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Abstract: In this article, the influence of non uniform heat source and thermal radiation on the MHD stagnation 

point flow of Maxwell nanofluid over a linear stretching surface is reported. An appurtenant similarity 

transformation has been applied to transform the governing equations in partial differential equations form into the 

non linear ordinary differential equation form. The transformed equations are solved using the fourth order Runge-

Kutta method. The flow behaviors, heat and mass transfer features have been discussed besides the results are 

supported graphically and in tabular form. The effect of pertinent and sundry parameters on velocity, temperature 

and concentration profiles are shown through graphs and the values of the skin coefficient, local Nusselt number 

and local Sherwood numbers are tabulated. 

Key words: Linear stretching surface, MHD, Stagnation point flow, Maxwell Nanofluid and Non uniform heat 

source/sink. 

Nomenclature: 

a Velocity of the stretching surface 

b Free Stream velocity 

T Temperature of the fluid in the boundary layer 

C Concentration of the fluid in the boundary layer 

Tw Stretching surface temperature 

Cw Stretching surface concentration 

T∞ Ambient fluid temperature 

C∞ Ambient fluid concentration 

u Velocity component along the x- axis 

v Velocity component along the y- axis 

uw Velocity component along the x- axis at the wall 

vw Velocity component along the y- axis at the wall 

  Kinematic viscosity 

  The effective heat capacity of the Nanoparticle to the 

heat capacity of the fluid 

( )
p

c  
Effective heat capacity of Nanoparticle material 

( )
f

c  
Effective heat capacity of the Fluid 

  Thermal diffusivity 

*
  

Stefan-Boltzmann constant 

DB Brownian diffusion coefficient 

DT Thermophoresis diffusion coefficient 

1
k  

Thermal conductivity 

k Maxwell parameter 

*
k  

Mean absorption coefficient 

M  Magnetic field parameter 

Pr Prandtl number 
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Nb Brownian motion parameter 

Nt Thermophoresis parameter 

A* The space dependent heat source/sink Parameter 

B* The Temperature dependent heat source/sink 

Parameter 

R Radiation parameter 

Le Lewis number 

  
Velocity ratio parameter 

Cfx Local skin friction 

Nux Local Nusselt number 

Shx Local Sherwood number 

 

1. Introduction: 

Nanofluids are two phase mixtures involving base fluid and small particles with size less than 100 nm suspended 

within them. In most cases the base fluids used are water, oil, glycol, polymeric solutions etc and the materials used 

for nanoparticles are like alumina, silica, diamond graphite, Alo3, Cuo, Ag, and Cu. Efficiently engineered  

nanofluid provides high specific surface area that allows to have more heat transfer surface between particles and 

fluids, more stable dispersions of the nanoparticles, minimized particles clogging, adjustable properties such as 

thermal conductivity by varying particle concentration, the collision and interaction among particles, the surface of 

the flow passage and base fluids are intensified. Viscoelastic fluids are time dependent non-Newtonian fluids which 

behave both viscous and elastic. Maxwell fluid is one of the viscoelastic fluids.  

In fluid dynamics a stagnation point is a point in a flow field where the local velocity of the fluid is zero.  

Stagnation point exists at the surface of object in the flow field, where the fluid brought to rest by the object.

The Bernoulli equation shows that the static pressure is highest when the velocity is zero hence the static pressure 

attains its maximum value at the stagnation point.Stagnation point flow represents a fluid flow in the immediate 

neighborhood of solid surface at which fluid approaching the surface divides into different streams. Although the 

fluid is stagnant everywhere on the solid surface due to no-slip boundary condition. 

The stagnation point flow of nanoviscoelastic fluids over a linear stretching surface is the most applicable study in 

technology and manufacturing industries. Some of the applications are polymer foams used in seat cushion creep, 

Guitar strings are viscoelastic, and viscoelastic dampers are used in tall buildings to absorb vibration energy due to 

earth quakes. It is used in pneumatic drills and makes to line the gloves worn by people. Viscoelastic materials are 

excellent impact observers such as a peak impact force can be reduced by a factor of two if impact buffer is made of 

viscoelastic rather than elastic. Elastomers are highly viscoelastic and make good impact observers. Moreover 

viscoelastic materials are used in automobile bumpers, on computer derives to protect mechanical shakes, in helmets 

(foam padding inside) wrestling mats shoe soles etc. It is because of this extensive application of the stated flow that 

many investigators have been dealing with the stagnation point flow of nanoviscoelastic fluids over a linear 

stretching surface. 

