\circ} x^{*}\right)-x^{\circ} x^{*} \in Z(R) \quad \text { for all } x, y \in R \tag{2.29}
\end{equation*}
$$

Linearization gives

$$
G\left(x^{\circ} y^{*}\right)+G\left(y^{\circ} x^{*}\right)-x^{\circ} y^{*}-y^{\circ} x^{*} \in Z(R) \quad \text { for all } x, y \in R .
$$

Replacing y by y^{*}, we get

$$
\begin{equation*}
G\left(x^{\circ} y\right)+G\left(y^{*} \circ x^{*}\right)-x^{\circ} y-y^{*} \circ x^{*} \in Z(R) \quad \text { for all } x, y \in R . \tag{2.30}
\end{equation*}
$$

Next replacing y by yh, where $h \in Z(R) \cap H(R) \backslash\{0\}$ and using (2.30), we get

$$
\left(\alpha\left(x^{\circ} y\right)+\alpha\left(y^{*} \circ x^{*}\right)\right) D(h) \in Z(R) \quad \text { for all } x, y \in R .
$$

This implies

$$
\left[\left(\alpha\left(x^{\circ} y\right)+\alpha\left(y^{* \circ} x^{*}\right)\right) D(h), r\right]=0 \quad \text { for all } r, x, y \in R,
$$

i.e.

$$
\left[\alpha\left(x^{\circ} y\right)+\alpha\left(y^{*} \circ x^{*}\right), \mathrm{r}\right] \mathrm{D}(\mathrm{~h})=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Using primeness of R , we get either $\left[\alpha\left(\mathrm{x}^{\circ} \mathrm{y}\right)+\alpha\left(\mathrm{y}^{*}{ }^{\circ} \mathrm{x}^{*}\right), \mathrm{r}\right]=0$ or $\mathrm{D}(\mathrm{h})=0$.
Suppose that

$$
\begin{equation*}
\left[\alpha\left(\mathrm{x}^{\circ} \mathrm{y}\right)+\alpha\left(\mathrm{y}^{*} \circ \mathrm{x} *\right), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R}, \tag{2.31}
\end{equation*}
$$

Replacing y by yc, where $c \in Z(R) \cap S(R) \backslash\{0\}$, we get

$$
\left[\alpha([\mathrm{x}, \mathrm{y}] \mathrm{c})-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right] \mathrm{c}\right), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{c}, \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

i.e.

$$
\begin{equation*}
\left[\left(\alpha([\mathrm{x}, \mathrm{y}])-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right)\right) \alpha(\mathrm{c}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{c}, \mathrm{x}, \mathrm{y} \in \mathrm{R} . \tag{2.32}
\end{equation*}
$$

Multiplying (2.31) by α (c) from right, we get

$$
\begin{equation*}
\left[\alpha\left(\mathrm{x}^{\circ} \mathrm{y}\right) \alpha(\mathrm{c})+\alpha\left(\mathrm{y}^{*} \circ \mathrm{x}^{*}\right) \alpha(\mathrm{c}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{c}, \mathrm{x}, \mathrm{y} \in \mathrm{R} . \tag{2.33}
\end{equation*}
$$

Adding (2.32) and (2.33), we have

$$
2\left[\alpha\left(x^{\circ} \mathrm{y}\right) \alpha(\mathrm{c}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Since R is not of characteristic 2 , we get

$$
\left[\alpha\left(x^{\circ} \mathrm{y}\right) \alpha(\mathrm{c}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{c}, \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

This implies that

$$
\left[\alpha\left(x^{\circ} \mathrm{y}\right), \mathrm{r}\right] \alpha(\mathrm{c})=0 \quad \text { for all } \mathrm{c}, \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

Using primeness of R , we get either $\alpha\left(\mathrm{x}^{\circ} \mathrm{y}\right)=0 \quad$ or $\alpha(\mathrm{c})=0$. By hypothesis $\alpha(\mathrm{c}) \neq 0$ yields that $\mathrm{x}^{\circ} \mathrm{y}=0$ for all $x, y \in R$. Hence R is commutative.

Now if $D(h)=0$, by Fact $1 D(z)=0$ for all $z \in Z(R)$. Substituting ys for y in (2.30), where $s \in Z(R) \cap S(R) \backslash\{0\}$, we obtain

$$
\begin{equation*}
\left(G\left(x^{\circ} y\right) s-G\left(y^{*} \circ x^{*}\right) s-\left(x^{\circ} y\right) s+\left(y^{*} \circ x^{*}\right) s\right) \in Z(R) \quad \text { for all } x, y, s \in R \tag{2.34}
\end{equation*}
$$

Multiplying (2.30) by s from right and adding (2.34), we get

$$
(G(x \circ y)-(x \circ y)) s \in Z(R) \quad \text { for all } x, y, s \in R
$$

This gives that

$$
(G(x \circ y)-(x \circ y)) \in Z(R) \quad \text { for all } x, y \in R
$$

This implies that

$$
\begin{equation*}
[(G(x \circ y)-(x \circ y), r]=0 \quad \text { for all } x, y, r \in R . \tag{2.35}
\end{equation*}
$$

