A theorem concerning a product of polynomials and multivariable Gimel-function

Frédéric Ayant
Teacher in High School , France

ABSTRACT

The object of this paper is to establish a general theorem pertaining to a product of class of polynomials and multivariable Gimel-function. Certains integrals are also obtained by application of the theorem. The theorem is quite general nature and capable of yielding a number of new, interesting and useful integrals as its special cases.

KEYWORDS : Multivariable Gimel-function, multiple integral contours, class of polynomials, hypergeometric function.
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

Throughout this paper, let \mathbb{C}, \mathbb{R} and \mathbb{N} be set of complex numbers, real numbers and positive integers respectively. Also $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

We define a generalized transcendental function of several complex variables noted J.

$$
\begin{gathered}
{\left[\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{(1)}, \alpha_{2 j}^{(2)} ; A_{2 j}\right)\right]_{1, n_{2}},\left[\tau_{i_{2}}\left(a_{2 j i_{2}} ; \alpha_{2 j i_{2}}^{(1)}, \alpha_{2 j i_{2}}^{(2)} ; A_{2 j i_{2}}\right)\right]_{n_{2}+1, p_{i_{2}}} ;\left[\left(a_{3 j} ; \alpha_{3 j}^{(1)}, \alpha_{3 j}^{(2)}, \alpha_{3 j}^{(3)} ; A_{3 j}\right)\right]_{1, n_{3}},} \\
{\left[\tau_{i_{2}}\left(b_{2 j i_{2}} ; \beta_{2 j i_{2}}^{(1)}, \beta_{2 j i_{2}}^{(2)} ; B_{2 j i_{2}}\right)\right]_{1, q_{i_{2}}} ;}
\end{gathered}
$$

$$
\begin{gathered}
{\left[\tau_{i_{3}}\left(a_{3 j i_{3}} ; \alpha_{3 j i_{3}}^{(1)}, \alpha_{3 j i_{3}}^{(2)},,_{3 j i_{3}}^{(3)} ; A_{3 j i_{3}}\right)\right]_{n_{3}+1, p_{i_{3}}} ; \cdots ;\left[\left(a_{r j} ; \alpha_{r j}^{(1)}, \cdots, \alpha_{r j}^{(r)} ; A_{r j}\right)_{1, n_{r}}\right],} \\
\quad\left[\tau_{i_{3}}\left(b_{3 j i_{3}} ; \beta_{3 j i_{3}}^{(1)}, \beta_{3 j i_{3}}^{(2)}, \beta_{3 j i_{3}}^{(3)} ; B_{3 j i_{3}}\right)\right]_{1, q_{i_{3}}} ; \cdots ;
\end{gathered}
$$

$$
\left[\tau_{i_{r}}\left(a_{r j i_{r}} ; \alpha_{r j i_{r}}^{(1)}, \cdots, \alpha_{r j i_{i}}^{(r)} ; A_{r j i_{r}}\right)_{n_{r}+1, p_{r}}\right]: \quad\left[\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{\left.1, n^{(1)}\right]}\right],\left[\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)}, \gamma_{j i^{(1)}}^{(1)} ; C_{j i^{(1)}}^{(1)}\right)_{n^{(1)}+1, p_{i}^{(1)}}^{(1)}\right]
$$

$$
\left.\left[\tau_{i_{r}}\left(b_{r j i_{r}} ; \beta_{r j i_{r}}^{(1)}, \cdots, \beta_{r j i_{r}}^{(r)} ; B_{r j i_{r}}\right)_{1, q_{r}}\right]: \quad\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, m^{(1)}}\right],\left[\tau_{i(1)}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i^{(1)}}^{(1)} ; D_{j i}^{(1)}\right)_{m^{(1)}+1, q_{i}^{(1)}}^{(1)}\right]
$$

