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Abstract 

Gross Domestic Product (GDP) is one of the most important economic factors world over.  India’s growth 

majorly depends on the market and economy as a whole. In this paper an attempt is made to forecast the GDP 

growth.  From the past experience it is evident that the variation in the GDP economy was cyclical. To see this 

behaviour we evaluate the analytics by considering the data drawn from Reserve Bank of India (RBI) for the 

period 1951 to 2016. Out of a variety of forecasting models, Autoregressive Integrated Moving 

Average (ARIMA) and Artificial Neural Network (ANN) – Multilayer Perception Model are evaluated to 

forecast the GDP. In this study Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) 

are calculated for ARIMA model and ANN model. Using specifically RMSE and MAPE values, both the models 

are compared and it is observed from the analytics, that ANN is performing better than the traditional statistical 

models viz., ARIMA.  

Keywords: GDP, ARIMA, ANN, RMSE, MAPE, Forecasting. 

 

I. INTRODUCTION 

GDP refers to the production of all goods and their services of a country or nation within a period of time and is 

one of the crucial factors of the economy which is to be measured annually. It is the aggregate statistic of all 

economic activities and captures the broadest coverage of the economy than other macro economic variables. It 

is the market value of all final goods and services produced within the borders of a nation in a year. It is often 

considered the best measure to see how the economy is performing. GDP can be measured in three ways. First, 

the Expenditure approach, it consists of household, business and government purchases of goods and services 

and net exports. Second the Production approach, it is equal to the sum of the value added at every stage of 

production (the intermediate stages) by all industries within the country, plus taxes and fewer subsidies on 

products in the period. Third is Income approach, it is equal to the sum of all factor income generated by 

production in the country (the sum of remuneration of employees, capital income, and gross operating surplus of 

enterprises i.e. profit, taxes on production and imports less subsidies) in a period (Yang, 2009- 2010). 

 

GDP can be calculated by using following formula:  

GDP = Consumption + Investment + Government Expenditure + Balance of trade. GDP prediction is a 

crucial job in the economy and business analysis. It is provides the way to set up future business plan and take 

timely decision about the financial market and economy.  

The issues of GDP has become the most concerned amongst macro economy variables and data on 

GDP is regarded as the important index for assessing the national economic development and for judging the 

operating status of macro economy as a whole (Ning et al. 2010) . GDP is the aggregate statistic of all economic 

activity and captures the broadest coverage of the economy than other macro-economic variables. it is equal to 

the sum of all factor income generated by production in the country (the sum of remuneration of employees, 

capital income, and gross operating surplus of enterprises i.e. profit, taxes on production and imports less 

subsidies) in a period (Yang 2009; Ard 2010) Besides these, it is also the vital basis for government to set up 

economic developmental strategies and policies. Therefore, an accurate prediction of GDP is necessary to get an 

insightful idea of future health of an economy since the data on GDP is actually represented the past activities in 

summary form, which is not very helpful to frame suitable economic development strategies, economic policies 

and allocation of funds on different priorities for government as well as individual firms in a particular industry. 
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It needs a reliable estimate of GDP in some period ahead, which is only possible by forecasting GDP as 

accurately as possible by suitable sophisticated time series modeling, since it is not easy to identify the variables 

those effects on GDP precisely.  

The researcher was motivated to undertake this study dealing with the GDP issues in India as not many studies 

have been done attempting to forecast the GDP as well as prediction of growth rates in various forms in India. 

However an attempt to forecast this macro variable only as point estimates has been of very little help for the 

managers and policy makers since variability is the key in decision making when certain level of risk is 

involved. 

The objective of this paper is to forecast the GDP using Artificial Neural Network models, and to compare the 

forecasting performance of such non-linear models with traditional linear specifications like ARIMA models.  

 

 

II. LITERATURE REVIEW 

The literature on GDP process and its forecasting is organized into three sections. Section 2.1 is on 

theoretical literature review, section 2.2 is on ARIMA models while section 2.3 is Artificial Neural 

Networks Models: 

 

2.1) GDP 

Economic growth of a country is measured in terms of an increase in the size of a nation's economy. A 

broad measure of an economy's size is its output. The most widely-used measure of economic output is the 

GDP. The three basic ways to determine a nation‟s GDP are; the Expenditure approach, the Production 

approach and the Income approach. 

