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Abstract 

        The  exact  solutions  of  a  compound  KdV-Burgers  equation  with  forcing  term  are  obtained by using  a  

homogeneous  balance  method. Moreover  finding  the  solutions for  compound  KdV, mKdV-Burgers, KdV-

Burgers ,mKdV   and  KdV   equations  with forcing term . These  are  the  particular  important  cases  of   that  

equation. 
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                                                                     1. INTRODUCTION 

 

     In  the  present  paper  we  consider  the  compound  KdV-Burgers  equation  with  forcing  term, 

 

                            ut   +  puux +  qu2ux  +  ruxx  –  suxxx  =  f(t),                                                                                     (1.1) 

 

where f(t)  is  an  external  forcing  function  varying  with  time  variable  t  and  p, q, r  and  s  are  constants, which  

can be  involving to  the  construction  of  the  KdV, mKdV  and  Burgers  equations  with  forcing  term,  such  as  

the  nonlinear, dispersion  and  dissipation  effects. Eq.(1.1)  contains  the  following  particular  important  cases.    

              

   (1)  p ≠ 0,  q ≠ 0, r = 0, s ≠ 0: (1.1)  becomes  compound  KdV equation  with  forcing  term 

 

                           ut   +  puux +  qu2ux  –  suxxx  =  f(t),                                                                                                      (1.2)                                                                    

 

   (2)  p = 0,  q ≠ 0, r ≠ 0, s ≠ 0: (1.1)  becomes    mKdV-Burgers  equation  with  forcing  term 

 

                          ut   +  qu2ux  +  ruxx  –  suxxx  =  f(t),                                                                                                       (1.3)                                                                        

 

   (3)  p ≠ 0,  q = 0, r ≠ 0, s ≠ 0: (1.1)  becomes   KdV-Burgers  equation  with  forcing  term 

                         

                         ut   +  puux  +  ruxx  –  suxxx =  f(t),                                                                                                           (1.4) 

                                 

  (4)  if  r = 0 in  (1.3)  and  (1.4) , then  we  obtain the mKdV  equation  with  forcing  term 

 

                     ut   +  qu2ux   –  suxxx  =  f(t),                                                                                                                           (1.5) 

     

      and  the  KdV  equation  with  forcing  term   

 

                      ut   +  puux   –  suxxx =  f(t),                                                                                                                             (1.6) 

       

      respectively. 
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           It  is  well  known  that  each  of  the  KdV, mKdV  and  Burgers  equation  with  forcing  term  is  exactly  

solvable  and  many  studies of  these  equations  have  already  been  undertaken. We  are the first report  studies of   

the  compound  KdV-Burgers  equation  with  forcing  term  which  includes  the  KdV-Burgers and mKdV-Burgers  

equation with forcing  term  by using  homogeneous  balance method [1]  , To see  there are  some studies  for  the 

KdV-Burgers  equation   with  forcing term  [2]-[6] .  

 

          Outline  of  this  paper -  in  section 2 , Analysis  of  the  homogeneous balance  method,  in  section 3, the  

exact  solutions  of  Eq.(1.1) will be found by use  of  this  method [1], and  exact  solutions  of  Eqs.(1.2)  ,(1.3)  and 

(1.5)  as  the  particular cases of  the solutions  for  Eq.(1.1), are  obtained. But  the  solutions  for  Eq.(1.4) and (1.6)  

are  cannot  be  obtained from the solution  of  Eq. (1.1) because solution forms are different  to  each  other, 

therefore in  section 4, we  start  from  Eq. (1.4)  to  use of  this method [1], to get  its  exact  solutions, in  section  

5,conclusion   our  results.  

 

 

                                                           2.  ANALYSIS  OF  THE  METHOD 

 

 

        Now  we  describe  that 

 

    1.  What  is  the  homogeneous  balance  method  and 

 

    2. How  to  use  it  to  look  for  special  exact  solutions  of  some  nonlinear  equations  in               

         mathematical   physics. 

