An expansion formula about multivariable Gimel-function

Frédéric Ayant

Teacher in High School , France

ABSTRACT

The object if this paper is to evaluate an integral associated with Bessel polynomials and the multivariable Gimel-function and to apply it in proving an expansion formula for the multivariable Gimel-function in series of product of the Bessel polynomials and a related multivariable Gimel-function. The results obtained are of general character and the integrals and series expansions associated with the special functions of Mathematical Physics can be derived as special cases.

KEYWORDS : Multivariable Gimel-function, multiple integral contours, Bessel polynomial, expansion formula.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

Throughout this paper, let \mathbb{C}, \mathbb{R} and \mathbb{N} be set of complex numbers, real numbers and positive integers respectively. Also $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

We define a generalized transcendental function of several complex variables noted I.

$$\exists (z_1, \cdots, z_r) = \exists_{p_{i_2}, q_{i_2}, \tau_{i_2}; R_2; p_{i_3}, q_{i_3}, \tau_{i_3}; R_3; \cdots; p_{i_r}, q_{i_r}, \tau_{i_r}: R_r: p_{i(1)}, q_{i(1)}, \tau_{i(1)}; R^{(1)}; \cdots; p_{i(r)}, q_{i(r)}; \tau_{i(r)}; R^{(r)} } \begin{pmatrix} z_1 \\ \vdots \\ \vdots \\ \vdots \\ z_r \end{pmatrix}$$

$$\begin{split} [(\mathbf{a}_{2j};\alpha_{2j}^{(1)},\alpha_{2j}^{(2)};A_{2j})]_{1,n_2}, &[\tau_{i_2}(a_{2ji_2};\alpha_{2ji_2}^{(1)},\alpha_{2ji_2}^{(2)};A_{2ji_2})]_{n_2+1,p_{i_2}}; \\ [(a_{3j};\alpha_{3j}^{(1)},\alpha_{3j}^{(2)},\alpha_{3j}^{(3)};A_{3j})]_{1,n_3}, \\ &[\tau_{i_2}(b_{2ji_2};\beta_{2ji_2}^{(1)},\beta_{2ji_2}^{(2)};B_{2ji_2})]_{1,q_{i_2}}; \end{split}$$

 $[\tau_{i_3}(a_{3ji_3};\alpha_{3ji_3}^{(1)},\alpha_{3ji_3}^{(2)},\alpha_{3ji_3}^{(3)};A_{3ji_3})]_{n_3+1,p_{i_3}};\cdots; [(a_{rj};\alpha_{rj}^{(1)},\cdots,\alpha_{rj}^{(r)};A_{rj})_{1,n_r}], \\ [\tau_{i_3}(b_{3ji_3};\beta_{3ji_3}^{(1)},\beta_{3ji_3}^{(2)},\beta_{3ji_3}^{(3)};B_{3ji_3})]_{1,q_{i_3}};\cdots;$

 $\begin{bmatrix} \tau_{i_r}(a_{rji_r};\alpha_{rji_r}^{(1)},\cdots,\alpha_{rji_r}^{(r)};A_{rji_r})_{n_r+1,p_r} \end{bmatrix} : \quad [(c_j^{(1)},\gamma_j^{(1)};C_j^{(1)})_{1,n^{(1)}}], [\tau_{i^{(1)}}(c_{ji^{(1)}}^{(1)},\gamma_{ji^{(1)}}^{(1)};C_{ji^{(1)}}^{(1)})_{n^{(1)}+1,p_i^{(1)}}] \\ [\tau_{i_r}(b_{rji_r};\beta_{rji_r}^{(1)},\cdots,\beta_{rji_r}^{(r)};B_{rji_r})_{1,q_r}] : \quad [(d_j^{(1)}),\delta_j^{(1)};D_j^{(1)})_{1,m^{(1)}}], [\tau_{i^{(1)}}(d_{ji^{(1)}}^{(1)},\delta_{ji^{(1)}}^{(1)};D_{ji^{(1)}}^{(1)})_{m^{(1)}+1,q_i^{(1)}}] \end{bmatrix}$

