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I. INTRODUCTION  

In 1983, Mashhour et al. [1] introduced the supra topological spaces and studied S-continuous functions and S*-

continuous functions. In 2011, Ravi et al. [3] introduced and investigated several properties of supra generalized 

closed sets, supra sg-closed sets and gs-closed sets in supra topological spaces. In topological space the arbitrary 

union condition is enough to have a supra topological space. Here every topological space is a supra topological 

space but the converse is not always true. Many researchers are Introducing many new notions and 

investigating the properties and characterizations of such new notions In this paper  we introduced Supra*g- 

closed set in supra topological space and properties and characterization are discussed  in details 

2 PRELIMINARIES 

Throughout this paper, X, Y and Z denote the supra topological spaces (X, μ ) , (Y, λ) and (Z, η) respectively, 

which no separation axioms are assumed. For a subset A of a space X, clμ(A) and intμ(A) denote the supra 

closure of A and the supra interior of A respectively. 

 Definition 2.1. [1]  

A subfamily μ of X is said to be a supra topology on X,  

 if  (i) X, φ ∈ μ ,  

     (ii) If Ai ∈ μ for all i ∈ J, then ∪Ai ∈ μ. The pair (X, μ) is called the supra topological space. 

 The elements  of μ are called supra open sets in (X, μ) and the complement of a supra open set is  called a supra 

closed set. 

Definition 2.2[1] 

The supra closure of a set A is denoted by clμ (A) and is defined as  

                    clμ (A) = ∩{B : B is supra closed and A ⊆ B} .  

The supra interior of a set A is denoted by intμ (A) and is defined as   

                    intμ (A) = ∪{B : B is supra open and A ⊇ B} .  

Definition 2.3. [1] 

 Let (X, τ ) be a topological space and μ be a supra topology associated  with τ , if τ ⊂ μ . 

Definition 2.4. [2,3,4] 

A subset A of a supra topological space X is called 

(i) a supra pre-open set if A intμ (clμ(A)) and a supra  pre-closed set if clμ (intμ (A))⊆A  

(ii) a supra semi-open set  if A clμ(intμ (A)) and a supra  semi closed set if intμ (clμ(A))⊆A 

(iii) a supra semi-preopen set  if A ⊆clμ (intμ(clμ (A))) and  a supra semi-preclosed if intμ(clμintμ(A))⊆A . 

(iv) a supra α  open set if A⊆ intμ(clμ(intμ(A))) and an supra α  closed set  if cμl(intμ(clμ(A)))⊆A 

(v) a supra regular-open set  if A = intμ (clμ(A)) and a supra regular-closed set if A=clμ(intμ(A)) . 
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Definition 2.5.[2,3,4] 

A subset A of a supra topological space (X, μ ) is called 

(i)  a supra generalized closed set (briefly gμ-closed) if clμ(A)⊆U whenever A ⊆U and U is supra open in  

              (X, μ). 

(ii)  a supra generalized semi-closed set (briefly gsμ closed)  if sclμ⊆U whenever A ⊆U and U is supra open 

in (X, μ ). 

(iii)  a supra semi generalized closed set (briefly sgμ-closed) if sclμ ⊆U whenever A ⊆U and U is supra semi  

open in (X, μ ). 

(iv)  a supra generalized α-closed set (briefly gαμ -closed)  if αμcl ⊆U whenever A ⊆U and U  is αμ-open in  

(X, μ ). 

(v)  a supra α- generalized closed set (briefly αgμ  closed) if sclμ ⊆U whenever A ⊆U and U is supra open in  

(X, μ ). 

(vi)  a supra generalized semi pre-closed set (briefly gsp-closed) if spclμ ⊆U whenever A ⊆U and U is supra  

open in (X, μ ). 

(vii)  a supra generalized pre-closed set (briefly gpμ-closed)  if pclμ ⊆U whenever A ⊆U and U is supra open  

in (X, μ ). 

(viii)  a supra regular  generalized closed set (briefly rgμ-closed)  if clμ ⊆U whenever A ⊆U and U is supra  

regular open in (X, μ ).  

(ix)  supra -closed set if clμ (A) ⊆U whenever A⊆U and U is supra semi-open in (X, μ ). 

 

3. SUPRA*g-CLOSED SETS 

In this section , we introduce the supra closed set is called  supra*g-closed  and  investigate some of the basic 

properties . 

Definition 3.1.  