 

    Suppose    Given    a    partial   differential  equation,  say   in  two  variables, 

 

                               𝑃 𝑢,   𝑢𝑥 , 𝑢𝑡 ,   𝑢𝑥𝑥 ,   𝑢𝑥𝑡 ,   𝑢𝑡𝑡 , ……… .  = 0.                                                                            (2.1) 

 

    Where   P  is  an  general   a    polynomial   function   of   its    arguments. 

 

    Eqs.(1.1)-(1.6)  are   all  different  to  the  type  of  Eq.(2.1). So  we  use  the  transformation 

                          

                                                    𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) +  𝑓 𝑡   𝑑𝑡                                                                              (2.2) 

          

    To  Eqs.(1.1)-(1.6), Then  Eqns.(1.1)-(1.6)  becomes, 

 

         vt   +  p(v +  𝑓 𝑡   𝑑𝑡)vx +  q 𝑣 +  𝑓 𝑡   𝑑𝑡 2vx  +  rvxx  –  svxxx  =  0,                                                         (2.3) 

        

         vt   +  p v +  𝑓 𝑡   𝑑𝑡 vx +  q 𝑣 +  𝑓 𝑡   𝑑𝑡 2vx   –  svxxx =  0,                                                                        (2.4) 

 

         vt  +  q(𝑣 +  𝑓 𝑡   𝑑𝑡)2vx  +  rvxx  –  svxxx  =  0,                                                                                                     (2.5) 

 

         vt   +  p(v +  𝑓 𝑡   𝑑𝑡)vx +  rvxx  –  svxxx  =  0,                                                                                                       (2.6) 

   

        vt  +  q(𝑣 +  𝑓 𝑡   𝑑𝑡)2vx  –  svxxx  =  0,                                                                                                                     (2.7) 

 

         vt   +  p(v +  𝑓 𝑡   𝑑𝑡)vx  –  svxxx  =  0,                                                                                                                    (2.8) 

 

Therefore,  Eqns.(2.3)-(2.8)  are all  same  type  of  Eqn.(2.1).  A  function    𝑤 = 𝑤(𝑥, 𝑡)  is  called  a   quasi 

solution of  Eq.(2.1), if  there exists  a  function    𝑓 = 𝑓(𝑤)  of  one  variable  only   so  that a  suitable  linear  

combination  of  following   functions, 

 

        1,  𝑓 𝑤 ,   𝑓(𝑤)𝑥 , 𝑓(𝑤)𝑡 , 𝑓(𝑤)𝑥𝑥 , 𝑓 𝑤 𝑥𝑡 , 𝑓(𝑤)𝑡𝑡 , …….                                                                            (2.9) 
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is actually a solution  of  Eq.(2.1).Here we will show how to find  𝑓(𝑤), the quasi solution 𝑤 = 𝑤(𝑥, 𝑡) and a 

suitable linear combination of the functions in (2.9) , and then to obtain special exact solutions of each equation in 

(2.3)-(2.8). This method of looking for special solutions of a nonlinear equation in mathematical physics is called 

the homogenous balance method which consists of four steps: 

 

 First step: choose a suitable linear combination of the functions in (2.9), maybe its coefficients to be 

determined, so  that  the  highest  nonlinear  terms  and  the  highest order partial derivative terms in the given  

equation  are  both  transformed  into  the  polynomials  with  a  highest  equality degree in partial derivatives of 

𝑤(𝑥, 𝑡) in spite of 𝑓 𝑤   and its various derivatives.”The highest equality degree” here is quite essential. 

 

 Taking  the  KdV-Burgers equation  with  forcing  term (2.6) as an example to  explain   explicitly the first 

step of the method assume that a linear combination of the functions in (2.9) is of the for 

 

 𝑣 =
𝜕𝑚 +𝑛

𝜕𝑥𝑚 𝜕𝑡𝑛
+  𝑎𝑙𝑙   𝑝𝑎𝑟𝑡𝑖𝑎𝑙  𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒   𝑡𝑒𝑟𝑚𝑠  𝑤𝑖𝑡  𝑙𝑜𝑤𝑒𝑟  𝑡𝑎𝑛  𝑚 + 𝑛 𝑜𝑟𝑑𝑒𝑟  𝑜𝑓  𝑓(𝑤) 

 

     = 𝑓(𝑚+𝑛) 𝑤𝑥
𝑚𝑤𝑡

𝑛           

                                    

      +  𝑎𝑙𝑙 𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑡 𝑙𝑜𝑤𝑒𝑟 𝑡𝑎𝑛  𝑚 + 𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑜𝑓 𝑤 𝑥, 𝑡 ,                 (2.10) 

 

Where  𝑚 ≥ 0, 𝑛 ≥ 0  are  integers to  be  determined. 