$$:\cdots : [(c_{j}^{(r)}, \gamma_{j}^{(r)}; C_{j}^{(r)})_{1,n^{(r)}}], [\tau_{i^{(r)}}(c_{ji^{(r)}}^{(r)}, \gamma_{ji^{(r)}}^{(r)}; C_{j}^{(r)})_{n^{(r)}+1,p_{i}^{(r)}}] \\ :\cdots : [(d_{j}^{(r)}, \delta_{j}^{(r)}; D_{j}^{(r)})_{1,m^{(r)}}], [\tau_{i^{(r)}}(d_{ji^{(r)}}^{(r)}, \delta_{ji^{(r)}}^{(r)}; D_{j}^{(r)})_{m^{(r)}+1,q_{i}^{(r)}}]$$

$$=\frac{1}{(2\pi\omega)^r}\int_{L_1}\cdots\int_{L_r}\psi(s_1,\cdots,s_r)\prod_{k=1}^r\theta_k(s_k)z_k^{s_k}\,\mathrm{d}s_1\cdots\mathrm{d}s_r$$

with $\omega = \sqrt{-1}$ $\psi(s_1, \cdots, s_r) = \frac{\prod_{j=1}^{n_2} \Gamma^{A_{2j}}(1 - a_{2j} + \sum_{k=1}^2 \alpha_{2j}^{(k)} s_k)}{\sum_{i_2=1}^{R_2} [\tau_{i_2} \prod_{j=n_2+1}^{p_{i_2}} \Gamma^{A_{2ji_2}}(a_{2ji_2} - \sum_{k=1}^2 \alpha_{2ji_2}^{(k)} s_k) \prod_{j=1}^{q_{i_2}} \Gamma^{B_{2ji_2}}(1 - b_{2ji_2} + \sum_{k=1}^2 \beta_{2ji_2}^{(k)} s_k)]}$ ISSN: 2231-5373 http://www.ijmttjournal.org Page 129

(1.1)

•

•

.

•

•

.

$$\frac{\prod_{j=1}^{n_3} \Gamma^{A_{3j}}(1-a_{3j}+\sum_{k=1}^3 \alpha_{3j}^{(k)}s_k)}{\sum_{i_3=1}^{R_3} [\tau_{i_3} \prod_{j=n_3+1}^{p_{i_3}} \Gamma^{A_{3ji_3}}(a_{3ji_3}-\sum_{k=1}^3 \alpha_{3ji_3}^{(k)}s_k) \prod_{j=1}^{q_{i_3}} \Gamma^{B_{3ji_3}}(1-b_{3ji_3}+\sum_{k=1}^3 \beta_{3ji_3}^{(k)}s_k)]}$$

.

.

•

•

.

$$\frac{\prod_{j=1}^{n_r} \Gamma^{A_{rj}} (1 - a_{rj} + \sum_{k=1}^r \alpha_{rj}^{(k)} s_k)}{\sum_{i_r=1}^{R_r} [\tau_{i_r} \prod_{j=n_r+1}^{p_{i_r}} \Gamma^{A_{rji_r}} (a_{rji_r} - \sum_{k=1}^r \alpha_{rji_r}^{(k)} s_k) \prod_{j=1}^{q_{i_r}} \Gamma^{B_{rji_r}} (1 - b_{rjir} + \sum_{k=1}^r \beta_{rjir}^{(k)} s_k)]}$$
(1.2)

.

