Integration of certain generalized Gimel-function with respect to their parameters

Frédéric Ayant
Teacher in High School , France

ABSTRACT

The object of the present paper is to establish four integrals associated with generalized multivariable Gimel-function defined here. The integration is perfomed with respect to a parameter. Such integrals are useful in the study of certain boundary value problems.

KEYWORDS : Generalized multivariable Gimel-function, multiple integral contours, integration with respect to a parameter.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

Throughout this paper, let \mathbb{C}, \mathbb{R} and \mathbb{N} be set of complex numbers, real numbers and positive integers respectively. Also $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. We define a generalized transcendental function of several complex variables.
$\beth\left(z_{1}, \cdots, z_{r}\right)=\beth_{p_{i_{2}}, q_{i_{2}}, \tau_{i_{2}} ; R_{2} ; p_{i_{3}}, q_{i_{3}}, \tau_{i_{3}} ; R_{3} ; \cdots ; p_{i_{r}}, q_{i_{r}}, \tau_{i_{r}}: R_{r}: p_{i}(1), q_{i}(1), \tau_{i(1)} ; R^{(1)} ; \cdots ; p_{i(r)}, q_{i}(r) ; \tau_{i(r)} ; R^{(r)}}^{m_{2}, m_{3}, n_{3} ; \cdots ; m_{r}, n_{r}: m^{(1)}, n^{(1)} m^{(2)},{ }^{(2)} ; \ldots ; m^{(r)}, n^{(r)}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \\ \cdot \\ \\ \mathrm{z}_{r}\end{array}\right)$

$$
\begin{aligned}
& {\left[\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{(1)}, \alpha_{2 j}^{(2)} ; A_{2 j}\right)\right]_{1, n_{2}},\left[\tau_{i_{2}}\left(a_{2 j i_{2}} ; \alpha_{2 j i_{i}}^{(1)}, \alpha_{2 j i_{2}}^{(2)} ; A_{2 j i_{2}}\right)\right]_{n_{2}+1, p_{i_{2}}},\left[\left(a_{3 j} ; \alpha_{3 j}^{(1)}, \alpha_{3 j}^{(2)}, \alpha_{3 j}^{(3)} ; A_{3 j}\right)\right]_{1, n_{3}},} \\
& {\left[\left(\mathrm{~b}_{2 j} ; \beta_{2 j}^{(1)}, \beta_{2 j}^{(2)} ; B_{2 j}\right)\right]_{1, m_{2}},\left[\tau_{i_{2}}\left(b_{2 j i_{2}} ; \beta_{2 j i_{2}}^{(1)}, \beta_{2 j i_{2}}^{(2)} ; B_{2 j i_{2}}\right)\right]_{m_{2}+1, q_{i_{2}}},\left[\left(b_{3 j} ; \beta_{3 j}^{(1)}, \beta_{3 j}^{(2)}, \beta_{3 j}^{(3)} ; B_{3 j}\right)\right]_{1, m_{3}},}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\tau_{i_{3}}\left(a_{3 j i_{3}} ; \alpha_{3 j i_{3}}^{(1)}, \alpha_{3 j i_{2}}^{(2)}, \alpha_{3 j i_{3}}^{(3)} ; A_{3 j i_{3}}\right)\right]_{n_{3}+1, p_{i_{3}}} ; \cdots ;\left[\left(\mathrm{a}_{r j} ; \alpha_{r j}^{(1)}, \cdots, \alpha_{r j}^{(r)} ; A_{r j}\right)_{1, n_{r}}\right],} \\
& {\left[\tau_{i_{3}}\left(b_{3 j i_{3}} ; \beta_{3 j i_{3}}^{(1)}, \beta_{3 j i_{3}}^{(2)}, \beta_{3 j i_{3}}^{(3)} ; B_{3 j i_{3}}\right)\right]_{m_{3}+1, q_{i_{3}}} ; \cdots ;\left[\left(\mathrm{b}_{r j} ; \beta_{r j}^{(1)}, \cdots, \beta_{r j}^{(r)} ; B_{r j}\right)_{1, m_{r}}\right],}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\tau_{i_{r}}\left(a_{r j i_{r}} ; \alpha_{r j i_{r}}^{(1)}, \cdots, \alpha_{r j i_{r}}^{(r)} ; A_{r j i_{r}}\right)_{n_{r}+1, p_{r}}\right]:\left[\left(\mathrm{c}_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, n^{(1)}}\right],\left[\tau_{i^{(1)}}\left(c_{j i(1)}^{(1)}, \gamma_{j i(1)}^{(1)} ; C_{j i(1)}^{(1)}\right)_{n^{(1)}+1, p_{i}^{(1)}}^{(1)}\right]} \\
& \left.\left[\tau_{i_{r}}\left(b_{r j i_{r}} ; \beta_{r j i_{r}}^{(1)}, \cdots, \beta_{r j i_{r}}^{(1)} ; B_{r j i_{r}}\right) m_{r}+1, q_{r}\right]:\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, m^{(1)}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i^{(1)}}^{(1)} ; D_{j i^{(1)}}^{(1)}\right)_{m(1)+1, q_{i}^{(1)}}^{(1)}\right]
\end{aligned}
$$