The Expenditure Approach of determining GDP adds up the market value of all domestic expenditures made 

on final goods and services in a single year, including consumption expenditures, investment expenditures, 

government expenditures, and net exports. Add all of the expenditures together and you determine GDP.  

The Production approach, also called the Net Product or Value added method requires three stages of 

analysis. First gross value of output from all sectors is estimated. Then, intermediate consumption such as 

cost of materials, supplies and services used in production final output is derived. Then gross output is 

reduced by intermediate consumption to develop net production. 

The Income Approach of determining GDP is to add up all the income earned by households and firms in 

the year. The total expenditures on all of the final goods and services are also income received as wages, 

profits, rents, and interest income. GDP is determined by adding together all of the wages, profits, rents, and 

interest income. 

The three methods of measuring GDP should result in the same number, with some possible differen ce 

caused by statistical and rounding differences. The credibility of data is always a significant concern in any 

form of research. An advantage of using the Expenditure Method is data integrity. The source data for 

expenditure components is considered to be more reliable than for either income or production components.  

GDP as examined using the Expenditure Approach is reported as the sum of four components. The formula 

for determining GDP is: 

C + I + G + (X - M) = GDP          (1) 

Where: 

C = Personal Consumption Expenditures 

I = Gross Private Fixed Investment 

G = Government Expenditures and Investment 

X = Net Exports 

M = Net Imports 

 

The GDP forecasting involves the application of both statistical and mathematical models to predict future 

developments in the economy. It allows economists to review past economic trends and forecast how recent 

economic changes will alter the patterns of past trends. 
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In forecasting macroeconomic time series variables like GDP, one has many possible types of 

models to choose from: vector error correction models, autoregressive conditional heteroskedasticity 

(ARCH)-based models, or various possible combinations. However, ARIMA models have proven 

themselves to be relatively robust especially when generating short-run GDP forecasts and have frequently 

outperformed more sophisticated structural models in terms of short-run forecasting ability. In a study, (Tsay 

and Tiao 1984, 1985) ARIMA model was used, which is in fact fitted on non-seasonal data by identifying 

autoregressive and moving average terms with the help of partial autocorrelation and autocorrelation functions 

(Box and Jenkins 1970:1976,Pankratz 1991).However, in the case of seasonal data, a number of studies used 

filtering approach, which in fact very helpful in case of weekly, monthly, quarterly and semiannual data to 

estimate a model to forecast any macro variable (Liu 1989; Liu and Hudak 1992; Liu 1999). In another research 

(Reynolds et al. 1995) automatic methods were developed to identify as well as estimate the parameters of 

ARIMA model by utilizing time-series data for a single variable. Another study (Reilly 1980) used similar 

methodology to model macroeconomic variable like GDP. The same study was also conducted (Bipasha Maity 

et al. 2012) for a period till 2020 using ARIMA Model. Automatic methods were developed to identify as well 

as estimate the parameters of ARIMA model by utilizing time-series data for a single variable (Reynolds et al. 

1995).  However, both the studies confined themselves only on non-seasonal time series data and restrained to 

predict the variable in future. However, the above mentioned methods need a long time-series data on the 

macroeconomic variable in question. To estimate the model for prediction of a macro variable, a number of 

studies imply analytical neural network techniques, which is very effective in the case of seasonal data (Chiu et 

al. 1995; Cook and Chiu 1997; Geo et al. 1997; Saad et al. 1998). These types of models have got pace since the 

seminal paper of Granger and Joyeux (1980) and Hosking (1981). However, this neural networking approach is 

very difficult to applying in real life situation by the policy makers /managers due to difficult network design, 

training and testing are required to build the model as well as to estimate the parameters.  

In Indian context, not much effort has been seen in using non-linear models for forecasting macroeconomic 

variables. Genetically optimized neural network was used for forecasting daily exchange rate (Nag and Mitra 

2000). Probit model and Artificial Neural Network were used to compare forecasting performance of turning 

points of business cycle with lead indicators (Bardoloi, presented in TIES 2007 conference). This paper 

evaluates the forecast accuracy of linear, non-linear time series models along with forecast combination (of 

linear and non-linear) for forecasting the GDP in respect of India. 

