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Abstract :
In this paper, we introduce a new type of linear operator called (3,2)-jection operator on a linear
space and then we find an innovative result.
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Introduction :

It is well known that projection plays a pivatal role in functional analysis and linear algebra hereat to
develop functional analysis and linear algebra, we take care of the tractable generalisation of this operator.

In this paper, we introduce a new type of linear operator called a (3, 2)-jection operator which is a
generalisation of projection operator in the sense that every projection is a (3, 2)-jection operatior but a (3, 2)-
jection operator is not necessarily a projection. Here we study (3, 2)-jection on R? or C? and find an innovative
result.

Requisite :
Linear operator : The operator T on a linear space L is said to be a linear operator if
T(ax+Ppy)=aT(x)+BT(y) forall x,y e L and forscalars o and B .
Projection operator : T?e operator T on a linear space L is a projection on some subspace M of L if
T°=T.
(3, 2)-jecion operator : E?e operator E on a linear space L is said to be a (3, 2)-jection operator if E*=
Theorem : Let E be a (3, 2)-jection on R? and C? then either E is a projection or E2=0.
Proof : Let E (x, y) = (ax + by, cx + dy)
where (x,y)e R*orC’
and a, b, c, d are scalars.
We have,

E(E(x,y))

E*(x,y)

E (ax + by,cx +dy)

(a(ax+by)+b(cx+dy),c(ax +by)+d(cx +dy))

((a2+bc)x+(ab+bd)y,(ac+cd)x+(bc+d2)y)
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= (px+qy,rx+sy)

where,
P =3 + BC i (1)
g =ab +Dd i (2)
F= 8C + CO oo 3)
S YR KO (4)
and,
E°(x,y) = E(Ez(x,y))

= E(px+qy,rx +sy)

(a(px+qy)+b(rx+sy),c(px+qy)+d(rx+sy))

=((ap+br)x +(ag+bs)y,(cp+dr)x +(cq+ds)y)
For E to be a (3, 2)-jection, we have
E’=FE?

Comparing the co-efficients of like terms, we get

ap+br=p= (a—=1)p+br=0 (5)
&ag+bs=0= (a—-1)g+DS =0 i, (6)
&ep+dr=r=cp+(d—1)r=0 )
&cqg+ds=5= CO+(d—1)S =0 o (8)

Here we consider the following two cases:
Case-1:Whena=1
Then from (5) and (6), we get
br=0andbs=0

Therefore, eitherb=00orr=s=0.

Case-1.1.: By taking b = 0, we get
P = Lo {from (1)}
g=0 {from (2)}
r=c(l+d) {puttinga=1in (3)}
s=d? {from (4)}

Puttingp=21andr=c (1 +d)in (7), we get
c+(d-1)c(1+d)=0

c{l+(d-1)(d+1)}=0

= c{1+d2—1} -0
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= cd’=0
Thus, eitherc=0o0rd =0
When taking ¢ = 0, we get
(d-1)d*=0 {putting c =0 and s = d*in (8)}
Eitherd=0ord=1.
By observing all the above, we get the following sub-cases:
Subcase (1.1.1): a=1,b=0,c=0,d=0

we find
EX ¥y)=(x0)
and E?(x,y) = E (x, 0) = (x, 0)
Here, E’=E

Hence E is projection
Sub-case (1.1.2): a=1,b=0,c=0,d =1
So, we find

E (x,y) = (x,y) which is obviously a projection.

Sub-case (1.1.3): a=1,b=0,c#0,d =0

Here, we find
E(x,y): (x,cx)
and Ez(x,y):E(x,cx)

= (x,cx)
Hence, E2=E
This means E is a projection
Case 1.2 :Whenr=s=0ie. b +0
From (3) and (4), we get
c(l+d)=0andbc+d*=0
= (c=0o0rd=-1) andbc+d*=0
By taking ¢ = 0 and bc + d* = 0, we get
d=0
and by taking d =—1 and bc + d? = 0, we get

Thus, we get the following sub-cases:
Sub-case 1.2.1:a=1,¢=0,d=0

then we find

E(x,y)=(x+by,0)
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and Ez(x,y) E(x+by,0)

(x +by,0)

Here E* = E = E is a projection.
Sub-case 1.2.2:Whena=1,c#0,b=0,d=-1
Here, we find

E(x,y):(x+by,—%x—yj

and Ez(x,y): E(x+by,%x)’}

( -X X 3
=Lx+by—x—by,T—y+;+ y)
=(0,0)
ie.E°’=0
Hence, we conclude that when a = 1 then
Either E is a projection or E>=0
Similarly, we can deal with the case when d = 1 because equations are symmetrical in a and d.
Case 2 :When a =1