     The  nonlinear  term  in  Eq.(2.6)  is  transformed  into 

 

 𝑣𝑣𝑥 = 𝑓(𝑚+𝑛)𝑓(𝑚+𝑛+1) 𝑤𝑥
(2𝑚+1)

𝑤𝑡
2𝑛  

   

    +  𝑎𝑙𝑙 𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑡 𝑙𝑜𝑤𝑒𝑟 𝑡𝑎𝑛 2  𝑚 + 𝑛 + 1 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑜𝑓 𝑤 𝑥, 𝑡 .  
                                                                                                                                                                               (2.11) 

 

The  highest  order  partial  derivative term in  Eq.(2.6)  is  transformed  into 

 

 𝑣𝑥𝑥𝑥 = 𝑓(𝑚+𝑛+3) 𝑤𝑥
(𝑚+3)

𝑤𝑡
𝑛   

 

+  𝑎𝑙𝑙 𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑡 𝑙𝑜𝑤𝑒𝑟 𝑡𝑎𝑛   𝑚 + 𝑛 + 3 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑜𝑓 𝑤 𝑥, 𝑡 . 
                                                                                                                                                                               (2.12) 

 

Requiring the highest degrees in partial derivatives of 𝑤(𝑥, 𝑡)  in (2.11) and (2.12) are equal (i.e. nonlinear  and  

dispersive effects  are  partially  balanced) yields 

 

                        2𝑚 + 1 = 𝑚 + 3,                           2𝑛 = 𝑛,                                                                                    (2.13) 

 

Which  has a  non-negative  integer  solution: 𝑚 = 2, 𝑛 = 0,  therefore  we  can  choose  the  linear combination  as  

follows, 

  

                                   𝑣 = 𝑓𝑥𝑥 + 𝑎𝑓𝑥 + 𝑏 = 𝑓 ′′𝑤𝑥
2 + 𝑓 ′𝑤𝑥 + 𝑏,                                                                          (2.14) 

 

Which  is  the  origin  of   (4.1)  in  section 4   of   the   present  paper.      

 

      Second step: Substituting the linear combination chosen in the first step into Eq.(2.1), collecting all terms with 

the highest degree of derivatives of 𝑤(𝑥, 𝑡) and setting its coefficient to zero (we call that making a partial balance 

between the highest nonlinear terms and highest order partial derivative terms in Eq.(2.1)), we obtain an ordinary 

differential equation for 𝑓(𝑤) and then solve it, in most cases 𝑓(𝑤)  is a logarithm function (in the KdV-Burgers 

case, 𝑤𝑥
5 is the highest degree in partial derivatives of 𝑤(𝑥, 𝑡) in the nonlinear and highest order partial derivatives 

terms, the ODE and its solution are in (4.7) and (4.8) respectively, in section 4 of the present paper). 

 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 56 Issue 5 – April 2018 

 

ISSN: 2231-5373                                  http://www.ijmttjournal.org                             Page 323 
 

      Third step: Starting from the ODE and its solution obtained above, the nonlinear terms of various derivatives of 

𝑓(𝑤)  in the expression obtained in the second step can be replaced by the corresponding higher order derivatives of 

𝑓(𝑤) (in the Kdv-Burgers case, the results are in (4.9)). After doing this, collecting all terms with the same order 

derivatives of 𝑓(𝑤) and setting he coefficient of each order derivative of  𝑓(𝑤) to zero respectively , we obtain a set 

of equations for 𝑤(𝑥, 𝑡), the left hand sids of these equations are  the  k degree homogeneous functions in various 

derivatives of  𝑤(𝑥, 𝑡) , where k is the order of  𝑓𝑘  (in the Kdv-Burgers case see (4.10)). In view of the 

homogeneous property of these equations we can expect that  𝑤(𝑥, 𝑡) is an exponential function with some variable 

functions to be determined. If there exists a solution for these nonlinear algebraic equations, then 𝑤(𝑥, 𝑡) and the 

coefficients  of  the linear combination chosen in the first step can be determined (in the Kdv-Burgers case, see 

(4.11)-(4.13) ). 

