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Abstract :- Three numerical method have been used to solve the one dimensional one way wave  equation and 

second-order linear wave equation  with constant coefficients. We discuss finite difference method for 

hyperbolic PDE. we consider the lax-wendroff scheme, the leapfrog scheme, upwind scheme finite difference 

scheme. We solve a one dimensional numerical experiment  with specified initial and boundary condition, for 

which the exact solution is known using all these three schemes using some different values for the space and 

time step sizes denoted by h and k, respectively. 
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1.INTRODUCTION 

 

      A partial difference equation is an equation which contains its partial derivatives involving two or more 

independent variables. There are a large number of examples of partial differential equation in mathematical 

modeling, such as lax-wendroff scheme, leapfrog scheme, in second order wave equation, upwind scheme in 

one way wave equation.A differential equation involving more than one independent variable and its partial 

derivatives with respect to those variables is called a partial differential equation (PDE). 

 

     This equation implies that the function u(x, y) is independent of x. hence the general solution of this equation 

is u(x, y) =f(y), where f is an arbitrary function of y. the analogous ordinary differential equation is  

   Is   general solution u(x) =c, where c is a constant. This example illustrates that general solutions of ODEs   

involve arbitrary constants, whereas solutions of PDEs involve arbitrary functions. 

In general, one can classify PDEs with respect to different criterion,e.g.: 

Order, dimension, linearity, initial /boundary value problem, etc. 

       By order of PDE we will understand the order of the highest derivative that occurs. A PDE is said to be 

linear if it is linear in unknown functions and their derivatives, with coefficients depending on the independent 

variables. The independent variables typically include one or more space dimensions and sometimes time 

dimension as well. 

 Consider the One way wave equation 

                                + a =0,       0< x < 1,                                                                (1.1) 

                                                                      u(x ,0) = (x) ,        IC, 

                                                  u(0,t) = (t)    if a 0     or   u(1,t)= (t)     if a  0. 

 

 

 

Here  (t) and  (t) are prescribed boundary conditions from the left and right, respectively. 

Second order linear wave equation 

                                =  a  ,           0< x < 1 
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                                                               u(x ,0) = (x) ,       (x,0)= (x) ,        IC,                                 (1.2) 

                                                                u(0,t) = (t) ,     u(1,t)= (t)  ,                 BC. 

 in order to numerically approximating the solution of (1.1) and (1.2), we first discretize the x-t plane: set 

h= (mesh width) and k= (time step). This generates a lattice in the x-t plane, i.e., equally spaced mesh point 

( , ) where  =jh, j=…,-1,0,1,…, and =nk, n=0,1,… with these notations, we have, = 

=(j+1/2)h. we denote the pointwise value of the exact solution to (1.1) and (1.2) at the grid points, 

( , ), as , and by   we denote an approximation of  . 

       

             We introduced the first and second order wave equation, method of characteristics, D’alembert solution 

and separation of variables and exact solution of the wave equation. We discussed about our numerical 

experiments and results. 

 

2. PROBLEMS  FORMULATION 

 

     First order wave equation 

                  The first order wave equation is (c>0) 

                 +c     =0                                                                                                            (1.3) 

                                    u(x,0) = (x). 

wave equation in one  dimensional  

             one dimensional wave equation is  

                =                                                                                                                 (1.4) 

Initial condition: 

                          u(x,0) = (x)   and        (x,0)= (x)  

formally ,we can write Laplace equation as: 

 (x,t) - (x,t) =( +c ) ( -c ) u(x,t). 

D’ALEMBERT’S SOLUTION 

u(x,t)=                                              (1.5) 

 

                      

3.UPWIND SCHEME 

 

                 we will start making use of the finite difference techniques to derive a discrete representation of 

equation (1.1) by first considering the derivative in the time. Taylor expanding the solution around ( , ) we 

obtain 

                u( , + ) = u( , ) +     ( , ) ,                                      (1.6) 

 

 

 

or, equivalently, 

                                                                                                    (1.7) 

Isolating the time derivative and dividing by    we obtain  

  = +                                                                           (1.8) 

Adopting a standard convenction, we will  consider the finite difference respresentation of an m-th order 

differential operator /  in the generic x-direction (where x could either be a time or a spatial coordinate) 

to be of order p if and only if  

                                     /  =  (u) + .                                                   (1.9) 

In way similar, the approximation (  1.8) for the time derivative ,we can derive a first order, finite difference 

approximation to the space derivative as 

                                                = + .                                              (2.0) 