and

$$\theta_{k}(s_{k}) = \frac{\prod_{j=1}^{m^{(k)}} \Gamma^{D_{j}^{(k)}}(d_{j}^{(k)} - \delta_{j}^{(k)}s_{k}) \prod_{j=1}^{n^{(k)}} \Gamma^{C_{j}^{(k)}}(1 - c_{j}^{(k)} + \gamma_{j}^{(k)}s_{k})}{\sum_{i^{(k)}=1}^{R^{(k)}} [\tau_{i^{(k)}} \prod_{j=m^{(k)}+1}^{q_{i^{(k)}}} \Gamma^{D_{j^{(k)}}^{(k)}}(1 - d_{j^{i^{(k)}}}^{(k)} + \delta_{j^{i^{(k)}}}^{(k)}s_{k}) \prod_{j=n^{(k)}+1}^{p_{i^{(k)}}} \Gamma^{C_{j^{i^{(k)}}}}(c_{j^{i^{(k)}}}^{(k)} - \gamma_{j^{i^{(k)}}}^{(k)}s_{k})]}$$
(1.3)

1)
$$[(c_j^{(1)}; \gamma_j^{(1)}]_{1,n_1}$$
 stands for $(c_1^{(1)}; \gamma_1^{(1)}), \cdots, (c_{n_1}^{(1)}; \gamma_{n_1}^{(1)}).$
2) $n_2, \cdots, n_r, m^{(1)}, n^{(1)}, \cdots, m^{(r)}, n^{(r)}, p_{i_2}, q_{i_2}, R_2, \tau_{i_2}, \cdots, p_{i_r}, q_{i_r}, R_r, \tau_{i_r}, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i^{(r)}}, R^{(r)} \in \mathbb{N}$ and verify :
 $0 \leq m_2, 0 \leq n_2 \leq p_{i_2}, \cdots, 0 \leq m_r, 0 \leq n_r \leq p_{i_r}, 0 \leq m^{(1)} \leq q_{i^{(1)}}, \cdots, 0 \leq m^{(r)} \leq q_{i^{(r)}}.$

3)
$$\tau_{i_2}(i_2 = 1, \cdots, R_2) \in \mathbb{R}^+; \tau_{i_r} \in \mathbb{R}^+ (i_r = 1, \cdots, R_r); \tau_{i^{(k)}} \in \mathbb{R}^+ (i = 1, \cdots, R^{(k)}), (k = 1, \cdots, r).$$

$$\begin{split} & \textbf{4} \right) \gamma_{j}^{(k)}, C_{j}^{(k)} \in \mathbb{R}^{+}; (j = 1, \cdots, n_{k}); (k = 1, \cdots, r); \delta_{j}^{(k)}, D_{j}^{(k)} \in \mathbb{R}^{+}; (j = 1, \cdots, m_{k}); (k = 1, \cdots, r). \\ & \alpha_{kj}^{(l)}, A_{kj} \in \mathbb{R}^{+}; (j = 1, \cdots, n_{k}); (k = 2, \cdots, r); (l = 1, \cdots, k). \\ & \alpha_{kjik}^{(l)}, A_{kjik} \in \mathbb{R}^{+}; (j = n_{k} + 1, \cdots, p_{i_{k}}); (k = 2, \cdots, r); (l = 1, \cdots, k). \\ & \beta_{kjik}^{(l)}, B_{kjik} \in \mathbb{R}^{+}; (j = m_{k} + 1, \cdots, q_{i_{k}}); (k = 2, \cdots, r); (l = 1, \cdots, k). \\ & \delta_{ji^{(k)}}^{(k)} \in \mathbb{R}^{+}; (i = 1, \cdots, R^{(k)}); (j = m^{(k)} + 1, \cdots, q_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (j = 1, \cdots, n_{k}); (j = n^{(k)} + 1, \cdots, p_{i^{(k)}}); (k = 1, \cdots, r). \\ & \textbf{5} \ c_{j}^{(k)} \in \mathbb{C}; (j = n_{k} + 1, \cdots, p_{i_{k}}); (k = 2, \cdots, r). \\ & b_{kji_{k}} \in \mathbb{C}; (j = m_{k} + 1, \cdots, q_{i_{k}}); (k = 2, \cdots, r). \\ & b_{kji_{k}} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = m^{(k)} + 1, \cdots, q_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = m^{(k)} + 1, \cdots, q_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = m^{(k)} + 1, \cdots, q_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = n^{(k)} + 1, \cdots, q_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = n^{(k)} + 1, \cdots, q_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = n^{(k)} + 1, \cdots, q_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = n^{(k)} + 1, \cdots, p_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = n^{(k)} + 1, \cdots, p_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = n^{(k)} + 1, \cdots, p_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = n^{(k)} + 1, \cdots, p_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = n^{(k)} + 1, \cdots, p_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C}; (i = 1, \cdots, R^{(k)}); (j = n^{(k)} + 1, \cdots, p_{i^{(k)}}); (k = 1, \cdots, r). \\ & \gamma_{ji^{(k)}}^{(k)} \in \mathbb{C};$$