 

      Fourth step: Substituting 𝑓(𝑤) and 𝑤(𝑥, 𝑡) as well as some constants  obtained in the  second  and  third  steps  

into  the combination chosen in the first step, after doing some calculations, we then obtain an exact solution of 

Eq,(2.1) (in the Kdv-Burgers case, see the result in (4.17) .  

 

 

                             3.  COMPOUND  KDV-BURGERS EQUATION  WITH  FORCING  TERM 

 

 

       In  this  section  the  exact  solution  of  the compound  KdV-Burgers  equation with  forcing  term (1.1)  and   

also  some  particular  important cases (1.2),(1.3) and (1.5)  will be found  by  homogeneous balance  method. 

   

       In  order  that  the  nonlinear  term  q𝑣2𝑣𝑥   and  the  third  order  derivative  term  −𝑠𝑣𝑥𝑥𝑥   in  Eq.(2.3)  can  be  

partially  balanced, we  suppose  that  the  solution  of (2.3)  is  of  the  form 

 

                           𝑣(𝑥, 𝑡) = 𝑎𝑓𝑥 𝑤 + 𝑏 = 𝑎𝑓 ′𝑤𝑥 + 𝑑,         𝑤 = 𝑤(𝑥, 𝑡)                                                               (3.1)  

 

Where  the  function  𝑓  and  the  function  𝑤  as well as  the  constants  a  and  𝑑 = 𝑎𝑏  are  to  be  determined. 

From (2.1)  one  obtains 

       

                           𝑣𝑡 =  𝑎𝑓 ′′𝑤𝑥𝑤𝑡 + 𝑎𝑓 ′𝑤𝑥𝑡 ,                                                                                                             (3.2) 

 

                       𝑝𝑣𝑣𝑥 =   𝑝𝑎2  𝑓 ′𝑓 ′′𝑤𝑥
3 + 𝑓 ′2𝑤𝑥𝑤𝑥𝑥 + 𝑏𝑓 ′′𝑤𝑥

2 + 𝑏𝑓 ′𝑤𝑥𝑥  ,                                                              (3.3) 

 

     𝑝   𝑓 𝑡   𝑑𝑡 𝑣𝑥  =   𝑝𝑎   𝑓 𝑡  𝑑𝑡   𝑓 ′′𝑤𝑥
2 + 𝑓 ′𝑤𝑥𝑥  ,                                                                                       (3.4) 

 

                     𝑞𝑣2𝑣𝑥 =   𝑞𝑎3  𝑓 ′2𝑓 ′′𝑤𝑥
4 + 𝑓 ′3𝑤𝑥

2𝑤𝑥𝑥 + 2𝑏𝑓 ′𝑓 ′′𝑤𝑥
3 + 2𝑏𝑓 ′2𝑤𝑥𝑤𝑥𝑥 + 𝑏2𝑓 ′′𝑤𝑥

2 +  𝑏2𝑓 ′𝑤𝑥𝑥           (3.5) 

                                                                                       

    𝑞   𝑓 𝑡  𝑑𝑡 2𝑣𝑥 = 𝑞𝑎  𝑓 𝑡  𝑑𝑡 2(𝑓 ′′𝑤𝑥
2 + 𝑓 ′𝑤𝑥𝑥 )                                                                                          (3.6) 

 