$$
\left.\begin{array}{c}
; \cdots ;\left[\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, n^{(r)}}\right],\left[\tau_{i^{(r)}}\left(c_{j(r)}^{(r)}, \gamma_{j i(r)}^{(r)} ; C_{j}^{(r)}\right)_{n^{(r)}+1, p_{i}^{(r)}}\right] \\
; \cdots ;\left[\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, m^{(r)}}\right],\left[\tau_{i^{(r)}}\left(d_{j i(r)}^{(r)}, \delta_{j i(r)}^{(r)} ; D_{j}^{(r)}\right)_{m^{(r)}+1, q_{i}^{(r)}}\right]
\end{array}\right)
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{n_{2}} \Gamma^{A_{2 j}}\left(1-a_{2 j}+\sum_{k=1}^{2} \alpha_{2 j}^{(k)} s_{k}\right)}{\sum_{i_{2}=1}^{R_{2}}\left[\tau_{i_{2}} \prod_{j=n_{2}+1}^{p_{i 2}} \Gamma^{A_{2 j i_{2}}}\left(a_{2 j i_{2}}-\sum_{k=1}^{2} \alpha_{2 j i_{2}}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma^{B_{2 j i_{2}}}\left(1-b_{2 j i 2}+\sum_{k=1}^{2} \beta_{2 j i 2}^{(k)} s_{k}\right)\right]}$

$$
\frac{\prod_{j=1}^{n_{3}} \Gamma^{A_{3 j}}\left(1-a_{3 j}+\sum_{k=1}^{3} \alpha_{3 j}^{(k)} s_{k}\right)}{\sum_{i_{3}=1}^{R_{3}}\left[\tau_{i_{3}} \prod_{j=n_{3}+1}^{p_{i}} \Gamma^{A_{3 j i}}{ }_{3}\left(a_{3 j i_{3}}-\sum_{k=1}^{3} \alpha_{3 j i_{3}}^{k} s_{k}\right) \prod_{j=1}^{q_{i 3}} \Gamma^{B_{3 j i_{3}}}\left(1-b_{3 j i 3}+\sum_{k=1}^{3} \beta_{3 j i_{3}}^{(k)} s_{k}\right)\right]}
$$

$$
\begin{equation*}
\frac{\prod_{j=1}^{n_{r}} \Gamma^{A_{r j}}\left(1-a_{r j}+\sum_{k=1}^{r} \alpha_{r j}^{(k)} s_{k}\right)}{\sum_{i_{r}=1}^{R_{r}}\left[\tau_{i_{r}} \prod_{j=n_{r}+1}^{p_{i_{r}}} \Gamma^{A_{r j j_{r}}}\left(a_{r j i_{r}}-\sum_{k=1}^{r} \alpha_{r j i_{r}}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma^{B_{r j i_{r}}}\left(1-b_{r j i r}+\sum_{k=1}^{r} \beta_{r j i r}^{(k)} s_{k}\right)\right]} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m^{(k)}} \Gamma^{D_{j}^{(k)}}\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n^{(k)}} \Gamma^{C_{j}^{(k)}}\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\left.\sum_{i{ }^{(k)}=1}^{R^{(k)}\left[\tau_{i}(k)\right.} \prod_{j=m m^{(k)}+1}^{q_{i}(k)} \Gamma^{D_{j i}^{(k)}(k)}\left(1-d_{j i(k)}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=n^{(k)}+1}^{p_{i}(k)} \Gamma_{j i k}^{C_{j i}^{(k)}(k)}\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]} \tag{1.3}
\end{equation*}
$$