Ahmed [1] has shown the effect of slip velocity on the heat transfer and the flow pattern on Maxwell fluid of the 

unsteady flow over a stretching sheet in the presence of the variable heat flux and fluid properties of the Maxwell 

fluids. Awan et al. [2] have determined the analytical solution for the velocity and adequate shear stress 

corresponding to the longitudinal flow of a fraction of Maxwell fluid between two infinite coaxial circular cylinders. 

Dumirtru and Azhar [3] have concluded that the fluid flow properties of coutte flow of Maxwell fluid by comparing 

the velocity field corresponding to both flows with slip and no slip boundary conditions for Maxwell and Newtonian 

fluids. They have determined the relative velocity of the bottom plate translates with the constant velocity, the 

velocity corresponding to the four types of the flows were written as the sums between the stationary solution and 

the transient solution. Emilia and Ivan [4] have considered the Stokes first problem for a class of viscoelastic fluids 

with the generalized fractional Maxwell constitutive model. They have explicitly derived on integral representation 

of the solution and some characteristics like non negativity and monotonicity asymptotic behavior analyticity, 

finite/infinite propagation speed and absence of wave front have discussed. Ramesh et al. [5] have studied the 

stagnation point flow of Maxwell fluid towards a permeable stretching in the presence of nanoparticles. They have 

concluded that the velocity boundary layer is formed for  >1 (the velocity ratio is greater than one) and the inverse 

one is formed when  <1 and the relaxation time k and ''( 0 )f have the same direction but k and - '( 0 ) go on 
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opposite direction where as k and - '( 0 ) have the same direction for  <1 but opposite for  >1.  Ramesh and 

Gireesha [6] have investigated the effect of heat source/sink on the steady boundary layer flow of Maxwell fluid 

over a stretching sheet with convicted boundary conditions in the presence of nanoparticles and have found that 

Nusselt number is smaller and Sherwood number is higher for Maxwell fluids compared with Newtonian fluids. 

Josephe [7] has verified the conjectures of stagnation point flow of an upper convicted Maxwell fluid derived by the 

other investigators and has proved the solution has monotonically increasing first derivative. Rosenberg and 

Keunings [8] have examined further results on the flow of Maxwell fluid through an abrupt contraction and 

suggested that the limit point is an intrinsic property of the Maxwell fluid and for numerical solutions obtained at 

values of weissenberg number close to the limit point show spurious wiggles near the corner. Vander et al. [9] have 

solved the upper convicted Maxwell model of an elastic liquid using finite element and have shown that the 

algorithm produces oscillations in the stress in the presence of geometrical discontinuities for increased Deborah 

number. Abro and Shaikh [10] have analyzed the velocity field properties and the adequate shear stress of the 

Maxwell fluid moving with no slip effects over an infinite plate and have indicated that when the relaxation time 

approaches to zero, then the models will be reduced to Newtonian fluid. Boubaker [11] has extended the classical 

Maxwell model for viscoelastic fluids in terms of characteristic relations time strain dependence and it is very useful 

in describing the response of geological and many other polymeric solutions. Key-chyang Lee and Bruce [12] have 

reported that for the poiseuille flow problem Eigen modes that are anti-symmetric in position. They have considered 

augmenting the literature results for the symmetric Eigen modes and have concluded that the symmetric and anti-

symmetric modes are more dangerous when the wave number and weissenberg number are large and no unstable 

Eigen values are found. Sekhar et al [13] have studied the flow and heat transfer characteristics of Sakiadis and 

Blasius flow of MHD Maxwell fluid with the effect of exponentially varying heat source/sink. They have reported 

that heat transfer is very high in Blasius flow as compared to the Skiadis flow and heat generation parameter 

depreciates both the momentum and thermal boundaries layer thickness. Vajravelu et al [14] have investigated the 

MHD flow and mass transfer of an upper convicted Maxwell fluid with homogeneous-heterogeneous reactions and 

found that the velocity distribution decreases with the increase of both the magnetic parameter and the Maxwell 

parameter. Liku and Ahmed [15] have examined the peristaltic of fractional generalized Maxwell viscoelastic fluid 

through a porous medium. They have revealed that the bolus formed were trapped by wave and the size of trapping 

bolus reduces when the magnitudes of the permeability parameter and slip parameter increases. Macha et al. [16] 

have presented the effect of thermal radiation on the unsteady MHD boundary layer flow of non-Newtonian 