$$
\begin{align*}
& \cdots ;\left[\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, n^{(r)}}\right],\left[\tau_{i^{(r)}}\left(c_{j i(r)}^{(r)}, \gamma_{j i(r)}^{(r)} ; C_{j}^{(r)}\right)_{\left.n^{(r)}+1, p_{i}^{(r)}\right]}\right. \\
& ; \cdots ;\left[\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, m}(r)\right],\left[\tau_{i(r)}\left(d_{j i(r)}^{(r)}, \delta_{j i(r)}^{(r)} ; D_{j}^{(r)}\right)_{\left.m^{(r)}+1, q_{i}^{(r)}\right]}\right] \\
&= \frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{align*}
$$

with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{m_{2}} \Gamma^{B_{2 j}}\left(b_{2 j}-\sum_{k=1}^{2} \beta_{2 j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{2}} \Gamma^{A_{2 j}}\left(1-a_{2 j}+\sum_{k=1}^{2} \alpha_{2 j}^{(k)} s_{k}\right)}{\sum_{i_{2}=1}^{R_{2}}\left[\tau_{i_{2}} \prod_{j=n_{2}+1}^{p_{i_{2}}} \Gamma^{A_{2 j i_{2}}}\left(a_{2 j i_{2}}-\sum_{k=1}^{2} \alpha_{2 j i_{2}}^{(k)} s_{k}\right) \prod_{j=m_{2}+1}^{q_{i_{2}}} \Gamma^{B_{2 j i_{2}}}\left(1-b_{2 j i 2}+\sum_{k=1}^{2} \beta_{2 j i 2}^{(k)} s_{k}\right)\right]}$

$$
\frac{\prod_{j=1}^{m_{3}} \Gamma^{B_{3 j}}\left(b_{3 j}-\sum_{k=1}^{3} \beta_{3 j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{3}} \Gamma^{A_{3 j}}\left(1-a_{3 j}+\sum_{k=1}^{3} \alpha_{3 j}^{(k)} s_{k}\right)}{\sum_{i_{3}=1}^{R_{3}}\left[\tau_{i_{3}} \prod_{j=n_{3}+1}^{p_{i}} \Gamma^{A_{3 j i}}\left(a_{3 j i_{3}}-\sum_{k=1}^{3} \alpha_{3 j i_{3}}^{(k)} s_{k}\right) \prod_{j=m_{3}+1}^{q_{i}} \Gamma^{B_{3 j i}}\left(1-b_{3 j i 3}+\sum_{k=1}^{3} \beta_{3 j i 3}^{(k)} s_{k}\right)\right]}
$$

$$
\begin{equation*}
\frac{\prod_{j=1}^{m_{r}} \Gamma^{B_{r j}}\left(b_{r j}-\sum_{k=1}^{r} \beta_{r j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{r}} \Gamma^{A_{r j}}\left(1-a_{r j}+\sum_{k=1}^{r} \alpha_{r j}^{(k)} s_{k}\right)}{\sum_{i_{r}=1}^{R_{r}}\left[\tau_{i_{r}} \prod_{j=n_{r}+1}^{p_{i}} \Gamma^{A_{r j i_{r}}}\left(a_{r j i_{r}}-\sum_{k=1}^{r} \alpha_{r j i_{r}}^{(k)} s_{k}\right) \prod_{j=m_{r}+1}^{q_{i}} \Gamma^{B_{r j j_{r}}}\left(1-b_{r j i r}+\sum_{k=1}^{r} \beta_{r j i r}^{(k)} s_{k}\right)\right]} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m^{(k)}} \Gamma^{D_{j}^{(k)}}\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n^{(k)}} \Gamma^{C_{j}^{(k)}}\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i^{(k)}} \prod_{j=m^{(k)}+1}^{q_{i}(k)} \Gamma^{D_{j i}^{(k)}(k)}\left(1-d_{j i^{(k)}}^{(k)}+\delta_{j i^{(k)}}^{(k)} s_{k}\right) \prod_{j=n^{(k)}+1}^{p_{i(k)}} \Gamma^{C_{j i}^{(k)}(k)}\left(c_{j i(k)}^{(k)}-\gamma_{j i^{(k)}}^{(k)} s_{k}\right)\right]} \tag{1.3}
\end{equation*}
$$