1) $\left[\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right]_{1, n_{1}}\right.$ stands for $\left(c_{1}^{(1)} ; \gamma_{1}^{(1)}\right), \cdots,\left(c_{n_{1}}^{(1)} ; \gamma_{n_{1}}^{(1)}\right)$.
2) $n_{2}, \cdots, n_{r}, m^{(1)}, n^{(1)}, \cdots, m^{(r)}, n^{(r)}, p_{i_{2}}, q_{i_{2}}, R_{2}, \tau_{i_{2}}, \cdots, p_{i_{r}}, q_{i_{r}}, R_{r}, \tau_{i_{r}}, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i^{(r)}}, R^{(r)} \in \mathbb{N}$ and verify : $0 \leqslant m_{2}, 0 \leqslant n_{2} \leqslant p_{i_{2}}, \cdots, 0 \leqslant m_{r}, 0 \leqslant n_{r} \leqslant p_{i_{r}}, 0 \leqslant m^{(1)} \leqslant q_{i}(1), \cdots, 0 \leqslant m^{(r)} \leqslant q_{i(r)}$.
3) $\tau_{i_{2}}\left(i_{2}=1, \cdots, R_{2}\right) \in \mathbb{R}^{+} ; \tau_{i_{r}} \in \mathbb{R}^{+}\left(i_{r}=1, \cdots, R_{r}\right) ; \tau_{i(k)} \in \mathbb{R}^{+}\left(i=1, \cdots, R^{(k)}\right),(k=1, \cdots, r)$.
4) $\gamma_{j}^{(k)}, C_{j}^{(k)} \in \mathbb{R}^{+} ;\left(j=1, \cdots, n_{k}\right) ;(k=1, \cdots, r) ; \delta_{j}^{(k)}, D_{j}^{(k)} \in \mathbb{R}^{+} ;\left(j=1, \cdots, m_{k}\right) ;(k=1, \cdots, r)$.
$\alpha_{k j}^{(l)}, A_{k j} \in \mathbb{R}^{+} ;\left(j=1, \cdots, n_{k}\right) ;(k=2, \cdots, r) ;(l=1, \cdots, k)$.
$\alpha_{k j_{i} k}^{(l)}, A_{k j i_{k}} \in \mathbb{R}^{+} ;\left(j=n_{k}+1, \cdots, p_{i_{k}}\right) ;(k=2, \cdots, r) ;(l=1, \cdots, k)$.
$\beta_{k j i_{k}}^{(l)}, B_{k j i_{k}} \in \mathbb{R}^{+} ;\left(j=m_{k}+1, \cdots, q_{i_{k}}\right) ;(k=2, \cdots, r) ;(l=1, \cdots, k)$.
$\delta_{j i(k)}^{(k)} \in \mathbb{R}^{+} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=m^{(k)}+1, \cdots, q_{i(k)}\right) ;(k=1, \cdots, r)$.
$\gamma_{j i^{(k)}}^{(k)} \in \mathbb{R}^{+} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=n^{(k)}+1, \cdots, p_{i(k)}\right) ;(k=1, \cdots, r)$.
5) $c_{j}^{(k)} \in \mathbb{C} ;\left(j=1, \cdots, n_{k}\right) ;(k=1, \cdots, r) ; d_{j}^{(k)} \in \mathbb{C} ;\left(j=1, \cdots, m_{k}\right) ;(k=1, \cdots, r)$.
$a_{k j i_{k}} \in \mathbb{C} ;\left(j=n_{k}+1, \cdots, p_{i_{k}}\right) ;(k=2, \cdots, r)$.
$b_{k j i_{k}} \in \mathbb{C} ;\left(j=m_{k}+1, \cdots, q_{i_{k}}\right) ;(k=2, \cdots, r)$.
$d_{j i(k)}^{(k)} \in \mathbb{C} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=m^{(k)}+1, \cdots, q_{i}(k)\right) ;(k=1, \cdots, r)$.
$\gamma_{j i^{(k)}}^{(k)} \in \mathbb{C} ;\left(i=1, \cdots, R^{(k)}\right) ;\left(j=n^{(k)}+1, \cdots, p_{i(k)}\right) ;(k=1, \cdots, r)$.