A subset A of a supra topological space (X, μ) is called a supra star g -closed set (briefly supra*g-closed) if 

clμ(A)⊆U whenever A ⊆U and U is supra -open in (X, μ). 
Theorem 3.2.  

φ and X are supra*g-closed subset  of X. 

Theorem 3.3.  

Every supra closed set in (X, μ) is supra*g-closed in (X, μ). 

Proof follows from the definition. 

The following example supports that a supra*g-closed set need not be supra closed in general. 

Remark 3.4. 

 The converse of above theorem need not be true as seen from the following example. 

Example 3.5.  

 Let X= {1, 2, 3} μ = {φ ,X, {1}, {1, 2}}, A= {1,3} is supra*g-closed but not supra closed.  

Theorem 3.6.  

Every supra*g-closed set is supra gp closed. 

Proof.  

Let A be supra*g-closed in X such that A ⊆U, U is supra -open. Since clμ(A) ⊆pclμ(A) ⊆U. 

Hence A is gpμ closed . 

Theorem 3.7 

Every supra*g-closed set is supra wg closed 

Proof.  

Let A be supra*g-closed in X such that A ⊆U, U is supra -open . clμ(intμ (A)⊆clμ(A)⊆U. Hence A is supra wg 

closed. 

Theorem 3.8 

Every supra*g-closed set is supra rg closed 

Proof.  

Let A be supra*g-closed in X such that A ⊆U, an U be supra regular open .Then cl(A) ⊆U. Hence A is supra rg 

closed. 

Example 3.9  

Let X= {i, j, k}, μ = {φ,X, {i}, {j, k}}, A={j} is  supra rg-closed and supra gpr-closed but not supra*g closed . 

Example 3.10 

 Let X= {1, 2, 3}, μ = {φ, X, {1}, {1, 2}}, A= {2} is supra gp-closed and supra wg-closed but not supra*g 

closed 

Theorem 3.11 
Every supra*g-closed  set  is 
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(i) supra  g - closed (ii) supra gs-closed (iii) supra α g - closed and (iv) supra gsp - closed 

Proof:  

Let A be a supra*g-closed set 

Let A ⊆U and U be supra open. Then U is supra - open. Since A is supra*g -closed , clμ (A) ⊆U. 

(i)  Hence A is supra g-closed . 

(ii)  Then sclμ (A) ⊆ clμ (A) ⊆ U. Hence A is supra gs-closed . 

(iii)  αclμ (A) ⊆ clμ (A) ⊆ U and hence A is supra α g-closed 

(iv)  spcl μ (A) ⊆ clμ (A) ⊆U. Hence A is supra gsp-closed . 

The converse of the above proposition need not be true in general as seen in the following examples. 

Example 3.12 

 Let X= {p, q, r}, μ = {φ, X, {q}, {p,r}} , A ={p} is supra g-closed but not supra*g -closed . 

Example 3.13 

Let X= {1, 2, 3}, μ = {φ, X, {1}, {1, 2}} and let A = {2}.Then A is supra gs - closed ,supra α g -closed and 

supra gsp - closed but not supra*g-closed . 

Proposition 3.14 

 Every supra  g*-closed set is supra*g -closed. 

Proof follows from the definition. 

Remark 3.15  

The converse of the above theorem need not be true as seen from the following example 

Example 3.16 

 Let X= {a, b, c}, μ = {φ, X, {a}}.Then A= {b} is a supra*g -closed but not supra g*-closed 

Remark 3.17 

 The above discussions are summarized in the following diagrammatic representation. 

 

 

supra gp closed                         supra gs-closed                                supra α g – closed 

 

 

                                               

 

 

 supra  closed                                  supra*g -closed                                            supra rg–closed 

 

 

  

 

 

 

supra g *-closed                          supra g-closed                               supra gsp - closed 

 
 

 

4. PROPERTIES OF SUPRA*g–CLOSED SETS 

In this section , we study  the concepts and  properties  of  supra*g-closed  and  investigate some of results 

Theorem 4.1.  

The finite union of the supra*g-closed sets is supra*g-closed. 

Proof.  

Let A and B be supra*g-closed sets in X.Let U be a supra - open in X such that A ∪ B ⊆U. Then A ⊆U and B 

⊆U . Since A and B are supra*g-closed, clμ(A) ⊆U and clμ(B)⊆U . Hence clμ(A ∪ B) = clμ(A) ∪ clμ(B) ⊆U. 

Therefore A∪B is supra*g-closed. 

