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Abstract—In this article, two partial differential equations (PDEs), namely Hunter-Saxton equation and Fisher 

equation, which are non-linear in nature and arise in different physical situations are adopted and their 

solutions compared by the differential transform method (DTM) and homotopy analysis method (HAM). The 

comparative analysis outlines the significant features and effectiveness of these methods to the nonlinear PDEs, 

as it is possible to find the closed form like approximate solutions with high degree of accuracy when compared 

to the exact solutions. Also, for the problems under consideration it has been observed that the HAM results 

better as compared to DTM. Beside both the methods discussed, can be extended to solve a class of problems 

arising in different practical situations. 
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I. INTRODUCTION 

The Hunter-Saxton equation was first introduced [1] as a model of the dynamics of a nematic liquid crystal. 

Liquid crystals consist of long rigid molecules in fluid phase and each molecule has an orientation [2], which is 

described in terms of the field of unit vectors  cos 𝑢 𝑥, 𝑡  , sin 𝑢 𝑥, 𝑡    [3], where 𝑥is considered as space 

variable in a reference frame moving with an unperturbed wave speed and 𝑡is the time variable. The Hunter-

Saxton equation also describes many other different physical situations as the high frequency limit of the 

Camassa-Holm equation [4], an integrable model equation for shallow water waves [5]. It also arises in the 

physical context for describing the geodesic flow on the diffeomorphism group of the circle (see [4, 6]), pseudo-

spherical surfaces (see [7, 8]). It also possesses a completely integrable bi-Hamiltonian structure (see [9, 3]). 

The equation of the form (15) was first introduced [10] as a model for the propagation of a mutant gene [11]. 

Later a wide range of applications of Fisher equation has been found out in the fields of logistic population 

growth (see e.g., [11]), flame propagation [12], branching Brownian processes [13], neurophysiology [14], 

autocatalytic chemical reactions [13] and also in nuclear reactor theory [15]. In past few years, significant 

studies are made to find out numerical solutions for both of the Hunter-Saxton equation [16] and Fisher equation 

[17]. 

In the present study, a comparative analysis of solution methods namely DTM along with a wave 

transformation and HAM is being introduced to solve equations (1) and (15) subject to the initial conditions (2) 

and (16) respectively. 

II. APPLICATION OF THE METHODS 

This section consists of the solutions of the problems under consideration by applying the DTM and the 

HAM. 

A. The Hunter-Saxton Equation 

𝑢𝑥𝑥𝑡 + 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥 = 0         (1) 

With initial condition 

𝑢 𝑥, 0 =  𝑥 + 1 
2

3 + 𝑐          (2) 

Where the solution in exact form is given as 

𝑢 𝑥, 𝑡 = (𝑥 − 𝑐𝑡 + 1)
2

3 + 𝑐         (3) 

1) The DTM Solution:Now using the wave variable   𝜂 = 𝑥 − 𝑐𝑡 and considering  𝑢 𝑥, 𝑡 = 𝑣 𝜂 , the 

equation (1) with a bit manipulation is converted to the ODE as, 
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−𝑐𝑣 ′′  𝜂 +
1

2
 𝑣 ′ 𝜂  

2
+ 𝑣 𝜂 𝑣 ′′  𝜂 = 0        (4) 

With the initial condition 

𝑣 0 = 𝑐 + 1           (5) 

We apply differential transform to equation (4) and the following [18], we get a recursive expression as: 

𝑉 𝑚 + 2 =
1

𝑐(𝑚+1)(𝑚+2)
   𝑙 + 1  𝑙 + 2 𝑉 𝑚 − 𝑙 +

1

2

𝑚
𝑙=0   𝑙 + 1  𝑚 − 𝑙 + 1 𝑉 𝑙 + 1 𝑉 𝑚 − 𝑙 + 1 𝑚

𝑙=0  

            (6) 

Where 𝑉 𝑚 is the transformed function of 𝑣 𝜂 under DTM. Also eq. (5) is transformed into: 

𝑉 0 = 𝑣 0 = 𝑐 + 1;  𝑉 1 = 𝑣 ′ 0 = 𝛼 (Say)       (7) 

Where 𝛼 ∈ ℝ is a constant. 