ISSN: 2231-5373

http://www.ijmttjournal.org

The contour L_k is in the $s_k(k = 1, \dots, r)$ - plane and run from $\sigma - i\infty$ to $\sigma + i\infty$ where σ if is a real number with loop, if necessary to ensure that the poles of $\Gamma^{A_{2j}}\left(1 - a_{2j} + \sum_{k=1}^{2} \alpha_{2j}^{(k)} s_k\right)(j = 1, \dots, n_2), \Gamma^{A_{3j}}\left(1 - a_{3j} + \sum_{k=1}^{3} \alpha_{3j}^{(k)} s_k\right)(j = 1, \dots, n_3), \dots, \Gamma^{A_{rj}}\left(1 - a_{rj} + \sum_{i=1}^{r} \alpha_{rj}^{(i)}\right)(j = 1, \dots, n_r), \Gamma^{C_j^{(k)}}\left(1 - c_j^{(k)} + \gamma_j^{(k)} s_k\right)(j = 1, \dots, n^{(k)})(k = 1, \dots, r)$ to the right of the contour L_k and the poles of $\Gamma^{D_j^{(k)}}\left(d_j^{(k)} - \delta_j^{(k)} s_k\right)(j = 1, \dots, m^{(k)})(k = 1, \dots, r)$ lie to the left of the contour L_k . The condition for absolute convergence of multiple Mellin-Barnes type contour (1,1) can be obtained of the

contour L_k . The condition for absolute convergence of multiple Mellin-Barnes type contour (1.1) can be obtained of the corresponding conditions for multivariable H-function given by as :

$$|arg(z_k)| < rac{1}{2}A_i^{(k)}\pi$$
 where

$$A_{i}^{(k)} = \sum_{j=1}^{m^{(k)}} D_{j}^{(k)} \delta_{j}^{(k)} + \sum_{j=1}^{n^{(k)}} C_{j}^{(k)} \gamma_{j}^{(k)} - \tau_{i^{(k)}} \left(\sum_{j=m^{(k)}+1}^{q_{i}^{(k)}} D_{ji^{(k)}}^{(k)} \delta_{ji^{(k)}}^{(k)} + \sum_{j=n^{(k)}+1}^{p_{i}^{(k)}} C_{ji^{(k)}}^{(k)} \gamma_{ji^{(k)}}^{(k)} \right)$$

$$-\tau_{i_2}\left(\sum_{j=n_2+1}^{p_{i_2}} A_{2ji_2}\alpha_{2ji_2}^{(k)} + \sum_{j=1}^{q_{i_2}} B_{2ji_2}\beta_{2ji_2}^{(k)}\right) - \dots - \tau_{i_r}\left(\sum_{j=n_r+1}^{p_{i_r}} A_{rji_r}\alpha_{rji_r}^{(k)} + \sum_{j=1}^{q_{i_r}} B_{rji_r}\beta_{rji_r}^{(k)}\right)$$
(1.4)