Replacing y by yx, we obtain

$$
\left[(G(x \circ y)-(x \circ y)) x+\alpha\left(x^{\circ} y\right) D(x), r\right]=0 \quad \text { for all } x, y, r \in R .
$$

Substituting x instead of r and using (2.35), we get

$$
\left[\alpha\left(x^{\circ} \mathrm{y}\right) \mathrm{D}(\mathrm{x}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

Now replacing by x , we have

$$
\left[\alpha\left(x^{2}\right) D(x), x\right]=0 \quad \text { for all } x, y \in R
$$

Theorem 2.5 Let R be a prime ring of characteristic not 2 with involution * of second kind. If R admits a generalized skew-derivation G associated with a skew-derivation D with an automorphism $\alpha: R \rightarrow R$ such that $G\left(x^{\circ} x^{*}\right) \mp\left[x, x^{*}\right] \in Z(R)$ for all $x \in R$, then either R is commutative or $\left[\alpha\left(x^{2}\right) D(x), x\right]=0$ for all $x \in R$.

Proof. By hypothesis

$$
\begin{equation*}
G\left(x^{\circ} x^{*}\right)-\left[x, x^{*}\right] \in Z(R) \quad \text { for all } x, y \in R \tag{2.36}
\end{equation*}
$$

Linearization gives

$$
G\left(x^{\circ} y^{*}\right)+G\left(y^{\circ} x^{*}\right)-\left[x, y^{*}\right]-\left[y, x^{*}\right] \in Z(R) \quad \text { for all } x, y \in R .
$$

Replacing y by y^{*}, we get

$$
\begin{equation*}
G\left(x^{\circ} y\right)+G\left(y^{*} \circ x^{*}\right)-[x, y]-\left[y^{*}, x^{*}\right] \in Z(R) \quad \text { for all } x, y \in R \text {. } \tag{2.37}
\end{equation*}
$$

Replacing y by yh, where $h \in Z(R) \cap H(R) \backslash\{0\}$ and using (2.37), we get

$$
\left(\alpha\left(x^{\circ} y\right)+\alpha\left(y^{*} \circ x^{*}\right)\right) D(h) \in Z(R) .
$$

This gives that

$$
\left[\left(\alpha\left(x^{\circ} \mathrm{y}\right)+\alpha\left(\mathrm{y}^{* \circ} \circ \mathrm{x} *\right)\right) \mathrm{D}(\mathrm{~h}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R},
$$

i.e.

$$
\left[\alpha\left(x^{\circ} \mathrm{y}\right)+\alpha\left(\mathrm{y}^{*} \circ \mathrm{x} *\right), \mathrm{r}\right] \mathrm{D}(\mathrm{~h})=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Using primeness of R , we get either $\left[\alpha\left(\mathrm{x}^{\circ} \mathrm{y}\right)+\alpha\left(\mathrm{y}^{*}{ }^{\circ} \mathrm{x}^{*}\right), \mathrm{r}\right]=0$ or $\mathrm{D}(\mathrm{h})=0$.
Suppose that

$$
\begin{equation*}
\left[\alpha\left(x^{\circ} \mathrm{y}\right)+\alpha\left(y^{*} \circ \mathrm{x} *\right), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{2.38}
\end{equation*}
$$

Replacing y by yc, where $c \in Z(R) \cap S(R) \backslash\{0\}$, we get

$$
\left[\alpha([\mathrm{x}, \mathrm{y}] \mathrm{c})-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right] \mathrm{c}\right), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{c}, \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

i.e.

$$
\begin{equation*}
\left[\alpha([\mathrm{x}, \mathrm{y}]) \alpha(\mathrm{c})-\alpha\left(\left[\mathrm{y}^{*}, \mathrm{x}^{*}\right]\right) \alpha(\mathrm{c}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{r}, \mathrm{c}, \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{2.39}
\end{equation*}
$$

Multiplying (2.38) by α (c) from right and adding (2.39), we get we get

$$
2\left[\alpha\left(x^{\circ} \mathrm{y}\right) \alpha(\mathrm{c}), \mathrm{r}\right]=0 \quad \text { for all } \mathrm{c}, \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Since R is not of characteristic 2 , we get

$$
\left[\alpha\left(x^{\circ} \mathrm{y}\right), \mathrm{r}\right] \alpha(\mathrm{c})=0 \quad \text { for all } \mathrm{c}, \mathrm{r}, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Using primeness of R, we get either $\alpha\left(x^{\circ} y\right)=0 \quad$ or $\alpha(c)=0$. By hypothesis $\alpha(c) \neq 0$ yields that $x^{\circ} y=0$ for all $x, y \in R$. Hence R is commutative.