Now we derive the expressions for 𝑉 𝑚  for successive values of 𝑚 = 0,1, … ,12 with the help of recursive 

relation (6) and equations in (7). On using these expressions of 𝑉 𝑚  and by setting the range of 𝑥 as −1 ≤ 𝑥 ≤
1,  with initial condition (2), the solution (approximate) of the Eq. (1) is finally computed in closed form like 

expression as: 

𝑢𝑎𝑝𝑝𝑟𝑥  𝑥, 𝑡 =

1 + 𝑐 + 0.66875 𝑥 − 𝑐𝑡 − 0.11180664062499998 𝑥 − 𝑐𝑡 2 + 0.04984712727864582 𝑥 − 𝑐𝑡 3 −
0.2916835807164509 𝑥 − 𝑐𝑡 4 + 0.01950633946041265 𝑥 − 𝑐𝑡 5 − 0.014131936556996873 𝑥 −
𝑐𝑡 6 + 0.010800837225704752 𝑥 − 𝑐𝑡 7 − 0.008577383624944437 𝑥 − 𝑐𝑡 8 +
0.007010819810110833 𝑥 − 𝑐𝑡 9 − 0.005818329709553986 𝑥 − 𝑐𝑡 10 + 0.004761991394440524 𝑥 −
𝑐𝑡 11 − 0.0041661302122412616 𝑥 − 𝑐𝑡 12 .    (8) 

2) The Ham Solution:To start with the initial approximation is chosen as 𝑢0 𝑥, 𝑡 =  1 + 𝑥 
2

3 + 𝑐 and 

define the non-linear operator as: 

𝑁 ∅ 𝑥, 𝑡; 𝜚  =
𝜕3∅ 𝑥,𝑡;𝜚 

𝜕𝑥2𝜕𝑡
+ 2

𝜕∅ 𝑥,𝑡;𝜚 

𝜕𝑥

𝜕2∅ 𝑥,𝑡;𝜚 

𝜕𝑥2 + ∅ 𝑥, 𝑡; 𝜚 
𝜕3∅ 𝑥,𝑡;𝜚 

𝜕𝑥3      (9) 

Also the linear operator 

𝐿 ∅ 𝑥, 𝑡; 𝜚  =
𝜕∅ 𝑥,𝑡;𝜚 

𝜕𝑡
          (10) 

Satisfying the property: 𝐿 𝑎1 𝑥  = 0        (11) 

Where 𝑎 𝑥  is the constant of integration, so that 𝐿−1 =   .  𝑑𝑡
𝑡

0
 

Considering, ℜ𝑘(𝑢𝑘−1)            =
𝜕3𝑢𝑘−1(𝑥,𝑡)

𝜕𝑥2𝜕𝑡
+ 2

𝜕𝑢𝑘−1(𝑥,𝑡)

𝜕𝑥

𝜕2𝑢𝑘−1(𝑥,𝑡)

𝜕𝑥2 + 𝑢𝑘−1(𝑥, 𝑡)
𝜕3𝑢𝑘−1(𝑥,𝑡)

𝜕𝑥3    (12) 

The solution of the 𝑘𝑡ℎ-order deformation equation, for 𝑘 ≥ 1 is written as: 

𝑢𝑘 𝑥, 𝑡 = 𝜒𝑘𝑢𝑘−1 𝑥, 𝑡 + ℏ𝐿−1[𝐻 𝑥, 𝑡 ℜ𝑘(𝑢𝑘−1)            ]       (13) 

Since 𝑘 ≥ 1 and𝜒𝑘 = 1, we setℏ = −1, 𝐻 𝑥, 𝑡 = 1 and the terms 𝑢1 𝑥, 𝑡 , 𝑢2 𝑥, 𝑡 , 𝑢3 𝑥, 𝑡 , … can be obtained 

successively. 