Maxwell nanofluid over a stretching surface and have studied the effect of each governing parameter involved in the 

problem. Meraj and Junaid [17] have investigated the flow of Maxwell nanofluid over a moving plate in a calm fluid 

and found the variation in velocity distribution with the increase in local Deborah number is non monotonic and 

reduced Nusselt number and Deborah number have linear and direct relation. Mustafa et al.[18] have explored the 

influence of non uniform transverse magnetic field on the flow of Maxwell fluid due to constantly moving flat 

radiative surface with convective conditions and they have found that variation in velocity with an increase in local 

Deborah number is non monotonic where as temperature is decreasing function of local Deborah number. Qasim 

and Noreen [19] have studied the effect of non uniform applied magnetic field on the Falkner-Skan flow of Maxwell 

fluid and found that increasing the Deborah number decreases the boundary layer thickness of the velocity and the 

temperature profile increases with the increase of the Hartman number as well as they have studied the effect the 

other parameters on the properties of the flow and heat transfer. Nazaila [20] has dealt with the influence of thermal 

radiation on stagnation point flow past a stretching/shrinking sheet in a Maxwell fluid with slip conditions and 

examined the features of the flow and heat transfer characteristics for the different parameters involved in the 

problem. Halim [21] has investigated the steady stagnation point flow of an incompressible Maxwell fluid towards a 

linearly stretching sheet with active and passive control of the nanoparticles and has found that temperature 

distribution in passive control model are consistently lower than in active control model. Noor et al. [22] have 

explored the effect of heat absorption and thermal radiation in non Newtonian fluid on a vertical stretching sheet 

with suspended particles and found that the heat flux of the flow is uplifted as value of either heat absorption or 

thermal radiation is multiplied. Noor [23] has presented the study of MHD flow of Maxwell fluid past a vertical 

stretching sheet with thermophoresis and chemical reaction and revealed that as the value of thermophoresis, 

chemical reaction parameters and Schmidt number escalated the thickness of the mass boundary layer declines. 

Sandeep and Sulochana [24] have dealt with the effect of non uniform heat source/sink thermal radiation suction on 

the momentum and transfer behaviors’ of Jeffrey, Maxwell and oldroyd-B nanofluid over stretching surface. They 

have shown that the rise in the value of magnetic parameter reduces the friction factor and increase on non uniform 

heat source/sink and the thermal radiation increases the temperature profiles of the flow. Syed and Veera [25]  have 

reported the flow of incompressible viscous Maxwell fluid between two parallel plates induced by constant pressure 
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gradient and found that the magnitude of velocity enhances with increase in both the Reynolds number and the 

Maxwell fluid parameter and reduces with the increase of pressure. Siddique [26] has studied the longitudinal flow 

of the generalized Maxwell fluid in an infinite circular cylinder due to the longitudinal variable time dependent shear 

stress that is prescribed on the boundary of the cylinder. SinWeingWong et al. [27] have analyzed the study of two 

dimensional stagnation point flow of an incompressible fluid towards a stretching vertical sheet and found that dual 

solution in the opposing buoyant flows but the solution is unique for the assisting buoyant flows. Sreekala et al.[28] 

have investigated the unsteady MHD flow of electrically conducting Maxwell fluid in a parallel plate channel 

bounded by porous medium under the influence of uniform magnetic field inclined at an angle of inclination with 

the normal to the boundaries. Swati [29] has studied unsteady two dimensional flow of a Maxwell fluid over a 

stretching surface in a porous medium subjected to suction/blowing and has found that the fluid velocity initially 

decrease with  the increase of unsteadiness parameter and the velocity decreases with the increase of permeability 

parameter. Swati [30] has reported on the unsteady two dimensional flow of MHD non Newtonian Maxwell fluid 

over a stretching surface with a prescribed surface temperature in the presence of heat source/sink and revealed 

temperature decreases significantly due to unsteadiness. Hayat et al. [31] have explored the steady two dimensional 

MHD flow of an upper convicted Maxwell fluid  near a stagnation point over a stretching surface and concluded that 

the velocity decrease with increase of the Deborah number and Hartman number while the skin friction coefficient 

increase with the increase of both. Hayat et al. [32] have dealt with the three dimensional flow of Maxwell fluid over 

a stretching surface with convective boundary condition and have shown that the Deborah and Biot parameters are 

opposite on Nusselt number where as the Prandtl and Biot numbers have qualitative similar impact on the Nusselt 

number. Vijendra and Shweta [33] have examined the MHD flow and heat transfer for Maxwell fluid over an 

exponentially stretching sheet through a porous medium in the presence of non uniform heat source/sink with 

thermal conductivity. Abbas et al. [34] have investigated the steady convection boundary layer flow of an 

incompressible Maxwell fluid near the two dimensional stagnation point flow over a vertical stretching surface. 

