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Abstract 

In this paper we present zhou’s method (DTM) for solving the initial value problems involving second order 

ordinary differential equations initial value problems involving second order ordinary differential equations we 

introduce the concept of DTM & applied it to obtain solution of three numerical examples for demonstration. 

The results are compared with exact solution & DTM method results.  

There results show that the technique introduced here is accurate & easy to apply. 
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I. INTRODUCTION  

               The purpose of this paper is to employ the DTM method on examples of ordinary differential equation of 

second order and compared with result obtain by exact solution by using complimentary function & particular 

integral.  In recent years, Bizar J. used for Riccati differential equation(1), Opanuga On numerical solution of 

systems of ordinary differential equitations by numeriacla analytical method (2), Chen used DTM to obtain the 

solutions of nonlinear system of differential quotations (3), DTM was first proposed by Zhou & Proved that 

DTM is an iterative procedure for obtaining analytic Taylor’s series solution of differential equations DTM is 

useful to solve ordinary diff equations. & boundary value problems (4), Ayaz F has used DTM to find the series 

solution of system of differential equitation(5), Duen Y use DTM for Burger’s equation to obtain the series 

solution(6), Bert W. has applied DTM on system of linear equation and analysis of its solutions(7), Chen C.L. 

has applied DTM technique for steady nonlinear beat conduction problems(8), Using DTM Hassan have find 

out series solution and that solution compared with DTM method for linear & non linear initial value problems 

& proved that DTM is reliable tool to find numerical solution(9), Khaled Batiha has been used DTM to obtain 

the Taylor’s series as solution of linear, nonlinear system of ordinary differential equations(10), Montri 

Thangmoon has been used to find numerical solution of ordinary differential equations(11), Edeki, A semi 

method for solutions of a certain class of second order ordinary differential equations  

 

II.  BASIC DEFINITIONS & PROPERTIES OF DTM METHOD  

v(t) can be expressed by Taylor’s series, then v(t) can be represented as  

v(t) =      V(k)   

v(t) is called inverse of V(k) 

 

 v(t)  =    V(k) = D-1 V(k) 

 

     v (t)=    V(k) + R n +1 (t) 

    by Taylor’s Series 

    V (k) =     at   t = t0 

 

III. FUNDAMENTAL THEOREMS ON DTM  

Theorem 1 :-  If   p (t) = n(t) + s(t) then 

    P(k) = N (k) + S(k)  

 Theorem 2 :- If  p(t) =   (t) then  n (t) then  

    P (k) = N(k) 
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 Theorem 3 :- If p (t) =  then 

 P (k) = (k+1) N (k+1)  

 Theorem 4 :- If p (t) =  then  

 P (k) = (k+1) (k+2) (k+2) N (k+2) 

Theorem 5 :- If p (t) =  then 

 P (k)= (k+1) (k+2) (k+3)… (k+s) N (K+s) 

 Theorem6 :- If p(t) = ts them   

P(K) = S(l) P (k-l) 

     

Theorem7 :- If p (t) = s them 

   P(k) = (k-s) 

    (k-s) =  

 

Theorem 8:- If p (t) =   then 

   P (k) =   

Theorem 9:- If p(t) = (1+t)s then 

   P(k) =  

 

Theorem 10:- if P(t) = (1+t)s then  

   P(k) = sin (  + ) 

 

Theorem 11:- if p(t) = cos (wt + ) then  

   P(k)=  cos (  + ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. VALIDATION OF RESULTS 

Example1 : Euler’s Differantial Equation: 

Solve    – 3t  + 3x = 0 

 

With   x (1) = 0;  x1 (1) = – 2    

 

 

 Exact solution of  

t2   – 3t  + 3x = 0 

With x (1) = 0 ; x1(1) = -2 

is x = t – t3      ________ (1) 
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We can convert caveny’s Homogeneous Qitterchial equation into linem differential equation by sub  

 t = ez given us   

  (D2 – 4D + 3) x = 0 

   – 4  + 3x = 0   ________ (2) 

with initial conditions   x (0) = 0 

    x1 (0) = – 2  

By DTM Method 

(K + 2) (K+1) x (K + 2) – 4 (K+1) x (K + 1) + 3 x (K) = 0 

X (0) = 0 

X (1) = -2 

X (2) = -4 

X (3) = -13/3  

X (4) = -5/2  

X (5) =   

etc. 