1) $\left[\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)\right]_{1, n_{1}}$ stands for $\left(c_{1}^{(1)} ; \gamma_{1}^{(1)}\right), \cdots,\left(c_{n_{1}}^{(1)} ; \gamma_{n_{1}}^{(1)}\right)$.
2) $m_{2}, n_{2}, \cdots, m_{r}, n_{r}, m^{(1)}, n^{(1)}, \cdots, m^{(r)}, n^{(r)}, p_{i_{2}}, q_{i_{2}}, R_{2}, \tau_{i_{2}}, \cdots, p_{i_{r}}, q_{i_{r}}, R_{r}, \tau_{i_{r}}, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i^{(r)}}, R^{(r)} \in \mathbb{N}$ and verify :
$0 \leqslant m_{2} \leqslant q_{i_{2}}, 0 \leqslant n_{2} \leqslant p_{i_{2}}, \cdots, 0 \leqslant m_{r} \leqslant q_{i_{r}}, 0 \leqslant n_{r} \leqslant p_{i_{r}}, 0 \leqslant m^{(1)} \leqslant q_{i^{(1)}}, \cdots, 0 \leqslant m^{(r)} \leqslant q_{i^{(r)}}$.
3) $\tau_{i_{2}}\left(i_{2}=1, \cdots, R_{2}\right) \in \mathbb{R}^{+} ; \tau_{i_{r}} \in \mathbb{R}^{+}\left(i_{r}=1, \cdots, R_{r}\right) ; \tau_{i(k)} \in \mathbb{R}^{+}\left(i=1, \cdots, R^{(k)}\right),(k=1, \cdots, r)$.
4) $\gamma_{j}^{(k)}, C_{j}^{(k)} \in \mathbb{R}^{+} ;\left(j=1, \cdots, n_{k}\right) ;(k=1, \cdots, r) ; \delta_{j}^{(k)}, D_{j}^{(k)} \in \mathbb{R}^{+} ;\left(j=1, \cdots, m_{k}\right) ;(k=1, \cdots, r)$.
$\alpha_{k j}^{(l)}, A_{k j} \in \mathbb{R}^{+} ;\left(j=1, \cdots, n_{k}\right) ;(k=2, \cdots, r) ;(l=1, \cdots, k)$.
$\beta_{k j}^{(l)}, B_{k j} \in \mathbb{R}^{+} ;\left(j=1, \cdots, m_{k}\right) ;(k=2, \cdots, r) ;(l=1, \cdots, k)$.
$\alpha_{k j i_{k}}^{(l)}, A_{k j i_{k}} \in \mathbb{R}^{+} ;\left(j=n_{k}+1, \cdots, p_{i_{k}}\right) ;(k=2, \cdots, r) ;(l=1, \cdots, k)$.
$\beta_{k j i_{k}}^{(l)}, B_{k j i_{k}} \in \mathbb{R}^{+} ;\left(j=m_{k}+1, \cdots, q_{i_{k}}\right) ;(k=2, \cdots, r) ;(l=1, \cdots, k)$.
$\delta_{j i^{(k)}}^{(k)} \in \mathbb{R}^{+} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=m_{k}+1, \cdots, q_{i^{(k)}}\right) ;(k=1, \cdots, r)$.
$\gamma_{j i(k)}^{(k)} \in \mathbb{R}^{+} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=n_{k}+1, \cdots, p_{i(k)}\right) ;(k=1, \cdots, r)$.
5) $c_{j}^{(k)} \in \mathbb{C} ;\left(j=1, \cdots, n_{k}\right) ;(k=1, \cdots, r) ; d_{j}^{(k)} \in \mathbb{C} ;\left(j=1, \cdots, m_{k}\right) ;(k=1, \cdots, r)$.
$a_{k j i_{k}} \in \mathbb{C} ;\left(j=n_{k}+1, \cdots, p_{i_{k}}\right) ;(k=2, \cdots, r)$.
$b_{k j i_{k}} \in \mathbb{C} ;\left(j=m_{k}+1, \cdots, q_{i_{k}}\right) ;(k=2, \cdots, r)$.
$d_{j i^{(k)}}^{(k)} \in \mathbb{C} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=m_{k}+1, \cdots, q_{i^{(k)}}\right) ;(k=1, \cdots, r)$.
$\gamma_{j i^{(k)}}^{(k)} \in \mathbb{C} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=n_{k}+1, \cdots, p_{i^{(k)}}\right) ;(k=1, \cdots, r)$.