They have proved the results using comparisons of the results obtained by the two different methods. 

From the literatures given above, one can easily understand that a number of investigations have been conducted on 

the stagnation point flow of Maxwell fluids over a linear stretching surface. According to the knowledge of the 

author’s the influence of non uniform heat source/sink and thermal radiation on the MHD stagnation point flow of 

Maxwell nanofluid over a linear stretching surface not yet investigated. Therefore in the present paper, we have 

dealt with the influence of non uniform heat source/sink and thermal radiation on the MHD stagnation point flow of 

Maxwell nanofluid over a linear stretching surface. The governing equations are transformed into Non-linear 

ordinary differential equations using suitable similarity transformation and the results are solved numerically using 

the fourth order Range-Kutta method. We investigated the effect of the relevant parameters using several set of 

values of the parameters and the results are analyzed for the flow, heat and mass transfer characteristics. 

2. Mathematical formulation: 

 The steady incompressible, two dimensional stagnation point flow of Maxwell nanofluid over a linear stretching 

surface that coincides with the plane y=0 is considered and the flow is carried out at 0y  , where y is the 

coordinate measured normal to the stretching surface. Two equal and opposite forces are applied along the x-axis so 

that the surface is stretched keeping the origin fixed. A constant magnetic field of strength B0 acts in the direction of 

the y-axis. The induced magnetic field is negligible, which is a valid assumption on laboratory scale under the 

assumption of small Reynolds number. It is also assumed the external electric field is zero.  Consider the velocity of 

the stretching surface to be ( )
w

u x b x  and the velocity of the free stream flow to be ( )u x cx  , where b and c 

are positive constants and x is the coordinate measured along the stretching surface. Assume that
w

T
, w
C  are the 

temperature and concentration at the stretching surface respectively whileT
 ,

C


 be the ambient temperature and 

ambient concentration respectively.                                          
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Figure 1 physical sketch of the problem                                     

 

Taking the above assumptions into consideration and using the Maxwell model as it is described in [31], the 

governing equations for the boundary layer motion, energy and concentration in the presence of non uniform heat 

source/sink, thermal radiation and viscous dissipation are stated below. 

0
u v

x y

 
 

 
                                                                                                                                                         (1)                                                                                                                                                                                                                                                                 

22 2 2 2

2 2 0

1 2 2 2
2

B uu u u u u u U
u v u v u v U

x y x y x y y x


 



       
       

        

                                                                  (2)                                                              

2
2

2

''' 1
T r

B

p p

D qT T T C T T q
u v D

x y y y y T y c c y
 

 


        
       

         

                                                              (3)           

2 2

2 2

T

B

DC C C T
u v D

x y y T y


   
  

   
                                                                                                                 (4)                                                                                                                

Under the Rosseland approximation the radiative heat flux as given [17] has the form 
* 4

*

4

3
r

T
q

k y

 



                                                                                                                                                     (5)                                                                                                                                                  

Where 
*

 is the Stefan-Boltzmann constant and k* is the mean absorption coefficient. Assume that the temperature 

difference in the flow be adequately small so that T4 may be expressed as a linear function of temperature. Using the 

Taylor series expanding T4 excluding the higher order terms result in 

* *1
''' [ (T T ) ' ( T )]

w

w

k u
q A f B T

x
 

   

                                                                                                                   (6)

 

 Using (6) in (5)
 

4 3 4 3
4 3 ( )T T T T T T T

   
     we get 

2

* 3

2
1 6

r
q T

T
y y




 
 

 
                                                                                                                                                                

'''q  is the space and temperature dependent heat source/sink that is defined as [25]  
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Where u and v are the velocity components along x and y directions respectively,   is the kinematic viscosity,  is 

the thermal diffusivity,  is the effective heat capacity of nanoparticle to the heat capacity of the fluid, DB is the 

Brownian motion coefficient, DT is the thermophoresis diffusion coefficient, A* and B* are the parameters of the 

space and temperature dependent internal heat source/sink. If A*>0, B*>0, it represents heat is generated and 

A*<0,B*<0 it represents heat is absorbed The corresponding boundary conditions are  

0 0
w w

u b x v T T C C a t y

u c x U T T C C a s y
 

     


      

                                                                      (7) 

The similarity transformation employed is the one that is stated in [22]. 