Solution is given by  

x(t) = x (0) + Z x (1) + Z2 x (2) + Z3 x (3) +  

 = 0 – 2z – 4z2 –  z3 -  z4 –  z5 + ……. 

x (t) = - 2 log (t) – 4 (log(t))2 -  (logt)4 -  (logt)5 +  

 

 

 

 

 

TABLE – I 

t Exact Solution DTM Solution Error 

1 0.000000 0.000000 0.000000 

1.2 -0.528000 -0.528000 0.000000 

1.4 -1.344000 -1.344000 0.000000 

1.6 -2.496000 -2.496000 0.000000 

1.8 -4.032000 -4.032000 0.000000 

2.0 -6.000000 -6.000000 0.000000 

 

 

Ex 2 :- Free Undamped Oscillations: 

An 8 lb weight is placed at one end of a spring suspended from the ceiling the weight is raised to 5 inches above 

the equilibrium position and left free. Assuming the spring constant 12 lb/ft find the equation of motion, 

displacement function x(t). 

Ans.  

 The equation of motion is  

  x = kx Here w = 8,  g = 32,  k = 12 

 The equation is  

  + 48x = 0    

 Exact Solution is given by  

 x (t) =  cos 4  t 

by DTM method =   

 

=  +10t2 – 40t4 + 64t6 +……  (i) 

 By DTM method  

 

(K+2) (K+1) x (K+2)  = – 48 x (K) 

Put K = 0, 1, 2, 3, 4……..  
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x (0) =  

x (1) = 0 

x (2) = 10 

x (3) = 0 

x (4) = – 40 

x (5) = 0 

x (6) = 64 

. 

. 

. 

 

By DTM solution is given by series  

x(t)  = x(0) + t x (1) + t2 x (2) + t3 x (2) + ….. 

 =  + 10t2 – 40 t4 + 64t6 …… 

 

TABLE  II 

t Exact Solution DTM Solution Error 

0.0 -0.41666666 -0.41666666 0.000000 

0.2 -0.416544825 -0.416544825 0.000000 

0.4 -0.41617937 -0.41617937 0.000000 

0.6 -0.41557052 -0.41557052 0.000000 

0.8 -0.41471863 -0.41471863 0.000000 

1.0 -0.41362420 -0.41362420 0.000000 

 

 

Ex. 3 Free, Damped Oscillation: 

 

A 2 b weight suspended from one end of a spring stretches it to 6 Inches.  A velocity of 5ft/ sec2 

upwards is imparted to the weight at its equilibrium position. Suppose a damping force v acts on the weight 

Here 0<  <1 & V = x  = velocity  (a) Determine the position & velocity of the weight at any time (b) Discuss 

the care for B= 0.6 system is damped i.e. it is oscillatory.  

 

Ans.  

   

 By Hoke’s Law 

  x + x + Kx = 0 

or  x + x + 4 x = 0 

or  + 16   + 64x = 0 

 

Solving  

Displacement function is  

x(t)  = e 8Bt   sin 8 x t 

& Velocity is  

V = x = derivative of above function  

for B = 0.6 &  =  = =  =  

 

x (t)  =     e – 4.8t sin 6.4t    is solution    

  

By DTM Method  

 

 +64x = 0 with initial condition  

x(0) = 0 
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x(0) = -5 

 

(k+2) (k+1) x (k+2) + 9.6 (k+1) x (k+1) + 64 x (k) = 0 

Put K = 0, 1, 2, 3, 4, 5…… 

x (0) = 0 

x (1) = -5 

x (2) = 24 

x (3) = -45.6533 

x (4) = -135.2 

x (5) = -405.67456 

. 

. 

. 

 

By DTM solution is given by  

x(t)  = x(0) + t x (1) + t2 x (2) + t3 x (3) + …..  

= 0 – 5t + 24 t2 - -45.6533  t3 –  -135.2 t4  -405.67456t5
 + ….  

 

 

TABLE III 

t Exact Solution DTM Solution Error 

0.00000 0.000000 0.000000 0.000000 

0.12265625 -0.306475106 -0.306475106 0.000000 

0.245315 -0.00157724 -0.00157724 0.000000 

-0.12265625 0.9949309 0.9949309 0.000000 

-0.245315 2.53616124 2.53616124 0.000000 

 

 

V. CONCLUSION : 

In this work we applied DTM for second order ordinary differential equation, it reduces the computational 

difficulties of other traditional methods (Laplace Transform). 

DTM is best for solving initial value problems of second order. 
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