Theorem 4.2.  

The finite intersection of the supra*g-closed sets is supra*g-closed. 

Proof.  
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Let A and B be supra*g-closed sets in X. Let U be a supra -open in X such that A ∩ B⊆U. Then A 

⊆U and B ⊆U. Since A and B are supra - open closed set, clμ(A) ⊆U and clμ(B) ⊆U . Hence clμ(A ∩ B) = 

clμ(A) ∩ clμ(B) ⊆U . Therefore A ∩ B is supra*g-closed. 

Theorem 4.3.  

The intersection of a supra*g-closed set and a supra closed set is a supra  -closed set. 

Proof.  

Let A be a supra*g-closed subset of X and F be a supra closed set. If U is an supra - open subsets of  X with A 

∩ F ⊆U, then A ⊆U ∪ (X|F). So clμ(A) ⊆U ∪ (X|F).Then clμ(A∩F)=clμ(A)∩clμ(F) ⊆clμ(A)∩clμ(F)=clμ(A)∩F 

⊆U .So, A ∩ F is a supra  -closed set. 

Theorem 4.4.  

Let A ⊆B ⊆clμ(A) and A is supra*g-closed subsets of X, then B is also a supra*g-closed subsets of X. 

Proof 

Since A is supra*g-closed subsets of X. So, clμ(A) ⊆U whenever A ⊆U, U is supra -open. Let A ⊆B ⊆clμ(A). 

That is, clμ(A)=clμ(B). There exists an  supra open subsets V of X such that B ⊆V . So, A ⊆V and B is supra*g 

closed subset of X, clμ(A) ⊆U . That is, clμ(B)⊆V . Hence B is also supra*g-closed. 

Theorem 4.5.  

Let A ⊆B ⊆X , where B is supra -open in X. If A is supra*g-closed in X, then A is supra*g-closed in B. 

Proof. 

 Let A ⊆U, where U is supra -open set of X, Since U = V∩B for some supra  -open set V of X and 

B is supra -open in X .By assumption clμ(A) ⊆U,clμ(A)=clμ(A)∩B ⊆U∩B ⊆U. Hence A is supra*g-closed in 

B. 

Theorem 4.6.  

Let A ⊆B ⊆X , where B is supra -open and supra*g–closed in X . If A is supra*g-closed in B, then A is 

supra*g-closed in X. 

Proof. 

Let U be a supra -open  set of X such that A ⊆U. Since A ⊆U∩B, where U∩B is supra  -open in B 

and A is supra*g-closed in B, clμ(A) ⊆U∩B holds. We have clμ(A)∩B ⊆U ∩B. Since A⊆B , we have clμ(A) 

⊆clμ(B). Since B is supra -open  and supra*g-closed in X. Hence B is supra-closed. Therefore clμ(B) = B . 

Thus clμ(A) ⊆B implies clμ(A) = clμ(A)∩B ⊆U∩B ⊆U .Hence A is supra closed in X. 

Theorem 4.7.  

A subset A of X is supra*g-closed set if and only if clμ(A)∩AC contains the nonzero supra closed set in X . 

Proof. 

  Let A be supra*g-closed subsets of  X. Also if possible let M be a supra closed subset of X such that M 

⊆clμ(A) ∩ AC. That is, M ⊆clμ(A) and M ⊆AC . Since M is a supra closed subset of  X, MC is a supra open 

subset of X ⊆A .A being supra*g-open subset of X,  clμ(A)⊆MC. But M ⊆clμ(A). We get a contradiction. Then 

M = φ . 

Conversely, Let A ⊆N. N being an open subset of X. Then NC⊆AC, NC is a supra closed subset of X . Let if 

possible clμ(A) ⊆N , Then clμ(A)∩NC is a non-zero supra closed subset of clμ(A) ⊆NC, which is a contradiction. 

Hence A is supra*g-closed subset of X. 

Theorem 4.8.  

A subset A of X is supra*g-closed set in X if and only if clμ(A)-A contains no nonempty supra -closed set in X. 

Proof.  

Suppose that F be a non-empty supra -closed subset if clμ(A)-A . Now F ⊆clμ(A) ⊆A .Then F ⊆clμ(A) ∩AC . 

Therefore F ⊆clμ(A) and F ⊆AC. Since FC is supra -open set and A is supra*g-closed, clμ(A) ⊆FC. That is, F ⊆ 

(clμ(A))C. Hence F ⊆clμ(A)∩[clμ(A)]C=φ .That is, F=φ. Thus clμ(A)\A contains no nonempty supra -closed set. 