2.2) Auto-regressive Integrated Moving Average (ARIMA) Models: 

Autoregressive Integrated Moving Average models (ARIMA models) were popularized by George Box and 

Gwilym Jenkins in the early 1970s. It‟s an iterative process that involves four stages; identification, 

estimation, diagnostic checking and forecasting of time series.  

ARIMA models are a class of linear models that is capable of representing stat ionary as well as non-

stationary. They do not involve independent variables in their construction, but rather make use of the 

information in the series itself to generate forecasts. ARIMA models therefore, rely heavily on 

autocorrelation patterns in the data. 

ARIMA methodology of forecasting is different from most methods because it does not assume any 

particular pattern in the historical data of the series to be forecast. It uses an interactive approach of 

identifying a possible model from a general class of models. The chosen model is then checked against the 

historical data to see if it accurately describes the series. Most of the traditional forecasting models 

therefore, provide a limited number of models relative to the complex behaviour of many time se ries with 

little guidelines and statistical tests for verifying the validity of the selected model.  

2.2.1) Auto-Regressive (AR) 

An autoregressive model of order p, an AR (p) can be expressed as; 

(3) 

Where . 

The model is expressed in terms of past values and therefore, we wish to estimate the 

coefficients  and use the model for forecasting. In this case, all previous values will have 

cumulative effects on the current level  and thus, it is a long-run memory model. The ACF(s) therefore 

does not die out easily since it takes a longer time to have ACF close to zero. 

Partial Autocorrelation Functions (PACF) measures the correlation between an observation k periods ago 

and the current observation, after controlling for observations at intermediate lags (i.e. al l lags <k). 

PACF (k) = ACF (k) after controlling the effects of . Thus PACF (k) can be found as the 

coefficient of  in the regression 
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(4) 

 
Hence the PACF is useful for telling the maximum order of an AR process.  

 

2.2.2) Moving Average (MA) Process 

This is a time series model which uses past errors as explanatory variable. Let  (t=1,2,3,...) be a white 

noise process, a sequence of independently and identically distributed (iid) random variables with E( )=0 

and Var( ) = . Then the qth order MA model is given as: 

ut-q (2) 

This model is expressed in terms of past errors and thus we estimate the coefficients   and use 

the model for forecasting. Therefore only q errors will affect the current level   but higher order errors do 

not affect . This implies that it is a short memory model. 

Auto-regressive (AR) models can be coupled with moving average (MA) models to form a general and 

useful class of time series models called Autoregressive Moving Average (ARMA) models. These can be 

used when the data are stationary. 

 

2.2.3) Autoregressive Moving Average Model (ARMA) 

ARMA (p, q) model is as follows: 

(5) 

This is a combination of both AR and MA models. In this case therefore, neither ACF nor PACF can solely 

provide the information on the maximum orders of p or q. 

This class of models can further be extended to non-stationary series by allowing the differencing of the 

data series resulting to Autoregressive Integrated Moving Average (ARIMA) models.  

2.2.4) Autoregressive Integrated Moving Average (ARIMA) Process 

There are a large variety of ARIMA models. The general non-seasonal model is known as ARIMA (p, d, q): 

where p is the number of autoregressive terms, d is the number of differences and q is the number of moving 

average terms. A white noise model is classified as ARIMA (0, 0, 0) since there exists no AR part 

because  does not depend on yt-1, there is no differencing involved and also there‟s no MA part 

since  does not depend on . For instance, if is non-stationary, we take a first-difference of so 

that becomes stationary. 

 (d = 1 implies one time differencing) 

 (6) 

is an ARIMA (p, 1, q) model. 

A random walk model is classified as ARIMA (0, 1, 0) because there is no AR and MA part involved and 

only one difference exists. 

2.2.5) Box Jenkins Methodology 

The Box Jenkins Methodology uses four iterative stages of Modeling that involves; identification, 

estimation, diagnostic checking and forecasting (See figure 1 below). 
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Figure 1. ARIMA forecasting procedure. 

2.2.6) Model Identification 

A preliminary Box-Jenkins analysis with a plot of the initial data should be run as the starting point in 

determining an appropriate model. The input data must be adjusted to form a stationary series and identify 

seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the 

autocorrelation and partial autocorrelation functions of the dependent time series to decide which (if an y) 

autoregressive (AR) or moving average (MA) component should be used in the model.  