Following the lines of Braaksma ([2] p. 278), we may establish the the asymptotic expansion in the following convenient form :

$$\Re(z_1, \cdots, z_r) = 0(|z_1|^{\alpha_1}, \cdots, |z_r|^{\alpha_r}), max(|z_1|, \cdots, |z_r|) \to 0$$

$$\Re(z_1, \cdots, z_r) = 0(|z_1|^{\beta_1}, \cdots, |z_r|^{\beta_r}), min(|z_1|, \cdots, |z_r|) \to \infty \text{ where } i = 1, \cdots, r :$$

$$\alpha_i = \min_{1 \leqslant j \leqslant m^{(i)}} Re\left[D_j^{(i)}\left(\frac{d_j^{(i)}}{\delta_j^{(i)}}\right)\right] \text{ and } \beta_i = \max_{1 \leqslant j \leqslant n^{(i)}} Re\left[C_j^{(i)}\left(\frac{c_j^{(i)}-1}{\gamma_j^{(i)}}\right)\right]$$

Remark 1.

If $n_2 = \cdots = n_{r-1} = p_{i_2} = q_{i_2} = \cdots = p_{i_{r-1}} = q_{i_{r-1}} = 0$ and $A_{2j} = A_{2ji_2} = B_{2ji_2} = \cdots = A_{rj} = A_{rji_r} = B_{rji_r} = 1$ $A_{rj} = A_{rji_r} = B_{rji_r} = 1$, then the multivariable Gimel-function reduces in the multivariable Aleph- function defined by Ayant [1].

Remark 2.

If $n_2 = \cdots = n_r = p_{i_2} = q_{i_2} = \cdots = p_{i_r} = q_{i_r} = 0$ and $\tau_{i_2} = \cdots = \tau_{i_r} = \tau_{i^{(1)}} = \cdots = \tau_{i^{(r)}} = R_2 = \cdots = R_r = R^{(1)} = \cdots = R^{(r)} = 1$, then the multivariable Gimel-function reduces in a multivariable I-function defined by Prathima et al. [7].

Remark 3.

If $A_{2j} = A_{2ji_2} = B_{2ji_2} = \cdots = A_{rj} = A_{rji_r} = B_{rji_r} = 1$ and $\tau_{i_2} = \cdots = \tau_{i_r} = \tau_{i^{(1)}} = \cdots = \tau_{i^{(r)}} = R_2 = \cdots = R_r = R^{(1)} = \cdots = R^{(r)} = 1$, then the generalized multivariable Gimel-function reduces in multivariable I-function defined by Prasad [6].

Remark 4.

If the three above conditions are satisfied at the same time, then the generalized multivariable Gimel-function reduces in the multivariable H-function defined by Srivastava and Panda [8,9].

In your investigation, we shall use the following notations.

$$\mathbb{A} = [(a_{2j}; \alpha_{2j}^{(1)}, \alpha_{2j}^{(2)}; A_{2j})]_{1,n_2}, [\tau_{i_2}(a_{2ji_2}; \alpha_{2ji_2}^{(1)}, \alpha_{2ji_2}^{(2)}; A_{2ji_2})]_{n_2+1, p_{i_2}}, [(a_{3j}; \alpha_{3j}^{(1)}, \alpha_{3j}^{(2)}, \alpha_{3j}^{(3)}; A_{3j})]_{1,n_3}, \\ [\tau_{i_3}(a_{3ji_3}; \alpha_{3ji_3}^{(1)}, \alpha_{3ji_3}^{(2)}, \alpha_{3ji_3}^{(3)}; A_{3ji_3})]_{n_3+1, p_{i_3}}; \cdots; [(a_{(r-1)j}; \alpha_{(r-1)j}^{(1)}, \cdots, \alpha_{(r-1)j}^{(r-1)}; A_{(r-1)j})_{1, n_{r-1}}],$$

$$[\tau_{i_{r-1}}(a_{(r-1)ji_{r-1}};\alpha^{(1)}_{(r-1)ji_{r-1}},\cdots,\alpha^{(r-1)}_{(r-1)ji_{r-1}};A_{(r-1)ji_{r-1}})_{n_{r-1}+1,p_{i_{r-1}}}]$$
(1.5)