The contour L_{k} is in the $s_{k}(k=1, \cdots, r)$ - plane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ if is a real number with loop, if necessary to ensure that the poles of $\Gamma^{A_{2} j}\left(1-a_{2 j}+\sum_{k=1}^{2} \alpha_{2 j}^{(k)} s_{k}\right)\left(j=1, \cdots, n_{2}\right), \Gamma^{A_{3} j}\left(1-a_{3 j}+\sum_{k=1}^{3} \alpha_{3 j}^{(k)} s_{k}\right)$ $\left(j=1, \cdots, n_{3}\right), \cdots, \Gamma^{A_{r j}}\left(1-a_{r j}+\sum_{i=1}^{r} \alpha_{r j}^{(i)}\right)\left(j=1, \cdots, n_{r}\right), \Gamma_{j}^{C_{j}^{(k)}}\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)\left(j=1, \cdots, n^{(k)}\right)(k=1, \cdots, r)$ to the right of the contour L_{k} and the poles of $\Gamma^{D_{j}^{(k)}}\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)\left(j=1, \cdots, m^{(k)}\right)(k=1, \cdots, r)$ lie to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.1) can be obtained of the corresponding conditions for multivariable H -function given by as :
$\left|\arg \left(z_{k}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{m^{(k)}} D_{j}^{(k)} \delta_{j}^{(k)}+\sum_{j=1}^{n^{(k)}} C_{j}^{(k)} \gamma_{j}^{(k)}-\tau_{i^{(k)}}\left(\sum_{j=m^{(k)}+1}^{q_{i}^{(k)}} D_{j i^{(k)}}^{(k)} \delta_{j i^{(k)}}^{(k)}+\sum_{j=n^{(k)}+1}^{p_{i}^{(k)}} C_{j i^{(k)}}^{(k)} \gamma_{j i^{(k)}}^{(k)}\right) \\
& -\tau_{i_{2}}\left(\sum_{j=n_{2}+1}^{p_{i_{2}}} A_{2 j i_{2}} \alpha_{2 j i_{2}}^{(k)}+\sum_{j=1}^{q_{i_{2}}} B_{2 j i_{2}} \beta_{2 j i_{2}}^{(k)}\right)-\cdots-\tau_{i_{r}}\left(\sum_{j=n_{r}+1}^{p_{i_{r}}} A_{r j i_{r}} \alpha_{r j i_{r}}^{(k)}+\sum_{j=1}^{q_{i_{r}}} B_{r j i_{r}} \beta_{r j i_{r}}^{(k)}\right) \tag{1.4}
\end{align*}
$$

Following the lines of Braaksma ([2] p. 278), we may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$ where $i=1, \cdots, r:$
$\alpha_{i}=\min _{1 \leqslant j \leqslant m^{(i)}} \operatorname{Re}\left[D_{j}^{(i)}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)\right]$ and $\beta_{i}=\max _{1 \leqslant j \leqslant n^{(i)}} \operatorname{Re}\left[C_{j}^{(i)}\left(\frac{c_{j}^{(i)}-1}{\gamma_{j}^{(i)}}\right)\right]$

Remark 1.

If $n_{2}=\cdots=n_{r-1}=p_{i_{2}}=q_{i_{2}}=\cdots=p_{i_{r-1}}=q_{i_{r-1}}=0$ and $A_{2 j}=A_{2 j i_{2}}=B_{2 j i_{2}}=\cdots=A_{r j}=A_{r j i_{r}}=B_{r j i_{r}}=1$ $A_{r j}=A_{r j i_{r}}=B_{r j i_{r}}=1$, then the multivariable Gimel-function reduces in the multivariable Aleph- function defined by Ayant [1].

Remark 2.

If $n_{2}=\cdots=n_{r}=p_{i_{2}}=q_{i_{2}}=\cdots=p_{i_{r}}=q_{i_{r}}=0$ and $\tau_{i_{2}}=\cdots=\tau_{i_{r}}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=R_{2}=\cdots=R_{r}=R^{(1)}=$ $\cdots=R^{(r)}=1$, then the multivariable Gimel-function reduces in a multivariable I-function defined by Prathima et al. [4].