2.2.7) Model Estimation 

The parameters of the selected ARIMA (p, d, q) model can be estimated consistently by least -squares or by 

maximum likelihood. Both estimation procedures are based on the computation of the innovations  from 

the values of the stationary variable. The least-squares methods minimize the sum of squares; 

(7) 

The log-likelihood can be derived from the joint probability density function of the innovations  , that 

takes the following form under the normality assumption, : 

(8) 

In order to solve the estimation problem, equations 6 and 7 should be written in terms of the observed data 

and the set of parameters . An ARMA (p, q) process for the stationary transformation  can be 

expressed as: 

(9) 

Then, to compute the innovations corresponding to a given set of observations   and parameters, 

it is necessary to count with the starting values . More realistically, the innovations 

should be approximated by setting appropriate conditions about the initial values, giving to conditional least 

squares or conditional maximum likelihood estimators. 

2.2.8) Diagnostic Checking 

Before using the model for forecasting, it must be checked for adequacy (diagnostic checking). T he model is 

considered adequate if the residuals left over after fitting the model is simply white noise and also the 

pattern of ACF and PACF of the residuals may suggest how the model can be improved.  

Akaike‟s Information Criterion (AIC) is one of the most robust methods used in estimating parameters of an 

identified model. 

(10) 

Where; L denotes the likelihood and m is the number of parameters estimated in the model such that;  

(11) 

However, not all computer programs produce the AIC or the likelihood L, thus it is not always possible to 

find the AIC for a given model. A useful approximation to the AIC is therefore denoted as;  

(12) 

As an alternative to AIC, the Bayesian Information Criteria (BIC) and the Schwarz- Bayesian Information 

Criteria (SBC) are also used as model diagnostics. The SBC is given by; 

(13) 

2.2.9) Model Forecasting 

Model forecasting states the difference between in-sample forecasting and out-of sample forecasting. In-

sample forecasting for instance, explains how the chosen model fits the  data in a given sample while Out-of-

sample forecasting on the other hand, is concerned with determining how a fitted model forecasts future 

values of the regressand, given the values of the regressors.  
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To build a reliable model, the following factors are highly considered in forecasting; 

a) The level of accuracy required – forecasts should be prepared as accurately as possible to facilitate the 

decision making process especially made on the basis of the GDP forecasts.  

b) Availability of data and information – a wealth of reliable and up-to-date GDP data results to a reliable 

model. 

c) The time horizon that the GDP forecast is intended to cover. This study for instance, covered a short run 

period. 

2.3) Artificial Neural Networks 

In recent years neural computing has emerged as a practical technology, with successful applications in many 

fields as diverse as finance, medicine, engineering, geology, physics and biology. The excitement stems from 

the fact that these networks are attempts to model the capabilities of the human brain. From a statistical 

perspective neural networks are interesting because of their potential use in prediction and classification 

problems. Artificial neural networks (ANNs) are non-linear data driven self-adaptive approach as opposed to the 

traditional model based methods. They are powerful tools for modeling, especially when the underlying data 

relationship is unknown. ANNs can identify and learn correlated patterns between input data sets and 

corresponding target values. After training, ANNs can be used to predict the outcome of new independent input 

data. ANNs imitate the learning process of the human brain and can process problems involving non-linear and 

complex data even if the data are imprecise and noisy. Thus they are ideally suited for the modeling of 

agricultural data which are known to be complex and often non-linear. A very important feature of these 

networks is their adaptive nature, where “learning by example” replaces “programming” in solving problems. 

This feature makes such computational models very appealing in application domains where one has little or 

incomplete understanding of the problem to be solved but where training data is readily available. These 

networks are “neural” in the sense that they may have been inspired by neuroscience but not necessarily because 

they are faithful models of biological neural or cognitive phenomena. In fact majority of the network are more 

closely related to traditional mathematical and/or statistical models such as non-parametric pattern classifiers, 

clustering algorithms, nonlinear filters, and statistical regression models than they are to neurobiology models. 