The contour L_{k} is in the $s_{k}(k=1, \cdots, r)$ - plane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ if is a real number with loop, if necessary to ensure that the poles of $\Gamma^{A_{2 j}}\left(1-a_{2 j}+\sum_{k=1}^{2} \alpha_{2 j}^{(k)} s_{k}\right)\left(j=1, \cdots, n_{2}\right), \Gamma^{A_{3} j}\left(1-a_{3 j}+\sum_{k=1}^{3} \alpha_{3 j}^{(k)} s_{k}\right)$ $\left(j=1, \cdots, n_{3}\right), \cdots, \Gamma^{A_{r j}}\left(1-a_{r j}+\sum_{i=1}^{r} \alpha_{r j}^{(i)}\right)\left(j=1, \cdots, n_{r}\right), \Gamma_{j}^{C_{j}^{(k)}}\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)\left(j=1, \cdots, n^{(k)}\right)(k=1, \cdots, r)$ to the right of the contour L_{k} and the poles of $\Gamma^{B_{2} j}\left(b_{2 j}-\sum_{k=1}^{2} \beta_{2 j}^{(k)} s_{k}\right)\left(j=1, \cdots, m_{2}\right), \Gamma^{B_{3} j}\left(b_{3 j}-\sum_{k=1}^{3} \beta_{3 j}^{(k)} s_{k}\right)\left(j=1, \cdots, m_{3}\right)$ $, \cdots, \Gamma^{B_{r j}}\left(b_{r j}-\sum_{i=1}^{r} \beta_{r j}^{(i)}\right)\left(j=1, \cdots, m_{r}\right), \Gamma^{D_{j}^{(k)}}\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)\left(j=1, \cdots, m^{(k)}\right)(k=1, \cdots, r)$ lie to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.1) can be obtained of the corresponding conditions for multivariable H -function given by as :
$\left|\arg \left(z_{k}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where
$A_{i}^{(k)}=\sum_{j=1}^{m^{(k)}} D_{j}^{(k)} \delta_{j}^{(k)}+\sum_{j=1}^{n^{(k)}} C_{j}^{(k)} \gamma_{j}^{(k)}-\tau_{i^{(k)}}\left(\sum_{j=m^{(k)}+1}^{q_{i}^{(k)}} D_{j i^{(k)}}^{(k)} \delta_{j i^{(k)}}^{(k)}+\sum_{j=n^{(k)}+1}^{p_{i}^{(k)}} C_{j i(k)}^{(k)} \gamma_{j i(k)}^{(k)}\right)+$
$\sum_{j=1}^{n_{2}} A_{2 j} \alpha_{2 j}^{(k)}+\sum_{j=1}^{m_{2}} B_{2 j} \beta_{2 j}^{(k)}-\tau_{i_{2}}\left(\sum_{j=n_{2}+1}^{p_{i_{2}}} A_{2 j i_{2}} \alpha_{2 j i_{2}}^{(k)}+\sum_{j=m_{2}+1}^{q_{i_{2}}} B_{2 j i_{2}} \beta_{2 j i_{2}}^{(k)}\right)+\cdots+$
$\sum_{j=1}^{n_{r}} A_{r j} \alpha_{r j}^{(k)}+\sum_{j=1}^{m_{r}} B_{r j} \beta_{r j}^{(k)}-\tau_{i_{r}}\left(\sum_{j=n_{r}+1}^{p_{i_{r}}} A_{r j i_{r}} \alpha_{r j i_{r}}^{(k)}+\sum_{j=m_{r}+1}^{q_{i_{r}}} B_{r j i_{r}} \beta_{r j i_{r}}^{(k)}\right)$
Following the lines of Braaksma ([2] p. 278), we may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$ where $i=1, \cdots, r:$
$\alpha_{i}=\min _{\substack{1 \leqslant j \leqslant m_{i} \\ 1 \leqslant j \leqslant m^{(i)}}} \operatorname{Re}\left(\sum_{h=2}^{r} \sum_{h^{\prime}=1}^{h} B_{h j} \frac{b_{h j}}{\beta_{h j}^{h^{\prime}}}+D_{j}^{(i)} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)$ and $\beta_{i}=\max _{\substack{1 \leqslant j \leqslant n_{i} \\ 1 \leqslant j \leqslant n^{(i)}}} R e\left(\sum_{h=2}^{r} \sum_{h^{\prime}=1}^{h} A_{h j} \frac{a_{h j}-1}{\alpha_{h j}^{h^{\prime}}}+C_{j}^{(i)} \frac{c_{j}^{(i)}-1}{\gamma_{j}^{(i)}}\right)$