http://www.ijmttjournal.org

$$\mathbf{A} = [(\mathbf{a}_{rj}; \alpha_{rj}^{(1)}, \cdots, \alpha_{rj}^{(r)}; A_{rj})_{1,n_r}], [\tau_{i_r}(a_{rji_r}; \alpha_{rji_r}^{(1)}, \cdots, \alpha_{rji_r}^{(r)}; A_{rji_r})_{\mathfrak{n}+1, p_{i_r}}]$$
(1.6)

$$A = [(c_j^{(1)}, \gamma_j^{(1)}; C_j^{(1)})_{1,n^{(1)}}], [\tau_{i^{(1)}}(c_{ji^{(1)}}^{(1)}, \gamma_{ji^{(1)}}^{(1)}; C_{ji^{(1)}}^{(1)})_{n^{(1)}+1, p_i^{(1)}}]; \cdots;$$

$$[(c_j^{(r)}, \gamma_j^{(r)}; C_j^{(r)})_{1,n^{(r)}}], [\tau_{i^{(r)}}(c_{ji^{(r)}}^{(r)}, \gamma_{ji^{(r)}}^{(r)}; C_j^{(r)})_{n^{(r)}+1, p_i^{(r)}}]$$

$$(1.7)$$

$$\mathbb{B} = [\tau_{i_2}(b_{2ji_2}; \beta_{2ji_2}^{(1)}, \beta_{2ji_2}^{(2)}; B_{2ji_2})]_{1,q_{i_2}}, [\tau_{i_3}(b_{3ji_3}; \beta_{3ji_3}^{(1)}, \beta_{3ji_3}^{(2)}, \beta_{3ji_3}^{(3)}; B_{3ji_3})]_{1,q_{i_3}}; \cdots;$$

$$[\tau_{i_{r-1}}(b_{(r-1)ji_{r-1}};\beta^{(1)}_{(r-1)ji_{r-1}},\cdots,\beta^{(r-1)}_{(r-1)ji_{r-1}};B_{(r-1)ji_{r-1}})_{1,q_{i_{r-1}}}]$$
(1.8)

$$\mathbf{B} = [\tau_{i_r}(b_{rji_r}; \beta_{rji_r}^{(1)}, \cdots, \beta_{rji_r}^{(r)}; B_{rji_r})_{1,q_{i_r}}]$$
(1.9)

$$\mathbf{B} = [(\mathbf{d}_{j}^{(1)}, \delta_{j}^{(1)}; D_{j}^{(1)})_{1,m^{(1)}}], [\tau_{i^{(1)}}(d_{ji^{(1)}}^{(1)}, \delta_{ji^{(1)}}^{(1)}; D_{ji^{(1)}}^{(1)})_{m^{(1)}+1,q_{i}^{(1)}}]; \cdots;$$

$$[(d_j^{(r)}, \delta_j^{(r)}; D_j^{(r)})_{1,m^{(r)}}], [\tau_{i^{(r)}}(d_{ji^{(r)}}^{(r)}, \delta_{ji^{(r)}}^{(r)}; D_j^{(r)})_{m^{(r)}+1, q_i^{(r)}}]$$
(1.10)

$$U = m_2, n_2; m_3, n_3; \dots; m_{r-1}, n_{r-1}; V = m^{(1)}, n^{(1)}; m^{(2)}, n^{(2)}; \dots; m^{(r)}, n^{(r)}$$
(1.11)

$$X = p_{i_2}, q_{i_2}, \tau_{i_2}; R_2; \cdots; p_{i_{r-1}}, q_{i_{r-1}}, \tau_{i_{r-1}}; R_{r-1}; Y = p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}}; R^{(1)}; \cdots; p_{i^{(r)}}, q_{i^{(r)}}; \tau_{i^{(r)}}; R^{(r)}$$
(1.12)