Finally the closed form like solution can be expressed as: 𝑢 𝑥, 𝑡 = 𝑢0 𝑥, 𝑡 +  𝑢𝑘(𝑥, 𝑡)∞
𝑘=1   (14) 

B. The Fisher Equation 

𝑢𝑡 = 𝑢𝑥𝑥 + 6𝑢 1 − 𝑢           (15) 

With initial condition 

𝑢 𝑥, 0 =
1

 1+𝑒𝑥  2           (16) 

Where the solution in exact form is given as 

𝑢 𝑥, 0 =
1

 1+𝑒𝑥−5𝑡 2          (17) 

1) The DTM Solution:Using the wave variable 𝜂 = 𝑥 − 𝑐𝑡 and letting 𝑢 𝑥, 𝑡 = 𝑣 𝜂 , the Eq. (15) is 

converted to the following ODE 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 56 Issue 4- April 2018 

 

ISSN: 2231-5373                     http://www.ijmttjournal.org                             Page 238 

𝑣 ′′  𝜂 + 𝑐𝑣 ′ 𝜂 + 6𝑣 𝜂 − 6𝑣2 𝜂 = 0        (18) 

With the initial condition 

𝑣 0 =
1

4
           (19) 

Now we apply differential transform to Eq. (18) and (19), and following [18], we get the recursive relation as: 

𝑉 𝑚 + 2 =
6

 𝑚+1 (𝑚+2)
  𝑉 𝑙 𝑉 𝑚 − 𝑙 𝑚

𝑙=0 − 𝑉 𝑚  −
𝑐

 𝑚+2 
𝑉 𝑚 + 1     (20) 

Also using the initial condition (19)  

𝑉 0 = 𝑣 0 =
1

4
;  𝑉 1 = 𝑣 ′ 0 = 𝛽 (Say)        (21) 

Where 𝛽 ∈ ℝ is a constant. 

Now we successively derive the expressions for 𝑉 𝑚  for values of 𝑚 = 0,1, … ,8 with the help of recursive Eq. 

(20) and Eq. in (21). On considering the expressions of  𝑉 𝑚 , and setting the range of 𝑥  as −1 ≤ 𝑥 ≤ 1,  in 

view of the initial condition (16), the solution (approximate) of the Eq. (15) is finally given by the following 

closed form like solution as: 

𝑢𝑎𝑝𝑝𝑟𝑥  𝑥, 𝑡 =

0.25 − 0.2341778830122118 𝑥 − 5.26002 𝑡 + 0.05338806650000005 𝑥 − 5.26002 𝑡 2 +
0.023481829317394842 𝑥 − 5.26002 𝑡 3 − 0.030515813695268568 𝑥 − 5.26002 𝑡 4 +
0.0124305513636502033 𝑥 − 5.26002 𝑡 5 − 0.010846367727691264 𝑥 − 5.26002 𝑡 6 +
0.008745017590762794 𝑥 − 5.26002 𝑡 7 − 0.00017590920303017787 𝑥 − 5.26002 𝑡 8  (22) 

2) The Ham Solution:To start with the initial approximation is chosen as 𝑢0 𝑥, 𝑡 =
1

 1+𝑒𝑥  2 and define 

the non-linear operator as: 

𝑁 ∅ 𝑥, 𝑡; 𝜚  =
𝜕3∅ 𝑥,𝑡;𝜚 

𝜕𝑥2𝜕𝑡
+ 2

𝜕∅ 𝑥,𝑡;𝜚 

𝜕𝑥

𝜕2∅ 𝑥,𝑡;𝜚 

𝜕𝑥2 + ∅ 𝑥, 𝑡; 𝜚 
𝜕3∅ 𝑥,𝑡;𝜚 

𝜕𝑥3      (23) 

Also the linear operator: 𝐿 ∅ 𝑥, 𝑡; 𝜚  =
𝜕∅ 𝑥,𝑡;𝜚 

𝜕𝑡
       (24) 

Satisfying the property: 𝐿 𝑎2 𝑥  = 0        (25) 

Where 𝑎2 𝑥  is the constant of integration, so that 𝐿−1 =   .  𝑑𝑡
𝑡

0
 

Considering, ℜ𝑘(𝑢𝑘−1)            =
𝜕3𝑢𝑘−1(𝑥,𝑡)

𝜕𝑥2𝜕𝑡
+ 2

𝜕𝑢𝑘−1(𝑥,𝑡)

𝜕𝑥

𝜕2𝑢𝑘−1(𝑥,𝑡)

𝜕𝑥2 + 𝑢𝑘−1(𝑥, 𝑡)
𝜕3𝑢𝑘−1(𝑥,𝑡)

𝜕𝑥3    (26) 

The solution of the 𝑘𝑡ℎ-order deformation equation, for 𝑘 ≥ 1 is written as per equation (13). 