Now from (5), we get

(a-1)p =-br
-b
- % R 2.1)

and, from (7), we get

cp =—(d-Lr
—(d -1
I e T 2.2)
r c
from (2.1) and (2.2), we get
-b —-(d-1)
a—l_ c
= bc=(a-1)(d-1)
bc
= d-1=
a—-1
bc
= d= +1
a—-1
bc+a-1
> 0 = T (2.3)
a-1

Now, from (2), we get
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q=b(a+d)
=b{a+931321} {using (2.3)}
a-1
b a(a—-1)+bc+a-1
——{a(a-1) }
b,
:a—l{a —a+bc+a—1}
b 2
:a—l{a +bc-1}
b .
= (p-1) Lusing (1)} ceevirieeienan (2.4)
a-1
Again, from (3), we get
r =c(a+d)
- ——(p-1) (25)
- P = L)ttt .

Substituting the value of r from (2.5) in (5), we get

(a—Up+b{ (p-n}:o

a-1
= (a—1)2p+bc(p—1)=0

= (a—1)2p+(p—a2)(p—l)=0 {putting bc = p-a® from (1)}
= p(a2—2a+1)+p2—p—a2p+a2:0

= pa2—2ap+p+p2—p—a2p+a2:0

= p2—2ap+a2=0

= (p-a) =0
L TSSO ORSO USROS (2.6)

i.e. [ oSS SO PRSPPI (2.8)
Now, substituting bc = p — a2 from (1) in (2.3), we get
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=—_— {putting p = a from (2.6)}

i.e (o I R SRS (2.9)

Finally, we get
p=aq=b,r=cs=d
and then
Ez(x,y) = (pX + qy,rx +sy)
= (ax + by,cx + dy)
=E(XY)
ie. E°’=E
= Eis a projection.
Furthermore, we observe that equation (5), (6) (7) and (8) are satisfied by
p=qg=r=s= 0
In this case, we get
E*(x,y) = (0,0)
ie. E’=0
So, we need to show that this case exists also,

By setting p = 0, we get

a’+bc=0 LFOM (D)} (3.1)
By setting s = 0, we get
d’+bc=0 LFrOM (A} oo (3.2)

Subtracting (3.2) from (3.1), we get
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= (a-d)(a+d)=0

= a==+d

Considering a = d, we get

g=b(a+a) {puttingd =ain (2)}
or g = 2ab
= 0= 2ab {providing q = 0}

= Eithera=00rb=0

Taking a =0, we get

d=0 {asa=d}
From (3.1), we get

bc=0

= Eitherb=00rc=0
Thus, we consider the following cases :

Case [3.1.1] :

Takinga=0,b#0,c=0,d=0

In this case, we get
E(x,y)=(by,0)

and E*(x,y)=E(by,0)

=(0,0)

Case [3.1.2] :
Takinga=0,b=0,c#0,d=0
In this case, we get
E(x.¥) = (0.0x)
and E? (x, y) = E(0, cx)
=(0,0)

Case [3.1.3] :
Takinga=0,b=0,c=0,d=0
In this case, we get
E(x.y)=(0,0)
and E*(x,y)=(0,0)

i.e. E
Case [3.2.1] :

=0
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Taking a # 0Oandb =0
Then from equation (3.1), we get
a =0
= a = 0 which contradicts our assumption thata # 0

sowetake b # 0
Therefore, from equation (3.1), we get

c =
b

and from equation (2), we get
qg="b(a+d)
0=nb(a+d) {because q = 0}

=a+d=0

= 0 = —@ (3.3)
In this case, we observe also that
r=c(a+d) {from (3)}
=c(a-a) {from (3.3)}
=0
and s =hc+d’ {from (4)}
=bc +a* {from (3.3)}
=0 {from (3.1)}

Thus from the above observation, we get

2

-a
¢c=——andd = -a
b
Hence, E (x )—(ax+b ix—a\
) Y —L Y b y}
and Ez(x )—E(ax+b ix—a\
W Y) = L Y, b yJ
(a(ax by) b(_azx a\ _az(ax by) a(_azx aﬂ
= + +b) —x- ,—— + —a] —X —
( T Y T TY))
( 2 2 (_ ? 3\ 2 2 \
:L(a -a )x+(ab—ab)y,kTa+a?Jx+(a -a )yJ
=(0,0)
ie.E2=0

Thus non-trivial cases also exist when E? = 0.
Hence, we conclude that a (3, 2)-jection E on R? or C? is either a projection or
E°=0.
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