, '( ) , ( )

w w

b
y u b x f v b f

T T C C

T T C C

   


 
 

 


    




 
 
  

                                                                            (8) 

Applying (8) on (2), (3), (4) yield  

2 2 2
(1 ) ''' 2 ' '' '' ' ' 0k f f k f f f f f f M f       

,
                                                        (9)                                                                               

   
2

(3 4 ) '' 3 R P r ' ' ' ' 3 * ' * 0R f N b N t R A f B                                                           (10) 

'' ' '' 0
N t

L e f
N b

                                                                                                                                           (11)                                                                                                                                  

 

The boundary conditions are given below. 

'(0 ) 1 (0 ) 1 (0 ) 1 0

' 0 0 as

f a t

f

  

   

    


     

                                                                                                    (12) 

Where the primes are derivatives with respect to  , the velocity ratio parameter is 
c

b
  , the magnetic field 

parameter is 

2

0
M

b

 
 , the Maxwell parameter (the relaxation time parameter) is

1
k b , The prandtl number is 

P r



 , the Lewis number is 

B

L e
D


 , the radiation parameter is 

* 3

*

4

k k
R

T


 ,the Brownian motion parameter 

is
 

( )

B w

c f

D C C
N b

 




 , the thermophoresis parameter is 
 ( )

( )

c p T w

c f

D T T
N t

T



 






 and 

( )

( )

c p

c f





  

It is known that Nb and Nt contains the x-coordinate and therefore it is must to look for the variability of the local 

similarity solution that gives chances to investigate the behavior of these parameters at affixed location above the 

sheet.  The skin friction coefficient
x

C f , the local Nusselt number 
x

N u and the local Sherwood number 
x

S h as they 

are described in [17] are stated below. 
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0 0 0

2
, ,

y y y

x x x

w w w

u T C
x x

y y y
C f N u S h

u T T C C





  

 

       
      

       
  

 
                                                                                          (13)

 

 

Employing the similarity transformation (8) on (13) we get 

1

2

1 1

2 2

R e ''(0 ) , '(0 ) , '(0 )

R e R e

x x

x x

x x

N u S h
C f f      

                                                                                              (14) 

2. Method of Solution: 

The numerical fourth order Runge-Kutta method along with shooting technique is employed to  solve the coupled 

ordinary differential equations (9) (10) and (11), with their allied boundary conditions (12) as it is employed in [6]. 

The system of non linear higher order differential equations (9),(10) and(11) should be changed into a system of first 

order differential equations in order to employ the method described. To transform the system of non linear higher 

order differential equations into a system of first order differential equations we apply the notations below. 

Let  

(1) , ' ( 2 ) , '' (3 )

( 4 ) , ' (5 )

(6 ) , ' ( 7 )

f f f f f f

f f

f f

 

 

   


  


 






                                                                                                  (15) 

Applying equations (15) in equations (9),(10) and(11) we have 

2

2

2 2 2 2 2

2

2 1 1 '
f ''' ' '' '' '

1 1 1 1 1

2 * 1
(1) * ( 2 ) * (3 ) (1) * (3 )

1 * (1) * (1) 1 * (1) * (1)

1 * ( 2 )
( 2 ) * ( 2 )

1 * (1) * (1) 1 * (1) * (1) 1 * (1) * (1)

3 R P r
'' [ ' ' f '

3 4

k M f
ff f f f f

k f k f k f k f k f

k
f f f f f

k f f k f f

M f
f f

k f f k f f k f f

N b N t
R





   

     
    

  
 

  
  

   


2 * *

* *

3
' ] [A ' ]

3 4
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[N b * (7 ) * (5 ) (1) * (5 ) N t* (5 ) * (5 )]

3 * 4

3 *
[A * ( 2 ) B * ( 4 )]

3 * 4

'' ' ''

3 * * * P r
* (7 ) * (1) * [N b * (7 ) * (5 ) (1) * (5 ) N t* (5 ) * (5 )]

* (3 * 4 )
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* (3 *

R
f B

R

f f f f f f
R

R
f f

R

N t
L e f

N b

N t R
L e f f f f f f f f

N b R

N t R

N b

 

  

 

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

 


  

    



* *

(1 6 )

* [A * ( 2 ) B * ( 4 )]
4 )

f f
R















































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
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 The corresponding boundary conditions are 

' ' '

'

(1) 0 , f ( 2 ) 1 , ( 4 ) 1, (6 ) 1

( 2 ) , ( 4 ) 0 (6 ) 0

0

a a a a

b b b

f f f

f f f

w h e re a a n d b



   


   


   

                                                                                       (17)                                                               

''(0 ) , '(0 ) '(0 )f a n d  are not given in the boundary conditions of the system of the ordinary differential 

equations. Therefore, we calculate the approximate values ''(0 ) , '(0 ) '(0 )f a n d   using the shooting technique 

first and then we apply the fourth order Runge-Kutta method to get ,f a n d  .  We choose the step size to be 

0 .01h   with accuracy of
5

1 0


.  