Remark 3.

If $A_{2 j}=A_{2 j i_{2}}=B_{2 j i_{2}}=\cdots=A_{r j}=A_{r j i_{r}}=B_{r j i_{r}}=1$ and $\tau_{i_{2}}=\cdots=\tau_{i_{r}}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=R_{2}=\cdots=R_{r}=R^{(1)}$ $=\cdots=R^{(r)}=1$, then the generalized multivariable Gimel-function reduces in multivariable I-function defined by Prasad [3].

Remark 4.

If the three above conditions are satisfied at the same time, then the generalized multivariable Gimel-function reduces in the multivariable H -function defined by Srivastava and Panda $[7,8]$.

In your investigation, we shall use the following notations.
$\mathbb{A}=\left[\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{(1)}, \alpha_{2 j}^{(2)} ; A_{2 j}\right)\right]_{1, n_{2}},\left[\tau_{i_{2}}\left(a_{2 j i_{2}} ; \alpha_{2 j i_{2}}^{(1)}, \alpha_{2 j i_{2}}^{(2)} ; A_{2 j i_{2}}\right)\right]_{n_{2}+1, p_{i_{2}}},\left[\left(a_{3 j} ; \alpha_{3 j}^{(1)}, \alpha_{3 j}^{(2)}, \alpha_{3 j}^{(3)} ; A_{3 j}\right)\right]_{1, n_{3}}$,
$\left[\tau_{i_{3}}\left(a_{3 j i_{3}} ; \alpha_{3 j i_{3}}^{(1)}, \alpha_{3 j i_{3}}^{(2)}, \alpha_{3 j i_{3}}^{(3)} ; A_{3 j i_{3}}\right)\right]_{n_{3}+1, p_{i_{3}}} ; \cdots ;\left[\left(\mathrm{a}_{(r-1) j} ; \alpha_{(r-1) j}^{(1)}, \cdots, \alpha_{(r-1) j}^{(r-1)} ; A_{(r-1) j}\right)_{1, n_{r-1}}\right]$,
$\left[\tau_{i_{r-1}}\left(a_{(r-1) j i_{r-1}} ; \alpha_{(r-1) j i_{r-1}}^{(1)}, \cdots, \alpha_{(r-1) j i_{r-1}}^{(r-1)} ; A_{(r-1) j i_{r-1}}\right)_{n_{r-1}+1, p_{i_{r-1}}}\right]$
$\mathbf{A}=\left[\left(\mathrm{a}_{r j} ; \alpha_{r j}^{(1)}, \cdots, \alpha_{r j}^{(r)} ; A_{r j}\right)_{1, n_{r}}\right],\left[\tau_{i_{r}}\left(a_{r j i_{r}} ; \alpha_{r j i_{r}}^{(1)}, \cdots, \alpha_{r j i_{r}}^{(r)} ; A_{r j i_{r}}\right)_{\mathfrak{n}+1, p_{i_{r}}}\right]$
$A=\left[\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, n^{(1)}}\right],\left[\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)}, \gamma_{j i^{(1)}}^{(1)} ; C_{j i^{(1)}}^{(1)}\right)_{n^{(1)}+1, p_{i}^{(1)}}\right] ; \cdots ;$