  2𝑞  𝑓 𝑡  𝑑𝑡 𝑣𝑣𝑥 =   2𝑞𝑎2  𝑓 𝑡  𝑑𝑡 (𝑓 ′𝑓 ′′𝑤𝑥
3 + 𝑏𝑓 ′′𝑤𝑥

2 + 𝑓 ′2𝑤𝑥𝑤𝑥𝑥 + 𝑏𝑓 ′𝑤𝑥𝑥 )                                           (3.7) 

 

                          𝑟𝑣𝑥𝑥 = 𝑟𝑎(𝑓 3 𝑤𝑥
3 + 3𝑓 ′′𝑤𝑥𝑤𝑥𝑥 + 𝑓 ′𝑤𝑥𝑥𝑥 )                                                                                     (3.8) 

 

                   −𝑠𝑢𝑥𝑥𝑥 =  −𝑠𝑎 𝑓 4 𝑤𝑥
4 + 6𝑓 3 𝑤𝑥

2𝑤𝑥𝑥 + 4𝑓 ′′𝑤𝑥𝑤𝑥𝑥𝑥 + 3𝑓 ′′𝑤𝑥𝑥
2 + 𝑓 ′𝑤𝑥𝑥𝑥𝑥  .                                  (3.9) 

 

First  collecting  the  terms  with  𝑤𝑥
4  in (3.5)  and  (3.9), and  setting  its  coefficient  to  zero,  we  obtain  an  

ordinary  differential  equation  for  𝑓(𝑤) 

 

                          𝑠𝑓 4 − 𝑞𝑎2𝑓 ′2𝑓 ′′ = 0                                                                                                                 (3.10) 

 

Specifically, we  assume  that 
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              𝑞𝑠 > 0,    𝑎 > 0,                                                                                                                                       (3.11) 

 

Then  the  ODE (3.10)  has  two  solutions 

 

                𝑓 = ±
1

𝑎
 

6𝑠

𝑞
ln 𝑤 ,                                                                                                                                (3.12) 

Thereby 

 

        𝑓 ′𝑓 ′′ = ∓
1

2𝑎
 

6𝑠

𝑞
 𝑓(3),              𝑓 ′3 =

3𝑠

𝑞𝑎 2  𝑓(3),                𝑓 ′2 =  ∓
1

𝑎
 

6𝑠

𝑞
  𝑓 ′′.                                                 (3.13) 

 

Substituting  (3.2)-(3.9)  into  the  left hand  side  of  Eq. (2.3) and  using (3.10)-(3.13), we obtain 

 

     vt   +  p(v +  𝑓 𝑡   𝑑𝑡)vx +  q(𝑣 +  𝑓 𝑡   𝑑𝑡)2vx  +  rvxx  –  svxxx  

 

                   = [{𝑟𝑎 ∓
𝑝𝑎

2
 

6𝑠

𝑞
 ∓ 𝑞𝑎  

6𝑠

𝑞
  𝑎𝑏 +  𝑓 𝑡  𝑑𝑡 )} 𝑤𝑥

3 − 3𝑠𝑎 𝑤𝑥
2𝑤𝑥𝑥   𝑓

 3  

                       +[𝑎𝑤𝑥𝑤𝑡 + (3𝑟𝑎 ∓ {𝑝𝑎 + 2𝑞𝑎2𝑏 + 2𝑞𝑎  𝑓 𝑡  𝑑𝑡} 
6𝑠

𝑞
 )  𝑤𝑥𝑤𝑥𝑥  

                       + 𝑝𝑎2𝑏 + 𝑞𝑎3𝑏2 + 𝑎  𝑓 𝑡  𝑑𝑡 { 𝑝 + 𝑞  𝑓 𝑡  𝑑𝑡) + 2𝑞𝑎𝑏} 𝑤𝑥
2 − 3𝑠𝑎 𝑤𝑥𝑥

2 −  4𝑠𝑎 𝑤𝑥𝑤𝑥𝑥𝑥  𝑓 2 +
                               [𝑎𝑤𝑥𝑡 + (𝑝𝑎2𝑏 + 𝑞𝑎3𝑏2 + 𝑎  𝑓 𝑡  𝑑𝑡 {𝑝 + 𝑞( 𝑓 𝑡  𝑑𝑡} +  2𝑞𝑎𝑏) +  𝑟𝑎 𝑤𝑥𝑥𝑥 − 𝑠𝑎 𝑤𝑥𝑥𝑥𝑥 ] 𝑓 ′ .                                                                         
                                                                                                                                                                              (3.14)  