Neural networks (NNs) have been used for a wide variety of applications where statistical methods are 

traditionally employed. They have been used in classification problems, such as identifying underwater sonar 

currents, recognizing speech, and predicting the secondary structure of globular proteins. In time-series 

applications, NNs have been used in predicting stock market performance. As statisticians or users of statistics, 

these problems are normally solved through classical statistical methods, such as discriminant analysis, logistic 

regression, Bayes analysis, multiple regression, and ARIMA time-series models. It is, therefore, time to 

recognize neural networks as a powerful tool for data analysis.  

An artificial neural network is a set of simple computational units that are highly interconnected. The units are 

also called nodes and loosely represent the biological neuron. A graphical presentation of neuron is given in 

Figure 1. A neuron is an information processing unit that is fundamental to the operation of a neural network. 

The connections between nodes are unidirectional and are represented by arrows in the figure. These 

connections model the synaptic connections in the brain. Each connection has a weight called the synaptic 

weight associated with it. The synaptic weight is interpreted as the strength of the connection from the jth unit to 

the kth unit. Unlike a synapse in the brain, the synaptic weight of an artificial neuron may lie in a range that 

includes negative as well as positive values. If a weight is negative, it is termed inhibitory because it decreases 

the net input. If the weight is positive, the contribution is excitatory because it increases the net input. 

 

Figure 2: Nonlinear model of a neuron 

The input into a node is a weighted sum of the outputs from nodes connected to it. Each unit takes its net input 

and applies an activation function to it. An activation function which is also known as squashing function, 

squashes or limits the amplitude range of the output of a neuron. The neuronal model of Figure 1 also includes 

an externally applied bias. The bias has the effect of increasing or lowering the net input of the activation 
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function depending on whether it is positive or negative respectively. In mathematical terms, we may describe a 

neuron k by the following equations 






n

j

kjkjkk bxwvY

1

)()(   

Where x1,x2,….., xn are the input patterns,wk1, wk2, ….., wkn are the synaptic weights of neuron k, bk is the bias, 

Ø(.) is the activation function and Yk is the output of the neuron. The sigmoid function, whose graph is s-

shaped, is by far the most common form of activation function used in the construction of artificial neural 

networks. The neural networks are built from layers of neurons connected so that one layer receives input from 

the preceding layer of neurons and passes the output on to the subsequent layer. 

 

 

2.3.1) Characteristics of Neural Networks  

The NNs exhibit mapping capabilities, that is, they can map input patterns and also learn by examples. The NNs 

possess the capability to generalize. Thus, they can predict new outcomes from past trends. The NNs are robust 

systems and are fault tolerant. They can, therefore, recall full patterns from incomplete, partial or noisy patterns. 

The NNs can process information in parallel, at high speed, and in a distributed manner.  

2.3.2) Neural networks architectures  

An artificial neural network is defined as a data processing system consisting of a large number of simple highly 

inter connected processing elements (artificial neurons) in an architecture inspired by the structure of the 

cerebral cortex of the brain. There are several types of architecture of neural networks. However, the two most 

widely used NNs are discussed below: 

 Feed forward networks  

In a feed forward network, information flows in one direction along connecting pathways, from the input layer 

via the hidden layers to the final output layer. There is no feedback (loops) i.e., the output of any layer does not 

affect that same or preceding layer. 

 

Figure 3: A multi-layer feed forward neural network  

Recurrent networks  

These networks differ from feed forward network architectures in the sense that there is at least one feedback 

loop. Thus, in these networks, for example, there could exist one layer with feedback connections as shown in 

figure below. There could also be neurons with self-feedback links, i.e. the output of a neuron is fed back into 

itself as input. 
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Figure 4: A Recurrent Neural Network 

 

2.3.3) Learning/Training methods in Neural Networks : 

Learning methods in neural networks can be broadly classified into three basic types: supervised, unsupervised 

and reinforced.  

Supervised learning  

In this, every input pattern that is used to train the network is associated with an output pattern, which is the 

target or the desired pattern. A teacher is assumed to be present during the learning process, when a comparison 

is made between the network‟s computed output and the correct expected output, to determine the error. The 

error can then be used to change network parameters, which result in an improvement in performance.  