While formally similar , the approximation (2.0) suffers of the ambiguity, not present in expression(1.8), that the 

first order term in the taylor expansion can be equally expressed in terms of    and  
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    = +                                                 

This ambiguity is the consequenece of the first order approximation which prevents a proper “centring” of the 

finite difference stencil. However, and as long as we are concerned with an advection equation, this ambiguity is 

easily solved if we think that te differential equation will simply translate each point in the initial solution to the 

new position x+ v  over a time interval  in this case, it is natural to select the points  in  the solution at  the  

time level n that are “upwind” of the solution at the position j and at the time level n+1, as these are the ones 

causally connected with   

Depending then on the direction in which the solution is translate , and hence on the value of the one way wave 

equation velocity v, two different finite difference representations can be given of equation (1.3) and these are 

                             = -v   +ο ( ,       if v > 0,  

                          = -v +ο ( ,               if v < 0, 

Respectively. As a result, the final finite difference algorithms for determing the solution at the new time level 

will have the form  

              - ( - + o (                    if v > 0,       (2.1) 

            - ( - + o (                     if v < 0.          (2.2)               

          

4. LAX WENDROFF SCHEME 

 

      The lax Wendorff scheme is the second order accurate extension of the lax Fredrich’s scheme. As for the 

case of the leapfrog scheme, in this case too we need two-time levels to obtain the solution at the new time level. 

       There are a number of different ways of deriving the lax Wendorff scheme but it is probably useful to look 

at is as to a combination of the lax Fredrich’s scheme and of the leapfrog scheme.   

Given the initial condition u(x,0)=f(x) and 9x,0)=g(x) for the wave equation show how to obtain starting 

values  and  for the difference methods . 

       The guiding principle here is that the starting values should represent the initial data with an error no worse 

then the local truncation error of the difference method, which in the present case is o( + ). Obviously, then, 

we take  =f( ), as this incurs error zero. 

To decide on  , let us suppose that f is in   and that holds at t=0. Then Taylor’s theorem gives 

                    u(  =u( ,0) + k ( ,0) +  ( ,0) + o( ) 

                                    =u( ,0) + kg ( ) +  f″(  + o( ) 

                                    =   u( ,0) + kg ( ) +   +o( + ) 

Where, in the last step, f″(  has been approximated through a second difference, according to the relation 

                          g ( )=  -   

 is satisfied by the exact solution u to within o( + ).  results in an error of higher order than o( + ). 

 

Lax wendroff scheme 

 =  +   

 

5. LEAPFROG SCHEME 

 

     Both the forward time centred space and lax Fredrich are “one level” schemes with First order approximation 

for the time derivative and a second order approximation for the spatial derivative. In those circumstances y  

should be taken significantly smaller than  (to achieve the desired accuracy), well below the limit imposed by 

the courant condition. 

Second order accuracy in time can be obtained if we insert  

⃒j = + o (  

In the forward time centred space, to find the leapfrog scheme 

 =  - ( ) + o ( . 
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 The leapfrog scheme for  =   is obtained by approximating both derivatives with a centred approximation,            

 =  –  ( ). 

                              

6.NUMERICAL EXAMPLES 

 

In this section we consider two numerical examples to prove which numerical method converge faster to 

analytical solution. Numerical result and error are the outcomes are represented by graphically. 

 

Example-1 

                   Approximated the solution to the hyperbolic problem 

                                                            - 4   =0,                  0 < x <1,               0 <  t, 

With boundary condition                   u(0,t) = u(1,t) =0,              for 0 < t, 

and initial conditions                  u (x,0) = sin ( ),         0 ,    and (x,0) = 0,    0 , 

using h=0.1 and k=0.01.compare the results with the exact solution u(x ,t) = sin cos4 . 