Setting  the coefficients  of  𝑓(3), 𝑓 ′′  and  𝑓 ′  in  (3.14)  to  zero  respectively, we  obtain  a  set  of equations  for  

𝑤(𝑥, 𝑡) 

 

                                                   {𝑟 ∓
𝑝

2
 

6𝑠

𝑞
 ∓ 𝑞  

6𝑠

𝑞
  (𝑎𝑏 +  𝑓 𝑡  𝑑𝑡 )} 𝑤𝑥

3 − 3𝑠 𝑤𝑥
2𝑤𝑥𝑥 = 0, 

   

𝑤𝑥𝑤𝑡 + {3𝑟 ∓ (𝑝 + 2𝑞𝑎𝑏 + 2𝑞  𝑓 𝑡  𝑑𝑡} 
6𝑠

𝑞
 ) 𝑤𝑥𝑤𝑥𝑥 + (𝑝𝑎𝑏 + 𝑞𝑎2𝑏2 +  𝑓 𝑡  𝑑𝑡 { 𝑝 +

                                                            𝑞  𝑓 𝑡  𝑑𝑡) + 2𝑞𝑎𝑏} 𝑤𝑥
2 − 3𝑠 𝑤𝑥𝑥

2 − 4𝑠 𝑤𝑥𝑤𝑥𝑥𝑥           = 0,  
 

   𝑤𝑥𝑡 +  𝑝𝑎𝑏 + 𝑞𝑎2𝑏2 +  𝑓 𝑡  𝑑𝑡 {𝑝 + 𝑞( 𝑓 𝑡  𝑑𝑡} + 2𝑞𝑎𝑏 𝑤𝑥𝑥 +  𝑟 𝑤𝑥𝑥𝑥 − 𝑠 𝑤𝑥𝑥𝑥𝑥 = 0 .       

                                                                                                                                                                               (3.15) 

 

From  the  discussion  above  we  come  to  the  conclusion  that  if  we  take  𝑓   as  in  (3.12)  and  𝑤(𝑥, 𝑡)   satisfies   

Eq.(3.15), then (3.1)  is  actually  a  solution  of  Eq.(2.3). 

     

      To  solve  Eq.(3.15), we  can  suppose  that  the solution  of  Eqs.(3.15) is of the form  

 

           𝑤 𝑥, 𝑡 = 1 + exp 𝛼 𝑡 𝑥 + 𝛽 𝑡 𝑡 + 𝜃0 ,                                                                                                  (3.16) 

 

Where  𝛼 𝑡   and    𝛽 𝑡   are  variable  functions   to  be  determined,  and   𝜃0  is  an  arbitrary   constant. 

 

     Substituting  (3.16)  into  (3.15),  we  find  that  (3.16)  satisfies (3.15)  provided  that  𝑎 , 𝑏 ,   𝛼 𝑡   𝑎𝑛𝑑   𝛽 𝑡   

satisfy  the  following  conditions 

   

                                                                             𝑟 ∓
𝑝

2
 

6𝑠

𝑞
 ∓ 𝑞  

6𝑠

𝑞
  (𝑎𝑏 +  𝑓 𝑡  𝑑𝑡 )  𝛼3 − 3𝑠 𝛼4 = 0, 

 

     𝛼 𝛼 ′𝑥 + 𝛽′𝑡 + 𝛽 +  3𝑟 ∓ (𝑝 + 2𝑞𝑎𝑏 + 2𝑞  𝑓 𝑡  𝑑𝑡) 
6𝑠

𝑞
   𝛼3 +  𝑝𝑎𝑏 + 𝑞𝑎2𝑏2 +  𝑓 𝑡  𝑑𝑡 ( 𝑝 +

                                                                                                                      𝑞( 𝑓 𝑡  𝑑𝑡 ) + 2𝑞𝑎𝑏 𝛼2 − 7𝑠 𝛼4   = 0,  
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𝛼 𝛼 ′𝑥 + 𝛽′𝑡 + 𝛽 + 𝛼 ′ +  𝑝𝑎𝑏 + 𝑞𝑎2𝑏2 +  𝑓 𝑡  𝑑𝑡 (𝑝 + 𝑞( 𝑓 𝑡  𝑑𝑡) + 2𝑞𝑎𝑏) 𝛼2 + 

                                                                                                                                                                  𝑟𝛼3  − 𝑠𝛼4 = 0.   