Remark 1.

If $m_{2}=n_{2}=\cdots=m_{r-1}=n_{r-1}=p_{i_{2}}=q_{i_{2}}=\cdots=p_{i_{r-1}}=q_{i_{r-1}}=0$ and $A_{2 j}=B_{2 j}=A_{2 j i_{2}}=B_{2 j i_{2}}=\cdots=$ $A_{r j}=B_{r j}=A_{r j i_{r}}=B_{r j i_{r}}=1$, then the generalized multivariable Gimel-function reduces in the generalized multivariable Aleph- function (extension of multivariable Aleph-function defined by Ayant [1]).

Remark 2.

If $m_{2}=n_{2}=\cdots=m_{r}=n_{r}=p_{i_{2}}=q_{i_{2}}=\cdots=p_{i_{r}}=q_{i_{r}}=0$ and $\tau_{i_{2}}=\cdots=\tau_{i_{r}}=\tau_{i_{(1)}}=\cdots=\tau_{i^{(r)}}=R_{2}=$ $=\cdots=R_{r}=R^{(1)}=\cdots=R^{(r)}=1$, then the generalized multivariable Gimel-function reduces in a generalized multivariable I-function (extension of multivariable I-function defined by Prathima et al. [4]).

Remark 3.

If $A_{2 j}=B_{2 j}=A_{2 j i_{2}}=B_{2 j i_{2}}=\cdots=A_{r j}=B_{r j}=A_{r j i_{r}}=B_{r j i_{r}}=1$ and $\tau_{i_{2}}=\cdots=\tau_{i_{r}}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=R_{2}$ $=\cdots=R_{r}=R^{(1)}=\cdots=R^{(r)}=1$, then the generalized multivariable Gimel-function reduces in generalized of multivariable I-function (extension of multivariable I-function defined by Prasad [3]).

Remark 4.

If the three above conditions are satisfied at the same time, then the generalized multivariable Gimel-function reduces in the generalized multivariable H -function (extension of multivariable H -function defined by Srivastava and Panda [5,6]).

In your investigation, we shall use the following notations.
$\mathbb{A}=\left[\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{(1)}, \alpha_{2 j}^{(2)} ; A_{2 j}\right)\right]_{1, n_{2}},\left[\tau_{i_{2}}\left(a_{2 j i_{2}} ; \alpha_{2 j i_{2}}^{(1)}, \alpha_{2 j i_{2}}^{(2)} ; A_{2 j i_{2}}\right)\right]_{n_{2}+1, p_{i_{2}}},\left[\left(a_{3 j} ; \alpha_{3 j}^{(1)}, \alpha_{3 j}^{(2)}, \alpha_{3 j}^{(3)} ; A_{3 j}\right)\right]_{1, n_{3}}$,

$$
\left[\tau_{i_{3}}\left(a_{3 j i_{3}} ; \alpha_{3 j i_{3}}^{(1)}, \alpha_{3 j i_{3}}^{(2)}, \alpha_{3 j i_{3}}^{(3)} ; A_{3 j i_{3}}\right)\right]_{n_{3}+1, p_{i_{3}}} ; \cdots ;\left[\left(\mathrm{a}_{(r-1) j} ; \alpha_{(r-1) j}^{(1)}, \cdots, \alpha_{(r-1) j}^{(r-1)} ; A_{(r-1) j}\right)_{1, n_{r-1}}\right]
$$

$$
\begin{equation*}
\left[\tau_{i_{r-1}}\left(a_{(r-1) j i_{r-1}} ; \alpha_{(r-1) j i_{r-1}}^{(1)}, \cdots, \alpha_{(r-1) j i_{r-1}}^{(r-1)} ; A_{(r-1) j i_{r-1}}\right)_{n_{r-1}+1, p_{i_{r-1}}}\right] \tag{1.5}
\end{equation*}
$$