$\left[\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, n^{(r)}}\right],\left[\tau_{i(r)}\left(c_{j i^{(r)}}^{(r)}, \gamma_{j i^{(r)}}^{(r)} ; C_{j}^{(r)}\right)_{n^{(r)}+1, p_{i}^{(r)}}\right]$
$\mathbb{B}=\left[\tau_{i_{2}}\left(b_{2 j i_{2}} ; \beta_{2 j i_{2}}^{(1)}, \beta_{2 j i_{2}}^{(2)} ; B_{2 j i_{2}}\right)\right]_{1, q_{i_{2}}},\left[\tau_{i_{3}}\left(b_{3 j i_{3}} ; \beta_{3 j i_{3}}^{(1)}, \beta_{3 j i_{3}}^{(2)}, \beta_{3 j i_{3}}^{(3)} ; B_{3 j i_{3}}\right)\right]_{1, q_{i_{3}}} ; \cdots ;$
$\left[\tau_{i_{r-1}}\left(b_{(r-1) j i_{r-1}} ; \beta_{(r-1) j i_{r-1}}^{(1)}, \cdots, \beta_{(r-1) j i_{r-1}}^{(r-1)} ; B_{(r-1) j i_{r-1}}\right)_{1, q_{i_{r-1}}}\right]$
$\mathbf{B}=\left[\tau_{i_{r}}\left(b_{r j i_{r}} ; \beta_{r j i_{r}}^{(1)}, \cdots, \beta_{r j i_{r}}^{(r)} ; B_{r j i_{r}}\right)_{1, q_{i_{r}}}\right]$
$\mathrm{B}=\left[\left(\mathrm{d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, m^{(1)}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i^{(1)}}^{(1)} ; D_{j i^{(1)}}^{(1)}\right)_{m^{(1)}+1, q_{i}^{(1)}}\right] ; \cdots ;$
$\left[\left(\mathrm{d}_{j}^{(r)}, \delta_{j}^{(r)} ; D_{j}^{(r)}\right)_{1, m^{(r)}}\right],\left[\tau_{i^{(r)}}\left(d_{j i(r)}^{(r)}, \delta_{j i(r)}^{(r)} ; D_{j}^{(r)}\right)_{m^{(r)}+1, q_{i}^{(r)}}\right]$
$U=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{r-1} ; V=m^{(1)}, n^{(1)} ; m^{(2)}, n^{(2)} ; \cdots ; m^{(r)}, n^{(r)}$
$X=p_{i_{2}}, q_{i_{2}}, \tau_{i_{2}} ; R_{2} ; \cdots ; p_{i_{r-1}}, q_{i_{r-1}}, \tau_{i_{r-1}}: R_{r-1} ; Y=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)} ; \cdots ; p_{i^{(r)}}, q_{i^{(r)}} ; \tau_{i^{(r)}} ; R^{(r)}$
Srivastava ([6], p. 1, Eq. (1)) have introduced the general class of polynomials :
$S_{N}^{M}(x)=\sum_{K=0}^{[N / M]} \frac{(-N)_{M K}}{K!} A_{N, K} x^{K}$
where M is an arbitrary positive integer and the coeficients $A_{N, K}$ are arbitrary constants real or complex. On specializing these coefficients $A_{N, K}, S_{N}^{M}[$.$] yields a number of known polynomials as special cases. These include,$ among others, Hermite polynomials, Jacobi polynomials, Laguerre polynomials, bessel polynomials and several others([10], p. 158-161).