                                                                          

                                                                                                                                                                                 (3.17) 

Solving  the  algebraic  equations  (3.17)  we  obtain 

 

        𝑎 > 0 ,  b    are  arbitrary constants   ,            𝛼(𝑡) = 𝛼∓(𝑡) ,     𝛽 = 𝛽∓ (𝑡)  ,                                              (3.18a) 

                                                                                     

  Where   

 

 𝛼∓ 𝑡 = 𝑐,  𝛽∓ (𝑡) =   
−𝑐2

𝑡
   

 𝑓 𝑡  𝑑𝑡  [𝑝+𝑞  𝑓 𝑡  𝑑𝑡+2𝑞𝑎𝑏 ]

𝑡
   𝑑𝑡 –  

log 𝑡   𝑐2

𝑡
 [𝑝𝑎𝑏 + 𝑞𝑎2𝑏2 + 𝑟𝑐 − 𝑠𝑐2] 

 

                                                                                                                                                                                 (3.19)          

 

 Since  we  have  found  𝑓 𝑤   and  𝑤 𝑥, 𝑡 ,  by  substituting  (3.12)  and  (3.16)  with  (3.18a) and  (3.19) into (3.1)  

and  using  the  equality 

   

                                                             
exp 𝜃

1+exp 𝜃
=  

1

2
tanh

1

2
 𝜃 +

1

2
, 

 

We  obtain a  pair  of   exact  solutions  of  Eq. (2.3) 

 

 𝑣 𝑥, 𝑡 = ± 
6𝑠

𝑞
  

𝑐  exp 𝜃∓

1+exp 𝜃∓
 + 𝑑 =  ±

𝑐

2
   

6𝑠

𝑞
  tanh

1

2
 𝜃± + 1 + 𝑑,                                                                       (3.20) 

 

Where  

 

      𝜃∓ = 𝛼∓(𝑡)𝑥 + 𝛽∓(𝑡)𝑡 + 𝜃0,              𝜃0 =  an  arbitrary  constant                                   (3.21)                                                             

. 

 

Now ,  a  pair  of  exact  solutions  of   Eq.(1.1)  by  using (2.2),  (3.20)  and (3.21) we  get 

 

     𝑢(𝑥, 𝑡) =  ±
𝑐

2
   

6𝑠

𝑞
  tanh

1

2
  𝑐𝑥 +  

−𝑐2

𝑡
   

 𝑓 𝑡  𝑑𝑡  [𝑝+𝑞  𝑓 𝑡  𝑑𝑡+2𝑞𝑎𝑏 ]

𝑡
   𝑑𝑡 –  

log 𝑡   𝑐2

𝑡
  𝑝𝑎𝑏 +  𝑞𝑎2𝑏2 +  𝑟𝑐 −

                           𝑠𝑐2  𝑡 + 𝜃0 + 1 + 𝑑 +  𝑓 𝑡  𝑑𝑡.                                                                                              (3.22) 

                             

Where  c ,b,d  and  a  are  arbitrary  constants. 