Since 𝐾 ≥ 1 and𝜒𝐾 = 1, we setℏ = −1, 𝐻 𝑥, 𝑡 = 1 and the terms 𝑢1 𝑥, 𝑡 , 𝑢2 𝑥, 𝑡 , 𝑢3 𝑥, 𝑡 , …can be obtained 

successively. 

Finally the closed form like solution is expressed in the form of Eq. (14). 

III. DISCUSSION OF THE RESULTS 

In this study, a comparative analysis is done for solution of two nonlinear time dependent PDEs namely 

Hunter-Saxton equation and Fisher equation by means of Differential transform method and Homotopy analysis 

method. In the procedure of DTM, the wave transformations are injected on the PDEs, to convert them into 

ODEs. Where as in HAM, the auxiliary parameter and the auxiliary function are taken as -1 and 1 respectively, 

which are well justified to the problems under consideration. To justify the accuracy of both the methods, 

numerical simulations has been made in terms of six figures and a table for each problem. 
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Fig. 1 Comparison graphs for DTM, HAM and Exact solutions of Eq. (1) for 0.5 ≤ x ≤ 1.5 and t = 0.1 

 
In Fig. 1, a plot of the solutions of Eq. (1) is depicted to compare the solutions obtained by DTM and HAM to 

that of the exact analytical method, for 𝑥 ∈ [0.5,1.5] and 𝑡 = 0.1. It has been observed that as time advances, the 

slope of the trajectories provided by HAM and the exact solutions maintain nearly a constant proportionality, 

whereas the slope of the trajectory of DTM solution shows a declination in nature for the range of values of 

𝑥 = 1.3 onwards and the extant of agreement with the exact solution gradually ceases. 

 

 

Fig. 2 Exact solution surface of Eq. (1) for 0.5 ≤ x ≤ 1.5 and 0.001 ≤ t ≤ 0.1 

 

 
Fig. 3 Solution surface obtained by DTM of Eq. (1) for 0.5 ≤ x ≤ 1.5 and 0.001 ≤ t ≤ 0.1 
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Fig. 4 Solution surface obtained by HAM of Eq. (1) for 0.5 ≤ x ≤ 1.5 and 0.001 ≤ t ≤ 0.1 

 

Fig. 2, Fig. 3 and Fig. 4 demonstrate the solution surfaces of Eq. (1) as obtained by exact solution, DTM 

solution and HAM solution respectively for specified 𝑥 ∈ [0.5,1.5] and for 𝑡 ∈ [0.001,0.1]. It can be seen very 

clearly that the exact solution surface and the HAM solution surface agree very closely for the specified range of 

𝑥, whereas the surface of the DTM solution shows a concavity in nature from 𝑥 = 1.3 onwards. It is also 

observed that the inclinations of all of the solution surfaces agree to one another for 𝑥 ∈  0.5,1.3 . 

Table 1 Table of comparisons between results of present solutions and exact solution with error analysis for Eq. 

(1) 

Values of 

𝒙 

Values of  

𝒕 

Exact 

Solution 

DTM 

Solution 

HAM 

Solution 

Absolute Error 

in DTM 

Absolute Error 

in HAM 

0.55 0.01 2.83068 2.83164 2.82982 0.00096 0.00086 

0.6 0.02 2.85083 2.85185 2.84979 0.00102 0.00104 

0.65 0.03 2.87083 2.8719 2.87009 0.00107 0.00074 

0.7 0.04 2.89069 2.89181 2.8906 0.00112 0.00009 

0.75 0.05 2.9104 2.91157 2.91123 0.00117 0.00083 

0.8 0.006 2.97479 2.97604 2.97493 0.00125 0.00014 

0.85 0.007 3.0013 3.00249 3.00155 0.00119 0.00025 

0.9 0.008 3.02757 3.0286 3.02794 0.00103 0.00037 

0.95 0.009 3.05362 3.05428 3.05411 0.00066 0.00049 

1.0 0.0001 3.08732 3.08693 3.08733 0.00039 0.00001 

 

The above table describes a numerical comparison of the present solutions with the exact solution of Eq. (1). 