$\mathbf{A}=\left[\left(\mathrm{a}_{r j} ; \alpha_{r j}^{(1)}, \cdots, \alpha_{r j}^{(r)} ; A_{r j}\right)_{1, n_{r}}\right],\left[\tau_{i_{r}}\left(a_{r j i_{r}} ; \alpha_{r j i_{r}}^{(1)}, \cdots, \alpha_{r j i_{r}}^{(r)} ; A_{r j i_{r}}\right)_{\mathfrak{n}+1, p_{i_{r}}}\right]$
$A=\left[\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, n^{(1)}}\right],\left[\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)}, \gamma_{j i^{(1)}}^{(1)} ; C_{j i^{(1)}}^{(1)}\right)_{n^{(1)}+1, p_{i}^{(1)}}\right] ; \cdots ;$
$\left[\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, n^{(r)}}\right],\left[\tau_{i^{(r)}}\left(c_{j i^{(r)}}^{(r)}, \gamma_{j i(r)}^{(r)} ; C_{j}^{(r)}\right)_{n^{(r)}+1, p_{i}^{(r)}}\right]$
$\mathbb{B}=\left[\left(b_{2 j} ; \beta_{2 j}^{(1)}, \beta_{2 j}^{(2)} ; B_{2 j}\right)\right]_{1, m_{2}},\left[\tau_{i_{2}}\left(b_{2 j i_{2}} ; \beta_{2 j i_{2}}^{(1)}, \beta_{2 j i_{2}}^{(2)} ; B_{2 j i_{2}}\right)\right]_{m_{2}+1, q_{i_{2}}},\left[\left(b_{3 j} ; \beta_{3 j}^{(1)}, \beta_{3 j}^{(2)}, \beta_{3 j}^{(3)} ; B_{3 j}\right)\right]_{1, m_{3}}$,
$\left[\tau_{i_{3}}\left(b_{3 j i_{3}} ; \beta_{3 j i_{3}}^{(1)}, \beta_{3 j i_{3}}^{(2)}, \beta_{3 j i_{3}}^{(3)} ; B_{3 j i_{3}}\right)\right]_{m_{3}+1, q_{i_{3}}} ; \cdots ;\left[\left(\mathrm{b}_{(r-1) j} ; \beta_{(r-1) j}^{(1)}, \cdots, \beta_{(r-1) j}^{(r-1)} ; B_{(r-1) j}\right)_{1, m_{r-1}}\right]$,
$\left[\tau_{i_{r-1}}\left(b_{(r-1) j i_{r-1}} ; \beta_{(r-1) j i_{r-1}}^{(1)}, \cdots, \beta_{(r-1) j i_{r-1}}^{(r-1)} ; B_{(r-1) j i_{r-1}}\right)_{m_{r-1}+1, q_{i_{r-1}}}\right]$
$\mathbf{B}=\left[\left(\mathrm{b}_{r j} ; \beta_{r j}^{(1)}, \cdots, \beta_{r j}^{(r)} ; B_{r j}\right)_{1, m_{r}}\right],\left[\tau_{i_{r}}\left(b_{r j i_{r}} ; \beta_{r j i_{r}}^{(1)}, \cdots, \beta_{r j i_{r}}^{(r)} ; B_{r j i_{r}}\right)_{m_{r}+1, q_{i_{r}}}\right]$
$\mathrm{B}=\left[\left(\mathrm{d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, m^{(1)}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i^{(1)}}^{(1)} ; D_{j i^{(1)}}^{(1)}\right)_{m^{(1)}+1, q_{i}^{(1)}}\right] ; \cdots ;$
$\left[\left(\mathrm{d}_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, m^{(r)}}\right],\left[\tau_{i(r)}\left(d_{j i^{(r)}}^{(r)}, \delta_{j i^{(r)}}^{(r)} ; D_{j}^{(r)}\right)_{m^{(r)}+1, q_{i}^{(r)}}\right]$
$U=m_{2}, n_{2} ; m_{3}, n_{3} ; \cdots ; m_{r-1}, n_{r-1} ; V=m^{(1)}, n^{(1)} ; m^{(2)}, n^{(2)} ; \cdots ; m^{(r)}, n^{(r)}$
$X=p_{i_{2}}, q_{i_{2}}, \tau_{i_{2}} ; R_{2} ; \cdots ; p_{i_{r-1}}, q_{i_{r-1}}, \tau_{i_{r-1}}: R_{r-1} ; Y=p_{i^{(1)}}, q_{i(1)}, \tau_{i(1)} ; R^{(1)} ; \cdots ; p_{i(r)}, q_{i(r)} ; \tau_{i(r)} ; R^{(r)}$

2. Required integral.

In this paper, we require the following result. It's a hypergeometric function with unit argument given by Whittaker and Watson [7]

Lemma.

$\frac{1}{2 \pi \omega} \int_{-\omega \infty}^{\omega \infty} \frac{\Gamma(a+x) \Gamma(b-x) \Gamma(c-x)}{\Gamma(d-x)} e^{ \pm \omega \pi x} \mathrm{~d} x=\frac{\Gamma(a+b) \Gamma(a+c) \Gamma(d-a-b-c)}{\Gamma(d-b) \Gamma(d-c)} e^{ \pm \omega \pi x}$
provided $\operatorname{Re}(d-a-b-c)>0$

3. Main integrals.

In this section, we evaluate four integrals with respect to their parameters involving the generalized multivariable Gimel-function.

Theorem 1.