Conversely, assume that clμ(A)\A contains no non-empty supra -closed set. Let A ⊆U, U is supra -open. 

Suppose that clμ(A) is not contained in U.Then clμ(A) ∩ UC is a non-empty supra -closed set and contained in 

clμ(A)\A ,which is a contradiction. Then clμ(A)⊆U and hence A is supra*g–closed set. 

5. Supra*g-OPEN SETS 

Definition 5.1.  

A subset A of a supra topological space X  is called supra*g-open set if AC is supra*g-closed. 

Theorem 5.2.  

A subset A of a supra topological space X is called supra*g-open set if AC is supra*g-closed. 

Proof. 

 Necessity:  

Suppose B ⊆intμ(A) where B is supra  -closed in X and B ⊆A. Let AC ⊆M, where M is supra -open. Hence 

MC ⊆A, where MC is supra -closed. By assumption MC ⊆intμ(A), which implies [intμ(A)]C ⊆M . Therefore 

clμ(AC) ⊆M . Thus AC is supra*g-closed implies A is supra*g-open. 

Sufficiency:  
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Let A be supra*g-open in X with N ⊆A , where N is supra  -closed . We have clμ(AC)⊆NC implies N⊆X\clμ(A) 

= intμ(X \AC) =intμ(A) .Hence  proved. 

Theorem 5.3. 

 If intμ(A) ⊆B ⊆A and A is a supra*g-open subset of  X. Then B is also a supra*g-open subset of  X. 

Proof.  

intμ(A) ⊆B ⊆A implies AC ⊆BC ⊆ intμ(A). Given AC is supra*g-closed. By theorem 4.4, BC is supra*g-closed. 

Therefore B is supra*g-open.  

Theorem 5.4.  

If a subset A of a supra topological space X is supra*g-open in X, then F = X whenever F is supra -open and 

intμ(A) ⊆AC ⊆F. 

Proof. 

 Let A be a supra*g-open and F be supra -open, intμ(A)∪AC = F .This gives FC ⊆(X\intμ(A))∩A=clμ(AC)∩A 

 = clμ(AC)\AC.Since FC is supra  -closed and A is supra*g-open. We have FC= φ. Thus, F =X. 

Theorem 5.5 

If a subset A of a supra topological space X is supra*g-closed, then  clμ(A)\A is supra open. 

Proof.  

Let A = X be a supra*g-closed and let F be supra  -closed such that F ⊆clμ(A)\A. Then F =φ . So φ=F 

⊆intμ(clμ(A)\A). This shows that A is supra*g-open set. 

Theorem 5.6. 

 If A × B is a supra*g-open subsetof (X × Y, μ × λ ) if and only if A is a supra*g-open subset in X and B is 

supra*g–open subset in Y. 

Proof.  

Let if possible A × B is supra*g–open subset of (X × Y, μ × λ ). Let H be a supra closed subset of X and G be a 

supra closed subset of Ysuch that H ⊆A, G ⊆B. Then H×G is supraclosed in (X × Y, μ × λ ) such that H ×G 

⊆A×B By A×B is a supra*g-open subset of (X ×Y, μ × λ ) and H × G ⊆intμ(A × B) ⊆intμ(A)× intμ(B) . That is, 

H ⊆ intμ(A),G ⊆intμ(A) and hence A is a supra*g-open subset in X and B is a supra*g-open in Y. Conversely 

Let F be supra closed subset of (X ×Y, μ × λ ) such that K ⊆A×B. For each (x, y) ⊆K, clμ(X) × clμ(Y ) ⊆clμ(K) 

= K ⊆A × B. Then the two closed sets clμ(X) and clμ(Y ) are contained in A and B respectively. By assumption 

clμ(X) ⊆intμ(A) and clμ(Y ) ⊆intμ (B) . This implies (x,y) ⊆K, (x, y) intμ(A×B). A×B is a supra*g-open subset of 

(X × Y, μ × λ).Hence the theorem 

CONCLUSIONS  

Many different forms of generalized closed sets have been introduced over the years. Various interesting 

problems arise when one considers openness. Its importance is significant in various areas of mathematics and 

related sciences, this paper we introduce the closed set is called  supra*g-closed  in supra topological spaces and  

investigate some of the basic properties . This shall be extended in the future Research with some applications  
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