3. Results and discussions: 

The impact of the sundry parameters intricate in the coupled ordinary differential equations such as the velocity ratio

 ,the Maxwell parameter k, the magnetic field parameter M, the prandtl number Pr, the thermal radiation 

parameter R, the Brownian motion parameter Nb, the thermophoresis parameter Nt, the space dependent and 

temperature dependent heat source/sink parameters respectively A* and B* and the Lewis number Le on the 

stagnation point flow of Maxwell nanofluid over a linear stretching surface have been discussed with the help of 

their graphs and tabulated values. 

Table1. Table of comparison for skin friction coefficient ''( 0 )f for different values of   

  
   Hayat 

''( 0 )f   

 Ramesh  

et al.[6] ''( 0 )f  

Present  

result  

of ''( 0 )f  

0.01 -0.9982 -0.9991 -0.998028 

0.1 -0.9695 -0.9696 -0.969386 

0.2 -0.9181 -0.9181 -0.918107 

0.5 -0.6673 -0.6672 -0.667264 

2.0 2.0176 2.0175 2.017487 

3.0 4.7296 4.7292 4.729182 

 

Table2. For the different values of  comparison of the local Nusselt number '( 0 ) . 

Pr   
Hayat 

'( 0 )  

Ramesh et al.[6] 

'( 0 )  

Present result of 

'( 0 )  

 

1 

0.1 0.6021 0.6048 0.601814 

0.2 0.6244 0.6256 0.624131 

0.5 0.6924 0.6925 0.692111 

 

2 

0.1 0.7768 0.7769 0.776373 

0.2 0.7971 0.7971 0.796700 

0.5 0.8647 0.8647 0.864374 
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Table3. Comparison table of the local Nusselt number '( 0 )  in the absence of Maxwell  

              Parameter and the velocity ratio. 

 

Nt 

                                Nb=0.1 

Khan and 

Pop 

'( 0 )  

Ramesh et al.[6] 

'( 0 )
 

Present result of 

'( 0 )  

0.1 0.9524 0.9523 0.953984 

0.3 0.5201 0.5200 0.523873 

0.5 0.3211 0.3210 0.324461 

 

The present results for the considered velocity ratio parameter   in table1 above agree to three decimal places with 

the results of Ramesh et al. [6]. Therefore the results have excellent agreement.  In table 2 above, for the given 

values of the velocity ratio parameter   and the Prandtl number Pr the present result agree to two decimal places 

with the results communicated by Ramesh et al. [6] and hence the results have very good agreement. In table 3 

above, for the given values of the Brownian motion parameter Nb and the thermophoresis parameter Nt the present 

result agree to two decimal places with the results reported by Ramesh et al. [6] and hence the results have very 

good agreement.  

In table 4 below as the values of the Maxwell parameter k enlarged from 0.01 to 0.03, the velocity of the fluid and 

the boundary layer thickness decreased. In the second part of table 4 the velocity and the boundary thickness 

diminished with the increment of the magnetic field parameter. The velocity of the fluid and the boundary layer 

thickness escalated with the enlargement of the velocity ratio

 

b

c
  <1 (i.e. the velocity of the stretching surface is 

greater than the free stream velocity) as it is indicated in the third part of table 4. The Nusselt number increases as 

the prandtl number increases so that the thermal boundary layer thickness declines as it is shown in the fourth part of 

table 4. In the fifth, sixth and seventh parts of table 4 enhancing Nb, Nt and R decreases the Nusselt number and 

thicken the boundary layer. In the 8th and 9th parts of table 4 increasing A* and B* result in the increase of the 

generation of thermal energy. So that the nanofluid temperature enlarged and this causes the reduced Nusselt 

number to descend and the Sherwood number to ascend. In the last part of table 4 the Nusselt number decreases and 

the Sherwood number increases with the increase of Lewis number. Because the larger the Lewis number the 

weaker molecular diffusivity and the thinner concentration boundary layer. 