$\frac{e^{ \pm \omega \pi a}}{\Gamma(d-b) \Gamma(d-c)} I_{X ; p_{i_{r}}+2, q_{i}+1, \tau_{i}+\tau_{r}: R_{r}: Y}^{U}\left(\begin{array}{c|c}\mathrm{z}_{1} e^{ \pm \omega \pi h_{1}} & \mathbb{A} ;\left(1-\mathrm{a}-\mathrm{b} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right),\left(1-a-c ; h_{1}, \cdots, h_{r} ; 1\right), \mathbf{A}: A \\ \cdot & \cdot \\ \mathrm{z}_{r} e^{ \pm \omega \pi h_{r}} & \mathbb{B} ;\left(\mathrm{d}-\mathrm{a}-\mathrm{b}-\mathrm{c} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right), \mathbf{B}: B\end{array}\right)$
provided
$h_{i}>0(i=1, \cdots, r), R e(d-a-b-c-d)+\sum_{i=1}^{r} h_{i} \min _{\substack{1 \leqslant j \leqslant m_{i} \\ 1 \leqslant j \leqslant m^{(i)}}} R e\left(\sum_{h=2}^{r} \sum_{h^{\prime}=1}^{h} B_{h j} \frac{b_{h j}}{\beta_{h j}^{h^{\prime}}}+D_{j}^{(i)} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)>0$.
$\left|\arg \left(z_{k}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4).
Proof
To prove the theorem 1, we replace the generalized multivariable Gimel-function by this multiple integrals contour with the help of (1.1), change the order of integrations which is justified under the conditions mentioned above. We get

$$
\begin{equation*}
\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}}\left[\frac{1}{2 \pi \omega} \int_{-\omega \infty}^{\omega \infty} \frac{\Gamma\left(b-x+\sum_{i=1}^{r} h_{i} s_{i}-x\right)}{\Gamma(d-x)} e^{ \pm \omega \pi x} \mathrm{~d} x\right] \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r} \tag{3.2}
\end{equation*}
$$

Now, we evaluate the inner integral with the help of the result given by Whittaker and Watson [7] and interpret the resulting expression with the help of (1.1), we obtain the desired result.

Theorem 2.
$\frac{1}{2 \pi \omega} \int_{-\omega \infty}^{\omega \infty} \Gamma(b-x) \Gamma(a+x) \Gamma(c-x) e^{ \pm \omega \pi x} \mathcal{I}_{\substack{U ; p_{i_{r}}+1, q_{i_{r}}, \tau_{i_{r}}: R_{r}: Y}}^{U ; m_{r}, n_{r}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathbb{A} ; \mathbf{A},\left(1-\mathrm{a}-\mathrm{c} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right): A \\ \cdot & \cdot \\ \cdot & \cdot \\ \mathrm{z}_{r} & \mathbb{B} ; \mathbf{B}: \mathrm{B}\end{array}\right) \mathrm{d} x=$
$\Gamma(a+b) \Gamma(a+c) e^{ \pm \omega \pi a} \mathcal{I}_{X ; p_{i_{r}}+2, q_{i_{r}}+1, \tau_{i_{r}}: R_{r}: Y}^{U ; m_{r}+1, r_{2}+2: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathbb{A} ; \mathbf{A},\left(\mathrm{d}-\mathrm{b} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right),\left(d-c ; h_{1}, \cdots, h_{r} ; 1\right): A \\ \cdot & \cdot \\ \cdot & \cdot \\ \mathrm{z}_{r} & \mathbb{B} ;\left(\mathrm{d}-\mathrm{a}-\mathrm{b}-\mathrm{c} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right), \mathbf{B}: B\end{array}\right)$
under the same existence conditions that (3.1).

Theorem 3.