On the other hand if $D(h)=0$, by Fact $1 \mathrm{D}(\mathrm{z})=0$ for all $\mathrm{z} \in \mathrm{Z}(\mathrm{R})$. Substituting ys for y in (2.37), where $s \in Z(R) \cap S(R) \backslash\{0\}$, we obtain

$$
\begin{equation*}
\left(G(x \circ y) s-G\left(y^{*} \circ x^{*}\right) s-[x, y] s+\left[y^{*}, x^{*}\right] s\right) \in Z(R) \quad \text { for all } x, y, s \in R . \tag{2.40}
\end{equation*}
$$

Multiplying (2.37) by s from right and adding (2.40), we get

$$
2(G(x \circ y)-[x, y]) s \in Z(R)
$$

$$
\text { for all } x, y, s \in R \text {. }
$$

This gives that

$$
\begin{equation*}
(G(x \circ y)-[x, y]) \in Z(R) \quad \text { for all } x, y \in R, \tag{2.41}
\end{equation*}
$$

and hence

$$
\begin{equation*}
[\mathrm{G}(\mathrm{x} \circ \mathrm{y})-[\mathrm{x}, \mathrm{y}], \mathrm{r}]=0 \quad \text { for all } \mathrm{x}, \mathrm{y}, \mathrm{r} \in \mathrm{R} \tag{2.35}
\end{equation*}
$$

Replacing y by yx in (2.42), we get

$$
\left[\left(G\left(x^{\circ} y\right)-[x, y]\right) x+\alpha\left(x^{\circ} y\right) D(x), r\right]=0 \quad \text { for all } x, y, r \in R
$$

Substituting x instead of r and using (2.42), we get

$$
\left[\alpha\left(x^{\circ} \mathrm{y}\right) \mathrm{D}(\mathrm{x}), \mathrm{x}\right]=0 \quad \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Now replacing y by x , we have

$$
\left[\alpha\left(2 x^{2}\right) D(x), x\right]=0 \quad \text { for all } x, y \in R
$$

Since R is not of characteristic 2, we have

$$
\left[\alpha\left(\mathrm{x}^{2}\right) \mathrm{D}(\mathrm{x}), \mathrm{x}\right]=0 \quad \text { for all } \mathrm{x} \in \mathrm{R} .
$$

The following example demonstrates that in the hypothesis of the above Theorems R to be a prime and * to be involution of second kind are essential.

Example 2.6 Let $\mathrm{R}=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) a, b, c \in Z\right.$, ring of integers $\}$. Define maps $\mathrm{G}, \mathrm{D}, \alpha: \mathrm{R} \rightarrow \mathrm{R}$ by
$\mathrm{G}\left(\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right), D\left(\left(\begin{array}{cc}a & b \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & -b \\ 0 & 0\end{array}\right), \quad \alpha\left(\left(\begin{array}{cc}a & b \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) * \mathrm{~S}=$ $\left(\begin{array}{cc}0 & -b \\ 0 & a\end{array}\right)$.
Then G is a generalized skew derivation associated with a skew derivation D and an automorphism α on R with an involution * of first kind satisfying: (i) $G\left(\left[x, x^{*}\right]\right)+\left[x, x^{*}\right] \in Z(R)$, (ii) $G\left(x^{\circ} x^{*}\right) \in Z(R)$, (iii) $G\left(\left[x, x^{*}\right]\right) \bar{F}_{x^{\circ} x^{*} \in Z(R), ~(i v) ~} G\left(x^{\circ} x^{*}\right) \bar{\mp}_{x^{\circ} x^{*} \in Z(R),(v)}$ $G\left(x^{\circ} x^{*}\right) \bar{\mp}_{\left[x, x^{*}\right]} \in Z(R)$ for all $x \in R$. However, R is not commutative.

References

[1] J.C. Chang, "On identity $\mathrm{h}(\mathrm{x})=\mathrm{af}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \mathrm{b}$ " Taiwanese J. Math. vol. 7, pp.103-113, 2003.
[2] J.C. Chang, "Generalized skew derivations with annihilating Engel conditions" Taiwanese J. Math. vol.7,pp.103-113, 2008.
[3] J.C. Chang, "Generalized skew derivations with nilpotent values on Lie ideals" Monatsh. Math. vol. 161, pp.155-160, 2010.
[4] H.W. Cheng and F. Wei "Generalized skew derivationson rings" Adv. Math. (China) vol. 35,pp. 237-243 2006.
[5] T.K. Lee, "Generalized skew derivations characterized by acting on zero products" Pacific J. Math. vol. 216, pp. 293-301, 2004.
[6] M.N.Daif and H.E. Bell "Remarks on derivations on semiprime rings" Intern. J. Math. Math. Sci. vol. 15(1), pp. 205-206, 1992.
[7] V.De.Filippise and S.Huang"Generalized derivations on semiprime rings" Bull. Korean Math. Soc. vol.48(6), pp.1253-1259, 2011.
[8] M.N.Daif and H.E.Bell "On derivations and commutativity in prime rings"Acta math. Hunger vol.66, pp. 205-206, 1995.
[9] I.N.Herstein"A note on derivations" Canad. Math. Bull. vol. 21,pp. 369-370 1978.