The Bessel polynomial arise from the solution of the classical wave equation in spherical coordinates, namely

$$x^{2}\frac{d^{2}y}{dx^{2}} + (ax+b)\frac{dy}{dx} - k(k+a-1)y = 0$$
(1.13)

Krall and Frink [5] has defined these polynomials in terms of the hypergeometric series in the form

$$y_k(x,a;b) = {}_2F_0\left[-k,a+k-1;-\frac{x}{b}\right]$$
(1.14)

2. Required formulae.

We have the Hamza's formula [3]

Lemma 1.

$$\int_0^\infty t^{u-1} e^{-t} y_k(1,a;t) dt = \Gamma(u-k)(u+a-1)_k$$
(2.1)

provided Re(u-k) > 0, Re(u+a+k) > 1

Hamza [4] gives the orthogonality property concerning the Bessel polynomials

Lemma 2.

$$\int_0^\infty t^{u-1} e^{-t} y_n(1,a;t) y_m(1,a;t) dt = \begin{bmatrix} 0 \text{ if } m \neq n \\ & . \\ n! \Gamma(2-a-n) \text{ if } m = n \end{bmatrix}$$

2. Main integral.

ISSN: 2231-5373

http://www.ijmttjournal.org

The formula to be proved here is

Theorem1.

$$\int_{0}^{\infty} t^{u-1} e^{-t} y_{k}(1,a;t) \mathfrak{I}(z_{1}t^{a_{1}},\cdots,z_{r}t^{a_{r}}) \mathrm{d}t =$$

$$\left(z_{1} \mid \mathbb{A}; (1+k-u;a_{1},\cdots,a_{r};1), (2-u-a-k;a_{1},\cdots,a_{r};1), \mathbb{A}; \mathbb{A} \right)$$

$$\mathbf{J}_{X;p_{i_{r}}+2,q_{i_{r}}+1,\tau_{i_{r}}:R_{r}:Y}^{U;0,n_{r}+2:V}\left(\begin{array}{c}z_{1}\\\vdots\\\vdots\\z_{r}\end{array}\right| \xrightarrow{\mathbf{K},\ (1+\mathbf{K}\cdot\mathbf{u},a_{1},\cdots,a_{r},1),\ (2-u-u-u-k,u_{1},\cdots,u_{r},1),\mathbf{K}\cdot\mathbf{K}}_{B;\ \mathbf{B},(2-u-a;a_{1},\cdots,a_{r};1):B}\right)$$
(3.1)

provided

$$\begin{split} Re(u-k) + \sum_{i=1}^{r} a_{i} \min_{1 \leqslant j \leqslant m^{(i)}} Re\left(D_{j}^{(i)} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right) > 0 \text{ and } Re(u+a+k) + \sum_{i=1}^{r} a_{i} \min_{1 \leqslant j \leqslant m^{(i)}} Re\left(D_{j}^{(i)} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right) > 1 \\ |arg(z_{i}t^{a_{i}})| < \frac{1}{2}A_{i}^{(k)}\pi \text{ where } A_{i}^{(k)} \text{ is defined by (1.4), } a_{i} > 0 (i = 1, \cdots, r) \end{split}$$

Proof

The equation (3.1) can be established on substituting the expression of the multivariable Gimel-function in terms of Mellin-Barnes multiple integrals contour with the help of (1.1), interchanging the order of integrations (which is permissible under the conditions mentioned in (3.1)), now, evaluating the *t*-integral with the help of the lemma1 and interpreting the Mellin-Barnes multiple integrals contour in terms of the multivariable Gimel-function, we get the desired result.