Table 4

 

Numerical results of "(0 ), '(0 ), '(0 )f a n d    for different values the parameters involved. 

k M   
Pr Nb Nt R A* B* Le - ''( 0 )f  '( 0 )  '(0 )  

0.01  

0.05 

 

0.05 

 

1 

 

0.01 

 

0.01 

 

1 

 

0.01 

 

0.01 

 

 

1 

0.847340 0.413077 0.50924 

0.02 0.855725 0.410989 0.506257 

0.03 0.861912 0.409567 0.504184 

 

0.05 

0.01  

0.05 

 

1 

 

0.01 

 

0.01 

 

1 

 

0.01 

 

0.01 

 

1 

0.823396 0.418661 0.513271 

0.02 0.829885 0.417929 0.512489 

0.03 0.844651 0.414260 0.508500 

 

0.05 

 

0.05 

0.1  

1 

 

0.01 

 

0.1 

 

1 

 

0.01 

 

0.01 

 

1 

0.857638 0.411059 0.505059 

0.5 0.635698 0.439891 0.536499 

0.7 0.433127 0.462272 0.560586 

 

0.2 

 

0.2 

 

0.2 

2  

0.01 

 

0.1 

 

0.3 

 

0.1 

 

0.1 

 

5 

0.887310 0.42128 0.655761 

3.5 0.887221 0.462133 0.465955 

4 0.835739 0.514844 0.307383 

 

0.2 

 

0.2 

 

0.2 

 

1 

0.1  

0.01 

 

0.5 

 

0.01 

 

0.01 

 

3 

1.133793 0.143357 0.884691 

0.3 1.133793 0.138305 0.814294 

0.5 1.133793 0.133420 0.800205 

 

0.2 

 

0.2 

 

0.2 

 

1 

 

0.01 

0.1  

0.5 

 

0.1 

 

0.1 

 

3 

0.887187 0.219192 1.037212 

0.3 0.887214 0.213535 0.748720 

0.5 0.887224 0.208023 0.583888 

      0.5    1.133793 16.590693 124.369802 
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0.2 0.2 0.2 1 0.1 0.01 0.6 0.1 0.1 3 1.133793 9.244399 93.421411 

0.7 1.133793 -0.008786 7.294585 

 

0.2 

 

0.2 

 

0.1 

 

1 

 

0.01 

 

0.1 

 

0.5 

0.5  

0.1 

 

3 

0.900736 -0.196832 2.784835 

0.7 0.900719 -0.408475 3.676835 

0.9 0.900713 -0.622185 4.581861 

 

0.2 

 

0.2 

 

0.1 

 

1 

 

0.01 

 

0.1 

 

0.3 

 

0.01 

0.5  

3 

0.900707 0.142261 1.559958 

0.7 0.883343 0.075542 1.965902 

0.9 0.881718 -0.013030 2.452366 

 

0.2 

 

0.2 

 

0.1 

 

1 

 

0.01 

 

0.1 

 

0.4 

 

0.01 

 

0.1 

3 0.890481 0.295498 0.737873 

6 0.883105 0.297615 1.423358 

9 0.882011 0.297900 1.919994 

 
Figure 2 the effect of  on the velocity profile.            

 

 

 

 

Figure 3a the influence of k on the velocity profile 

velocity profile. 
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                  Figure 4a the effect of M on the velocity profile. 

Figure 3b the influence of k on temperature 

Figure 3c the variation of concentration profiles 

for different values of k. 
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Figure 4b the impact of M on the temperature profile. 

For
b

a
   <1 i.e. the velocity of the stretching surface is greater than the free stream velocity, the velocity of the 

fluid and the boundary layer thickness magnify with the upgrade of   

To the contrary the flow velocity increases and the boundary layer thickness drops with the enlargement of  when 

the free stream velocity is larger than the velocity of the stretching surface (i.e. 
b

a
  >1). In the third case where 

the two velocities are equal, there is no boundary layer thickness of the nanofluid near the surface as it is revealed in 

Fig 2. 

 
Figure 4c the effect of M on the concentration profile. 
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Figure 5 the effect of Pr on the temperature profile. 

 

Figure 6 variation of temperature profile for different values of Nb. 

 

Figure 7 the influence of Nt on the temperature profile. 