$\frac{1}{2 \pi \omega} \int_{-\omega \infty}^{\omega \infty} \Gamma(b-x) \Gamma(a+x) \Gamma(c-x) e^{ \pm \omega \pi x}$
$\mathcal{I}_{X ; p_{i_{r}}+2, q_{i_{r}}, \tau_{i_{r}}: R_{r}: Y}^{U ; m_{r}, r_{r}+1: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathbb{A} ;\left(1-\mathrm{c}+\mathrm{x} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right), \mathbf{A},\left(d-x ; h_{1}, \cdots, h_{r} ; 1\right): A \\ \cdot & \cdot \\ \cdot & \mathbb{B} ; \mathbf{B}: \mathrm{B} \\ \mathrm{z}_{r} & { }^{\prime}\end{array}\right) \mathrm{d} x=\Gamma(a+b) e^{ \pm \omega \pi a}$
$\mathcal{I}_{X ; p_{i_{r}}+3, q_{i_{r}}+1, \tau_{i_{r}}: R_{r}: Y}^{U ; m_{r}+1, n_{r}+1: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathbb{A} ;\left(1-\mathrm{a}-\mathrm{c} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right), \mathbf{A},\left(d-b ; h_{1}, \cdots, h_{r} ; 1\right),\left(d-c ; 2 h_{1}, \cdots, 2 h_{r} ; 1\right): A \\ \cdot & \cdot \\ \cdot & \mathbb{B} ;\left(\mathrm{d}-\mathrm{a}-\mathrm{b}-\mathrm{c} ; 2 \mathrm{~h}_{1}, \cdots, 2 h_{r} ; 1\right), \mathbf{B}: B \\ \mathrm{z}_{r} & \cdot\end{array}\right)$
provided
$h_{i}>0(i=1, \cdots, r), \operatorname{Re}(d-a-b-c-d)-2 \sum_{i=1}^{r} h_{i} \min _{\substack{1 \leqslant j \leqslant m_{i} \\ 1 \leqslant j \leqslant m^{(i)}}} \operatorname{Re}\left(\sum_{h=2}^{r} \sum_{h^{\prime}=1}^{h} B_{h j} \frac{b_{h j}}{\beta_{h j}^{h^{\prime}}}+D_{j}^{(i)} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)>0$.
$\left|\arg \left(z_{k}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4).
Theorem 4.
$\frac{1}{2 \pi \omega} \int_{-\omega \infty}^{\omega \infty} \frac{\Gamma(b-x) \Gamma(a+x)}{\Gamma(c-x)} e^{ \pm \omega \pi x} \beth_{X ; p_{i_{r}}+1, q_{i_{r}}, \tau_{i_{r}}: R_{r}: Y}^{U ; m_{r}, n_{r}+1: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathbb{A} ;\left(1-\mathrm{d}-\mathrm{x} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right), \mathbf{A}: A \\ \cdot & \cdot \\ \cdot & \dot{B} ; \dot{\mathbf{B}}: \mathrm{B} \\ \mathrm{z}_{r} & \mathbb{B}\end{array}\right) \mathrm{d} x=$
$\frac{e^{ \pm \omega \pi a} \Gamma(a+b)}{\Gamma(c-b)} \beth_{X ; p_{i_{r}}+2, q_{i_{r}}+1, \tau_{i_{r}}: R_{r}: Y}^{U ; m_{r}+1, n_{r}+2,}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathbb{A} ;\left(1-\mathrm{a}-\mathrm{d} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right), \mathbf{A},\left(c-d ; h_{1}, \cdots, h_{r} ; 1\right): A \\ \cdot & \cdot \\ \cdot & \cdot \\ \mathrm{z}_{r} & \mathbb{B} ;\left(\mathrm{c}-\mathrm{a}-\mathrm{b}-\mathrm{d} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right), \mathbf{B}: B\end{array}\right)$
provided
$h_{i}>0(i=1, \cdots, r), \operatorname{Re}(c-a-b-d)-\sum_{i=1}^{r} h_{i} \max _{\substack{1 \leqslant j \leqslant n_{i} \\ 1 \leqslant j \leqslant n^{(i)}}} \operatorname{Re}\left(\sum_{h=2}^{r} \sum_{h^{\prime}=1}^{h} A_{h j} \frac{a_{h j}-1}{\alpha_{h j}^{h^{\prime}}}+C_{j}^{(i)} \frac{c_{j}^{(i)}-1}{\gamma_{j}^{(i)}}\right)$
$\left|\arg \left(z_{k}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4).
To prove the formulae (3.3), (3.4) and (3.5), we use the similarly process.

4. Conclusion.

The generalized Gimel-function of several variables presented in this paper, are quite basic in nature. Therefore , on specializing the parameters of this function, we may obtain various known and (news) integrals with respect to parameters concerning the special functions of one variable and several variables.

REFERENCES.

[1] F. Ayant, An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT), 31(3) (2016), 142-154.
[2] B.L.J. Braaksma, Asymptotics expansions and analytic continuations for a class of Barnes-integrals, Compositio Math. 15 (1962-1964), 239-341.
[3] Y.N. Prasad, Multivariable I-function, Vijnana Parishad Anusandhan Patrika 29 (1986) , 231-237.
[4] J. Prathima, V. Nambisan and S.K. Kurumujji, A Study of I-function of Several Complex Variables, International Journal of Engineering Mathematics Vol (2014), 1-12.
[5] H.M. Srivastava and R. Panda, Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24 (1975),119-137.
[6] H.M. Srivastava and R.Panda, Some expansion theorems and generating relations for the H -function of several complex variables II. Comment. Math. Univ. St. Paul. 25 (1976), 167-197.
[7] E.T. Whittaker end G.N. Watson, A course of modern analysis, Cambridge Univ. Press., Cambridge, (1952).