We shall note
$a_{N K}=\frac{(-N)_{M K}}{K!} A_{N, K}$
2. Main formula.

Theorem.

If ${ }_{2} F_{1}(a, b ; c ; z){ }_{2} F_{1}(a, b ; c d z)=\sum_{l=0}^{\infty} C_{l} z^{l}$
then
$\int_{0}^{1}{ }_{4} F_{3}\left[\begin{array}{c|c}\mathrm{a}, \mathrm{b}, \frac{c+d}{2}, \frac{c+b-1}{2} & 4 \mathrm{z}(1-\mathrm{z}) \\ \mathrm{a}+\mathrm{b}, \mathrm{c}, \mathrm{d}\end{array} \left\lvert\, S_{N}^{M}\left(z^{h}\right) \beth\left(a_{1} z^{h_{1}}, \cdots, a_{r} z^{h_{r}}\right) \mathrm{d} z=\sum_{l=0}^{\infty} \sum_{K=0}^{[N / M]} a_{N K} \frac{(c+d-1)_{l} C_{l}}{(a+b)_{l}}\right.\right.$

$$
\mathcal{I}_{X ; p_{i_{r}}+1, q_{i_{r}}+1, \tau_{i_{r}}: R_{r}: Y}^{U ; 0, n_{r}+1: V}\left(\begin{array}{c|c}
\mathrm{a}_{1} & \mathbb{A} ;\left(-\mathrm{l}-\mathrm{Kh} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right), \mathbf{A}: A \tag{2.2}\\
\cdot & \cdot \\
\cdot & \mathbb{B} ; \mathbf{B},\left(-\mathrm{l}-\mathrm{Kh}-1 ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right): B \\
\mathrm{a}_{r} & \mathbb{B}
\end{array}\right)
$$

provided
$h, h_{i}>0(i=1, \cdots, r), \quad 1+\sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \operatorname{Re}\left(D_{j}^{(i)} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)>0$
$\left|\arg \left(a_{i} z^{h_{i}}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi$ where $A_{i}^{(k)}$ is defined by (1.4) and the series on the right-hand side of (2.2) is absolutely convergent.

Proof
To prove the above theorem, we use the following formula due to Slater ([5], p. 79, Eq. (2.5.27))
${ }_{4} F_{3}\left[\begin{array}{c|c}\mathrm{a}, \mathrm{b}, \frac{c+d}{2}, \frac{c+b-1}{2} & 4 \mathrm{z}(1-\mathrm{z}) \\ \mathrm{a}+\mathrm{b}, \mathrm{c}, \mathrm{d}\end{array}\right]=\sum_{l=0}^{\infty} \frac{(c+d-1)_{l}}{(a+b)_{l}} C_{l} z^{l}$
where C_{l} is given by (2.1). Multiplying the both-sides of (2.3) by $S_{N}^{M}\left(z^{h}\right) \beth\left(a_{1} z^{h_{1}}, \cdots, a_{r} z^{h_{r}}\right)$ and integrating with respect to z between 0 to 1 , we get
$\int_{0}^{1}{ }_{4} F_{3}\left[\begin{array}{c|c}\mathrm{a}, \mathrm{b}, \frac{c+d}{2}, \frac{c+b-1}{2} & 4 \mathrm{z}(1-\mathrm{z}) \\ \mathrm{a}+\mathrm{b}, \mathrm{c}, \mathrm{d}\end{array}\right] S_{N}^{M}\left(z^{h}\right) \beth\left(a_{1} z^{h_{1}}, \cdots, a_{r} z^{h_{r}}\right) \mathrm{d} z=\sum_{l=0}^{\infty} \frac{(c+d-1)_{l}}{(a+b)_{l}} C_{l} z^{l}$
$\int_{0}^{1} z^{l} S_{N}^{M}\left(z^{h}\right) \beth\left(a_{1} z^{h_{1}}, \cdots, a_{r} z^{h_{r}}\right) \mathrm{d} z$
Substituting the expression of the multivariable Gimel-function in terms of Mellin-Barnes multiple integrals contour with the help of (1.1) and $S_{N}^{M}\left[z^{h}\right]$ with the help of (1.13), interchanging the order of integrations and summation (which is permissible under the conditions mentioned in (2.2)), now, evaluating the inner z-integral and interpreting the Mellin-Barnes multiple integrals contour in terms of the multivariable Gimel-function, we get the desired result (2.2).