The approximate results and maximum errors are obtained and shown in tables-1(a,b) and the graphs of the 

numerical solutions are displayed in figures:1(a,b) 

 

Tale -1 (a) 

      compare the results with the exact solution u(x ,t) = sin cos4 . The values for each x value  lax 

wendroff method, upwind method, leapfrog method.(t=1.0) 

 

 

Table-1(b)  

Shows  the errors of lax wendroff method, upwind method, leapfrog method with exact method. These error 

values for each x are in the methods. 

x-value Lax wendroff method Upwind method Leapfrog method 

0.1 4.49E-03 7.27E-02 9.23E-01 

0.2 7.27E-03 0 2.78E-02 

0.3 7.27E-03 7.27E-02 1.73E-01 

0.4 4.49E-03 1.18E-01 1.30E+00 

0.5 0 1.18E-01 2.35E-01 

0.6 4.49E-03 7.27E-02 9.23E-01 

0.7 7.27E-03 0 2.78E-02 

0.8 7.27E-03 7.27E-02 1.73E-01 

0.9 4.49E-03 1.18E-01 1.30E+00 

1.0 1.18E-02 0 1.18E-01 

 

 

Exact table 

 

X value Exact Laxwendroff 

method 

Upwind method Leapfrog method 

0.1 0.587785 0.583295 0.515131 1.511090 

0.2 0.951057 0.943791 0.951057 0.978808 

0.3 0.951057 0.943791 1.023711 1.124116 

0.4 0.587785 0.583295 0.705342 1.891513 

0.5 0 0 0.117557 0.235114 

0.6 -0.587785 -0.583295 -0.515131 -1.511090 

0.7 -0.951057 -0.943791 -0.951057 -0.978808 

0.8 -0.951057 -0.943791 -1.023711 -1.124116 

0.9 -0.587785 -0.583295 -0.705342 -1.891513 

1.0 0 -0.011755 0 -0.117557 
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Error table 

 
Example-2 

                   Approximated the solution to the hyperbolic problem 

                                                      -   =0,                  0 < x <1,               0 <  t, 

With boundary condition                  u(0,t) = u(1,t) =0,              for 0 < t, 

and initial conditions                       u (x,0) = sin ( ),         0 ,    and (x,0) = 0,    0 , 

using h=0.1 and k=0.01.compare the results with the exact solution u(x ,t) = sin cos2 . 

The approximate results and maximum errors are obtained and shown in tables-1(a,b) and the graphs of the 

numerical solutions are displayed in figures:2(a,b) 

 

 

 

 

 

Table-1(a) 

        compare the results with the exact solution u(x ,t) = sin cos2 . The values for each x value  lax 

wendroff method, upwind method, leapfrog method  

(t=1.0) 
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x-value Exact Lax wendroff 

method 

Upwind method Leapfrog method 

0.1 0.5877852 0.5866627 0.5514581 1.6061960 

0.2 0.9510565 0.9492402 0.9510565 1.0151351 

0.3 0.9510565 0.9492402 0.9873836 1.0877894 

0.4 0.5877852 0.5866627 0.6465638 1.7964073 

0.5 0 0 0.0587785 0.1175571 

0.6 -0.5877852 -0.5866627 -0.5514581 -1.6061960 

0.7 -0.9510565 -0.9492402 -0.9510565 -1.0151351 

0.8 -0.9510565 -0.9492402 -0.9873836 -1.0877894 

0.9 -0.5877852 -0.5866627 -0.6465638 -1.7964073 

1.0 0 -0.0029389 0 -0.0587853 

 

Table-1(b) 

   Shows  the errors of lax wendroff method, upwind method, leapfrog method with exact method. These error 

values for each x are in the methods. 

x-value Lax wendroff method Upwind method Leapfrog method 

0.1 1.12E-03 3.63E-02 1.02E+00 

0.2 1.82E-03 0 6.41E-02 

0.3 1.82E-03 3.63E-02 1.37E-01 

0.4 1.12E-03 5.88E-02 1.21E+00 

0.5 0 5.88E-02 1.18E-01 

0.6 1.12E-03 3.63E-02 1.02E+00 

0.7 1.82E-03 0 6.41E-02 

0.8 1.82E-03 3.63E-02 1.37E-01 

0.9 1.12E-03 5.88E-02 1.21E+00 

1.0 2.94E-03 0 5.88E-02 

 

 

 

 

Exact table 

 
 

 

Error table 
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CONCLUSION 

            In this paper, three numerical methods  have been used to solve a one dimensional one way wave 

equation  and second order wave equation with specified initial and boundary conditions. When the one 

dimensional linear one way  wave equation  and second order wave equation is approximated by a numerical 

method, lax wendroff method, upwind method, leapfrog method for solving partial differential equation. The 

numerical test problems have shown that the numerical solution obtained by lax wendroff method are good 

agreement with exact solution. And errors are also calculated to further strengthen.In comparison test, the lax 

wendroff method has a better solution with specified  initial and boundary condition problems comparing 

against upwind method & leapfrog method.  
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