Unsupervised learning  

In this learning method, the target output is not presented to the network. It is as if there is no teacher to present 

the desired patterns and hence, the system learns of its own by discovering and adapting to structural features in 

the input patterns.  

2.3.4) Types of neural networks  

The most important class of neural networks for real world problems solving includes Multilayer Perceptrons, 

Radial Basis Function Networks, Kohonen Self Organizing Feature Maps. In this study Multilayer 

Perceptrons, feed forward networks and Radial Basis Function Networks are used. 

 Multilayer Perceptron  

The most popular form of neural network architecture is the multilayer perceptron (MLP) which is a 

generalization of the single-layer perceptron. Typically, the MLP network consists of a set of source nodes that 

constitute the input layer, one or more hidden layers of computation nodes and an output layer of computation 

nodes. The input signal propagates through the network in a forward direction on a layer by layer basis. MLP 

have been applied successfully to solve some difficult and diverse problems by training them in a supervised 

manner with a highly popular algorithm known as the error back-propagation algorithm. A multilayer 

perceptron has three distinctive characteristics: 

 The model of each neuron in the network includes a nonlinear activation function which should also be a 

differentiable everywhere. A commonly used form of nonlinearity that satisfies this requirement is a sigmoidal 

nonlinearity. The presence of nonlinearities is important because otherwise the input-output relation of the 

network could be reduced to that of a single layer perceptron. 

 The network contains one or more layers of hidden neurons that are not part of the input or output of the 

network. These hidden neurons enable the network to learn complex tasks by extracting progressively more 

meaningful features from the input pattens. 

 The network exhibits a high degree of connectivity determined by the synapses of the network. A change in the 

connectivity of the network requires a change in the population of synaptic connections or their weights. Given 

enough data, enough hidden units, and enough training time, an MLP with just one hidden layer can learn to 

approximate virtually any function to any degree of accuracy. (A statistical analogy is approximating a function 

with nth order polynomials.) For this reason MLPs are known as universal approximators and can be used when 

we have little prior knowledge of the relationship between inputs and targets. Although one hidden layer is 

always sufficient provided we have enough data, there are situations where a network with two or more hidden 

layers may require fewer hidden units and weights than a network with one hidden layer, so using extra hidden 

layers sometimes can improve generalization.  

Radial Basis Function Networks  

Radial basis function (RBF) networks have a very strong mathematical foundation rooted in regularization 

theory for solving ill-conditioned problems. RBF networks, almost invariably, consists of three layers: a 
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transparent input layer, a hidden layer with sufficiently large number of nodes and an output layer. As its name 

implies, radially symmetric basis function is used as activation function of hidden nodes. The transformation 

from the input nodes to the hidden nodes is non-linear one and training of this portion of the network is 

generally accomplished by an unsupervised fashion. The training of the network parameters between the hidden 

and output layers occurs in a supervised fashion based on target outputs. MLPs are said to be distributed-

processing networks because the effect of a hidden unit can be distributed over the entire input space. On the 

other hand, Gaussian RBF networks are said to be local-processing networks because the effect of a hidden unit 

is usually concentrated in a local area centered at the weight vector. 

 

Figure 5: Radial Basis Function Architecture 

III. Methodology 

In this study, the GDP data analysed is collected from the official website (http://www.rbi.org.in) of Reserve 

Bank of India (RBI). The yearly aggregate GDP data (Market Price) at current prices is taken for the study from 

1951-52 to 2015-16. For forecasting aggregate   GDP, Box – Jenkins and Neural Network methods are used. In 

this section, the results of forecasting using these two methods are presented. The reported results are then 

analysed and compared. These two methods are compared by Root Mean Squared Error (RMSE) and Mean 

Absolute Percentage Error (MAPE) which are given by : 

          MAPE = 100
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Where Yt is the actual value and Ft is the forecasted value and n is the number of years used as forecasting 

period. 

 

3.1) Box Jenkins Methodology: 

In this methodology ARIMA(p,d,q) model is used which is a non seasonal ARIMA model where 

 p is the number of autoregressive terms, d is the number of nonseasonal differences needed for stationarity, and 

q is the number of lagged forecast errors in the prediction equation.  