3. Particular cases.

Taking $b=c=d$ in the theorem, we get the following interesting integral :
Corollary 1.

$$
\begin{align*}
& \int_{0}^{1}{ }_{2} F_{1}\left[\left.\begin{array}{c|c}
\mathrm{a}, \mathrm{c}-\frac{1}{2}, \\
\mathrm{a}+\mathrm{c}
\end{array} \right\rvert\, 4 \mathrm{z}(1-\mathrm{z})\right] S_{N}^{M}\left(z^{h}\right) \beth\left(a_{1} z^{h_{1}}, \cdots, a_{r} z^{h_{r}}\right) \mathrm{d} z=\sum_{l=0}^{\infty} \sum_{K=0}^{[N / M]} a_{N K} \frac{(2 c-1)_{l}(2 a)_{l}}{(a+c)_{l} l!} \\
& \mathcal{I}_{X ; p_{i_{r}}+1, q_{i_{r}}+1, \tau_{i_{r}}: R_{r}: Y}^{U ;, n_{r}+1: V}\left(\begin{array}{c|c}
\mathrm{a}_{1} & \mathbb{A} ;\left(-1-\mathrm{Kh} ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right), \mathbf{A}: A \\
\cdot & \cdot \\
\cdot & \mathbb{B} ; \mathbf{B},\left(-\mathrm{l}-\mathrm{Kh}-1 ; \mathrm{h}_{1}, \cdots, h_{r} ; 1\right): B \\
\mathrm{a}_{r} & \mathbb{B}, \cdots
\end{array}\right) \tag{3.1}
\end{align*}
$$

under the same existence conditions mentioned in (2.2).
Taking $a=-e$ in the above corollary, it reduces to the interesting integral

Corollary 2.

$$
\left.\left.\left.\begin{array}{l}
\int_{0}^{1}{ }_{2} F_{1}\left[\left.\begin{array}{c}
-\mathrm{e}, \mathrm{c}-\frac{1}{2}, \\
\mathrm{c}-\mathrm{e}
\end{array} \right\rvert\, 4 \mathrm{z}(1-\mathrm{z})\right]
\end{array}\right] S_{N}^{M}\left(z^{h}\right)\right]\left(a_{1} z^{h_{1}}, \cdots, a_{r} z^{h_{r}}\right) \mathrm{d} z=\sum_{l=0}^{2 e} \sum_{K=0}^{[N / M]} a_{N K} \frac{(2 c-1)_{l}(-2 e)_{l}}{(c-e)_{l} l!}\right)
$$

under the same existence conditions mentioned in (2.2).

4. Conclusion.

The main integral (2.2) established here are unified and act as key formulae. Thus the multivariable Gimel-function occurring in these integrals can be suitably specialized to a remarkably wide variety of special functions (or product of several such special functions) which are expressible in terms of E, F, G, H, I, Aleph-functions of one or more variables. Again the class of polynomials involved in the integral (2.2) reduces to a large number of polynomials listed by Srivastava and Singh ([9], p.158-161), therefore, from the integral (2.2) we can further obtain various integrals involving a number of simpler polynomials.

REFERENCES.

[1] F. Ayant, An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT), 31(3) (2016), 142-154.
[2] B.L.J. Braaksma, Asymptotics expansions and analytic continuations for a class of Barnes-integrals, Compositio Math. 15 (1962-1964), 239-341.
[3] Y.N. Prasad, Multivariable I-function , Vijnana Parishad Anusandhan Patrika 29 (1986) , 231-237.
[4] J. Prathima, V. Nambisan and S.K. Kurumujji, A Study of I-function of Several Complex Variables, International Journal of Engineering Mathematics Vol (2014), 1-12.
[5] L.J. Slater, Generalized hypergeometric function, Cambridge University press, Cambridge, 1966.
[6] H.M. Srivastava, A contour integral involving Fox's H-function, Indian. J. Math. 14(1972), 1-6.
[7] H.M. Srivastava and R. Panda, Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24 (1975),119-137.
[8] H.M. Srivastava and R.Panda, Some expansion theorems and generating relations for the H -function of several complex variables II. Comment. Math. Univ. St. Paul. 25 (1976), 167-197.
[9] H.M. Srivastava and N.P. Singh, The integration of certains products of the multivariable H-function with a general class of polynomials, Rend. CirC. Mat. Palermo. 32(2)(1983), 157-187.