4. Expansion formula.

The following series expansion will be developed here

Theorem 2.

$$t^{w} \exists (z_{1}t^{a_{1}}, \cdots, z_{r}t^{a_{r}}) = \sum_{u=0}^{\infty} \frac{1}{u!\Gamma(2-a-u)} y_{u}(1,a;t)$$

$$\exists_{X;p_{i_{r}}+2,q_{i_{r}}+1,\tau_{i_{r}}:R_{r}:Y} \begin{pmatrix} z_{1} \\ \vdots \\ z_{r} \\ & \vdots \\ z_{r} \\ & B; \mathbf{B},(-w;a_{1},\cdots,a_{r};1):B \end{pmatrix}$$
(4.1)

provided

$$Re(w) + \sum_{i=1}^{r} a_{i} \min_{1 \le j \le m^{(i)}} Re\left(D_{j}^{(i)} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right) > 0 \text{ and}$$

 $|arg(z_it^{a_i})| < rac{1}{2}A_i^{(k)}\pi$ where $A_i^{(k)}$ is defined by (1.4), $a_i > 0 (i = 1, \cdots, r).$

Proof let

$$f(t)=t^w \gimel(z_1t^{a_1},\cdots,z_rt^{a_r})=\sum_{U=0}^\infty A_U y_U(1,a;t)$$

The above equation is valid since the function f is continuous and of bounded variation in the open interval $(0, \infty)$ where $0 \leq w$.

(4.2)

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 56 Number 2 - April 2018

Multiplying both sides of (4.2) by $t^{1-a}e^{-t}y_u(1,a;t)$ and integrating with respect to t from 0 to ∞ , we get

$$\int_{0}^{\infty} t^{w+1-a} e^{-t} y_u(1,a;t) \Im(z_1 t^{a_1}, \cdots, z_r t^{a_r}) dt = \int_{0}^{\infty} \sum_{U=0}^{\infty} A_U e^{-t} t^{1-a} y_u(1,a;t) y_U(1,a;t) dt$$
(4.3)

Using the lemma 2, we obtain

 $u!\Gamma(2-a-u)A_u =$

$$\mathbf{J}_{X;p_{i_{r}}+2,q_{i_{r}}+1,\tau_{i_{r}}:R_{r}:Y}^{U;0,n_{r}+2;V}\left(\begin{array}{ccc}z_{1} & \mathbb{A}; (-u+a-w-1;a_{1},\cdots,a_{r};1), (-u-w;a_{1},\cdots,a_{r};1), \mathbf{A}:A\\ \cdot & & \\\cdot & & \\\cdot & & \\z_{r} & & \\\mathbb{B}; \mathbf{B}, (-w;a_{1},\cdots,a_{r};1):B\end{array}\right)$$
(4.4)

Finally, substituting the value of A_u in (4.2), we have the desired formula.

5. Conclusion.

The formulae (3.1) and (4.1) established here are unified and act as key formulae. Thus the multivariable Gimelfunction occurring in these equations can be suitably specialized to a remarkably wide variety of special functions (or product of several such special functions) which are expressible in terms of E, F, G, H, I, Aleph-functions of one or more variables.

REFERENCES.

[1] F. Ayant, An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT), 31(3) (2016), 142-154.

[2] B.L.J. Braaksma, Asymptotics expansions and analytic continuations for a class of Barnes-integrals, Compositio Math. 15 (1962-1964), 239-341.

[3] A.M. Hamza, Integrals involving bessel polynomials, Proc. Phy. Soc. Egypt, 35(1971), 9-15.

[4] A.M. Hamza, Integrals involving bessel polynomials, Riv. Mat. Univ. Parma. Italia 3(1) (1973), 41-46.

[5] H. Krall and O. Frink, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65(1949), 100-115.

[6] Y.N. Prasad, Multivariable I-function, Vijnana Parishad Anusandhan Patrika 29 (1986), 231-237.

[7] J. Prathima, V. Nambisan and S.K. Kurumujji, A Study of I-function of Several Complex Variables, International Journal of Engineering Mathematics Vol (2014), 1-12.

[8] H.M. Srivastava and R. Panda, Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24 (1975),119-137.

[9] H.M. Srivastava and R.Panda, Some expansion theorems and generating relations for the H-function of several complex variables II. Comment. Math. Univ. St. Paul. 25 (1976), 167-197.