The ARIMA(p,d,q) model is defined as :- 

)( B 
d Zt = )( B at  

    Where, 

                           )( B = 1- 
2

21 BB   ----- - 
p

pB  

is a polynomial in B of order „p‟ and is known as AR operator 

                           
q

qBBBB  
2

211)(  

is a polynomial in B of order „q‟ and is known as MA operator 

The difference operator is taken as B 1 , B is the Backward shift operator BkZt = Zt-k and d is the number 

of differences required to achieve stationarity. 

The forecasting of aggregate GDP(at Market Price) using Box Jenkins method for identifying the ARIMA 

model is done with SPSS software and the results are as follows: 
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             Figure 6 : ACF Plot                                              Figure 7 :  PACF Plot 

In model identification, ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function) are used. 

Based on this the tentative models will be assumed. Minimum BIC (Bayesian Information Criterion) value will 

decide which model will be the best among the tentatively assumed models as shown in the following table: 

Box-Jenkins Model BIC Value 

ARIMA(1,2,1) 23.893 

ARIMA(2,2,1) 24.013 

ARIMA(1,2,2) 23.140 

ARIMA(2,2,2) 23.967 

Table 1: BIC value for tentative ARIMA models 

From the above table, it is clear that ARIMA(1,2,2) would be the best model because it has minimum BIC 

value. Therefore, ARIMA (1,2,2) is the model used for forecasting future values. 

               001.0)863.0136.01(762.0
2

1


 ttt
aBBYY   

     is the ARIMA(1,2,2) model. 

3.2) Neural Network Method: 

 In this methodology, Multilayer Perceptron - Feed Forward Neural Network and Recurrent Neural 

Network architectures are used and also Radial Basis Function Network architecture is applied to analyse the 

data. These neural network models are trained with data partition as Training data set – 70%, Testing data set – 

20% and Validation set – 10% using Neurosolutions as follows:  

Multilayer Perceptron – Feed Forward Neural Network, Network Architecture: Feed Forward Neural Network, 

Training Algorithm: Backpropagation, Learning rate: 0.6, Momentum rate: 0.4, No. of observations: 65, 

Activation function: Sigmoid. 

1) Multilayer Perceptron – Recurrent Neural Network, Network Architecture: Feed Back Neural Network, 

Training Algorithm: Backpropagation, Learning rate: 0.5, Momentum rate: 0.35, No. of observations: 

65, Activation function: Sigmoid. 

2) Radial Basis Function (RBF) Networks, Network Architecture: RBF Network(Feed forward), Training 

Algorithm: RBF learning algorithm(supervised), Learning rate: 0.5, Momentum rate: 0.3, No. of 

observations: 65, Activation function: Gaussian. 

 

IV. Conclusion 

In this study, two forecasting methods are presented :one is based on statistical models and the other is using 

ANN. The first method employed Box-Jenkins model which is usually used to forecast time series. In the 

second method, artificial neural network models (FFNN, RNN and RBF Network) are used to forecast future 

values. The two methods are applied to forecast the yearly Aggregate GDP (Market prices) of India (at current 

prices) from 1951-52 to 2015-16. For each method, the experimental results are given and analyzed based on 

statistical standards such as Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). 
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Model 
No. of 

Observations 
RMSE 

MAPE 

 

ARIMA(1,2,2) 

Model 

65 

 
133.628 6.382 

MLP-FFNN 

(with one 

hidden layer) 

65 96.433 5.293 

MLP – RNN 

(With one 

hidden layer) 

65 73.726 4.811 

RBF Network 
65 

 
50.023 2.035 

Table 2:  Comparative performance of Box-Jenkins and Neural Network methods  

From the above Table , which gives the comparison between the statistical model and the ANN models which 

shows that the RBF Network model gives lower errors and higher accuracy for forecasting of yearly aggregate 

GDP (Market Prices). Therefore, the prediction done by ANN (RBF Network) will be more consistent and gives 

good forecasted observations. 

Forecasted values for the next ten years (2016-17 to 2025-26) using RBF Network are as follows: 

Year Forecasted values 

using RBF 

Network 

2016-17 14226436 

2017-18 15382463 

2018-19 17668292 

2019-20 19036425 

2020-21 22143162 

2021-22 24496214 

2022-23 27624192 

2023-24 32142642 

2024-25 38746328 

2025-26 42692413 
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