Increasing the Maxwell parameter k down turn the boundary layer thickness of velocity and upgrade the temperature 

and the concentration boundary layer thicknesses as it is indicated in Fig 3a, 3b, and 3c respectively. Fig 4a 

elucidates that the influence of magnetic parameter on velocity. The velocity profile and the boundary layer 

thickness diminish with the upgrade of M. This is because of the Lorentz force that resists the motion of the fluid 

whereas the thermal and concentration boundary layers thickness increases with the increase of the magnetic field 

parameter M as shown in Fig 4b and 4c. The enhancement of the prandtl number reduces the thermal boundary layer 

thickness. It is due to the smaller the thermal diffusivity the larger the Prandtl number as it is affirmed in Fig 5. 
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Figure 8 the impact of R on the temperature profile. 

 

Figure 9 Variation of the temperature profile for different values of A*. 

 

Figure 10 the effect of B* on the temperature profile. 
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Figure 11 the influence of Le on the concentration profile. 

The magnification of the Brownian motion parameter make the thermal boundary layer thicken because the 

Brownian motion enforce more particles to move from the surface and hence the temperature profile enlarged as it is 

indicated in Fig 6. Fig7 shows that the increment of the thermophoresis parameter make the thermal boundary layer 

thickens. Because as Nt increases the thermophoresis diffusion enforce the nanoparticles to move from hot to cold 

area which enlarges the thermal boundary layer thickness. From Fig 8 it can be seen that increasing the thermal 

radiation increases the temperature profile and the thermal boundary layer thickens. 

 

Figure 12 the impact of Pr on the concentration profile. 

 

Figure 13 the effect of Nb on the concentration profile. 
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Figure 14 the influence of Nt on the concentration profile. 

 

Figure 15 the impact of A* on the concentration profile. 

In Fig 9 and 10, it is revealed that the thermal boundary layer thickness increases with the enlargement of the space 

and temperature dependent non uniform heat source/sink parameters A* and B* which corresponds to the internal 

heat generation that raises the temperature profiles. The molecular diffusivity becomes weaker as the Lewis number 

increases and the concentration boundary layer becomes thinner as it is illustrated in Fig 11 so that as Le increases 

the concentration boundary layer decreases. Fig 12 indicates that as Prandtl number increases the boundary layer 

thickness of the concentration increases. 
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Figure 16 Variation of the concentration profile for different values of B*. 

 The concentration boundary layer diminish as the Brownian motion parameter escalated that is revealed in Figure 

13, as Nb increases the Brownian motion enforces the nanoparticles transfers the surface heat to the fluid and the 

nanoparticles gain higher kinetic energy that contributes to the thermal energy of the fluid and cause the movement 

of the nanoparticles from hot to the cold region. However the concentration boundary layer increases with the 

increase of Nt as it is shown in Figure 14, increasing the thermophoresis diffusion creates the movement of the 

nanoparticles from a region of high temperature to a region of low temperature. Figures 15 and 16 reveal that as the 

space dependent A* and the temperature dependent B* heat source/sink parameters enhance the concentration 

boundary layer drops. Because as the nanofluid temperature increase with the increase of A* and B* diffusion of the 

nanoparticles takes place from high to low temperature regions and hence the concentration boundary layer 

decrease.  

3. Conclusions: 

MHD Stagnation point flow of a Maxwell nanofluid over a linear stretching surface with the influence of thermal 

radiation and non uniform heat source/sink has been studied. Numerical solutions of the governing equations are 

obtained that permit the computation of the flow, heat and mass transfer behaviors for various values of the velocity 

ratio  , the Maxwell parameter k, the magnetic field parameter M, the Prandtl number Pr, the Brownian motion 

parameter Nb, the thermophoresis parameter Nt, the non uniform heat source/sink space and temperature dependent 

parameters A* and B* as well as the Lewis Number Le. We found the results  

1. The velocity boundary layer thickness increases with the increase of the velocity ratio parameter  but 

decrease with the magnetic field parameter M and the Maxwell parameter k. 

2. Increasing Prandtl number reduces the thermal boundary layer thickness. 

3. The thermal boundary layer thickness magnifies with the upgrade of the thermal radiation parameter R, 

Brownian motion parameter Nb and thermophoresis parameter Nt and similar results have been found for 

the space dependent and temperature dependent non uniform heat source/sink effects. 

4. The concentration boundary thickness enlarges with the increase of the prandtl number Pr and the 

thermophoresis parameter Nt 

5. The escalation of the space dependent parameter (A*) and the Brownian motion parameter Nb reduces the 

concentration boundary layer thickness. 

6. The concentration Boundary layer thickness diminishes as the Lewis number increases.  
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