For different values of 𝑥 & 𝑡 the solutions obtained by DTM and HAM are found to be very much closer to that 

of the exact method. The absolute error for both the methods that are found in the table, are found to be very less, 

whereas the absolute error for HAM solution is much less as compared to the DTM solution. 
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Fig. 5 Comparison graphs for solution of Eq. (15) for -1 ≤ x ≤ 1 and t = 0.001 

 
In Fig. 5, a plot of the solutions of Eq. (15) is depicted to compare the solutions obtained by DTM and HAM 

to that of exact analytical solution, for 𝑥 ∈ [−1,1] and 𝑡 = 0.001. It is observed from the figure that the DTM 

solution graph closely agrees with the exact solution graph roughly for 𝑥 ∈  −0.4,1 , whereas the solution graph 

of HAM replicates the solution graph of the exact method and is found to be in excellent agreement. 

 

 

Fig. 6 Exact solution surface of Eq. (15) for -1 ≤ x ≤ 1 and 0.001 ≤ t ≤ 0.01 

 

 
Fig. 7 Solution surface obtained by DTM of Eq. (15) for -1 ≤ x ≤ 1 and 0.001 ≤ t ≤ 0.01 
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Fig. 8 Solution surface obtained by HAM of Eq. (15) for -1 ≤ x ≤ 1 and 0.001 ≤ t ≤ 0.01 

 

Figures 6, 7 and 8 show the solution surfaces of Eq. (15) as obtained by exact solution, DTM solution and 

HAM solution respectively for specific 𝑥 ∈ [−1,1] and for 𝑡 ∈ [0.001,0.01]. For all the surfaces, the inclination 

of surface with the horizontal axis are almost similar and precisely for the solution surface obtained by HAM it 

seems to be more accurate to that of the exact solution as compared to the DTM solution surface. 

Table 2 Table of comparisons between results of present solutions and exact solutions with error analysis for Eq. 

(15) 

Values of 𝒙 Values of 𝒕 Exact Solution 
DTM 

Solution 

HAM 

Solution 
Absolute 

Error in DTM 

Absolute 

Error in 

HAM 

0.3 0.001 0.182141 0.186042 0.181278 0.003901 0.000863 

0.5 0.003 0.145216 0.150627 0.143034 0.005411 0.002182 

0.65 0.005 0.121553 0.127394 0.118405 0.005841 0.003148 

0.7 0.007 0.11534 0.121489 0.111136 0.006149 0.004204 

0.9 0.009 0.089034 0.094379 0.084699 0.005345 0.004335 

-0.9 0.002 0.508369 0.450813 0.505703 0.057556 0.002666 

-0.8 0.004 0.481964 0.442173 0.476615 0.039791 0.005349 

-0.7 0.006 0.455362 0.427831 0.447363 0.027531 0.007999 

-0.6 0.008 0.428702 0.409597 0.418133 0.019105 0.010569 

-0.5 0.009 0.400657 0.387463 0.388951 0.013194 0.011706 

 

The above table elaborates a comparison of the present solutions with the exact solutions for Eq. (15). For 

different time periods and for different values of 𝑥, the above table clearly signifies the similarities of both the 

methods in terms of absolute errors but for HAM solution it is noticeably less as compared to DTM solution. 

IV. CONCLUSIONS 

A comparative analysis has been done to solve Hunter-Saxton equation and Fisher equation by applying 

DTM and HAM. In DTM, the PDEs are converted to their respective ODEs by a suitable wave transformation 

and are finally converted to algebraic equations by applying differential transform operator. In HAM, auxiliary 

parameter and function have been chosen as -1 and 1 respectively in accordance with the equations under 

consideration. Both the methods work very efficiently to deal with the problems and give closed form like 

approximate solutions. But to the extent of accurateness of the solutions and effort of computations, it has been 

observed in terms of figures and tables, that HAM results better as compared to DTM for the problems under 

consideration. The idea of the present article can also be extended to a class of nonlinear PDEs of even 

dimension more than one. 
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