 

Now  consider  two  special  cases  of   the  compound  KdV-Burgers  equation  with  forcing  term: 

 

   (1). If  𝑟 = 0     in  (2.3),  then  the  algebraic  equations (3.17)  have  solutions 

 

        𝑎 > 0   𝑎𝑛𝑑   b   are  arbitrary constants   ,       𝛼(𝑡) = 𝛼1∓
(𝑡),     𝛽 = 𝛽1∓

(𝑡)  ,                                         (3.18b) 

                                                                                    

  Where   

 

   𝛼1∓
(𝑡) = 𝑐 ,  𝛽1∓

(𝑡) =   
−𝑐2

𝑡
   

 𝑓 𝑡  𝑑𝑡  [𝑝+𝑞  𝑓 𝑡  𝑑𝑡+2𝑞𝑎𝑏 ]

𝑡
   𝑑𝑡 –  

log 𝑡   𝑐2

𝑡
 [𝑝𝑎𝑏 + 𝑞𝑎2𝑏2 − 𝑠𝑐2] 

 

                                                                                                                                                                                 (3.23)    

 

And  a  pair  of  exact  solutions  of  the  compound  KdV  equation with  forcing  term  (2.4)  are obtained  by  

substituting  (3.12)  and  (3.16)  with  (3.18b)   and   (3.23) into  (3.1)  namely 
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     𝑣 𝑥, 𝑡 = ± 
6𝑠

𝑞
  

𝑐 exp 𝜃1∓

1+exp 𝜃1∓

 + 𝑑 =  ±
𝑐

2
   

6𝑠

𝑞
  tanh

1

2
 𝜃1∓

+ 1 + 𝑑,                                                               (3.24) 

 

Where  

 

      𝜃1∓
= 𝛼1∓

(𝑡)𝑥 + 𝛽1∓
(𝑡)𝑡 + 𝜃0,              𝜃0 =  an  arbitrary  constant                                                             (3.25)    

 

Now ,  a  pair  of  exact  solutions  of   Eq.(1.2)  by  using (2.2) , (3.23), (3.24)  and (3.25) we  get 

 

      𝑢(𝑥, 𝑡) =  ±
𝑐

2
   

6𝑠

𝑞
  tanh

1

2
  𝑐𝑥 +  

−𝑐2

𝑡
   

 𝑓 𝑡  𝑑𝑡  [𝑝+𝑞  𝑓 𝑡  𝑑𝑡+2𝑞𝑎𝑏 ]

𝑡
   𝑑𝑡–  

log 𝑡   𝑐2

𝑡
  𝑝𝑎𝑏 + 𝑞𝑎2𝑏2 − 𝑠𝑐2  𝑡 +

                            𝜃0 + 1 + 𝑑 +  𝑓 𝑡  𝑑𝑡.                                                                                                           (3.26) 

 

Where  c, b ,d and  a  are  arbitrary constants. 

 

       If   𝑝 = 0  and     in  (3.24),  then  we  obtain  a  pair  of  exact  solutions  of   (2.7)  is, 

 

        𝑣 𝑥, 𝑡 = ± 
6𝑠

𝑞
  

𝑐 exp 𝜃2∓

1+exp 𝜃2∓

 + 𝑑 =  ±
𝑐

2
   

6𝑠

𝑞
  tanh

1

2
 𝜃2∓

+ 1 + 𝑑,                                                            (3.27) 

                      

Where  

 

      𝜃2∓
= 𝛼2∓

(𝑡)𝑥 + 𝛽2∓
(𝑡)𝑡 + 𝜃0,          𝜃0 =  an  arbitrary  constant                          

                                                                  

      𝛼2∓
(𝑡) = 𝑐 ,  𝛽2∓

(𝑡) =   
−𝑐2

𝑡
   

 𝑓 𝑡  𝑑𝑡  [𝑞  𝑓 𝑡  𝑑𝑡+2𝑞𝑎𝑏 ]

𝑡
   𝑑𝑡 –  

log 𝑡   𝑐2

𝑡
 [𝑞𝑎2𝑏2 − 𝑠𝑐2]                                  (3.28)    

 

Now ,  a  pair  of  exact  solutions  of   Eq.(1.5)  by  using (2.2) , (3.27)  and  (3.28) , we  get 

 

      𝑢(𝑥, 𝑡) =  ±
𝑐

2
   

6𝑠

𝑞
  tanh

1

2
  𝑐𝑥 +  

−𝑐2

𝑡
   

 𝑓 𝑡  𝑑𝑡  [𝑞  𝑓 𝑡  𝑑𝑡+2𝑞𝑎𝑏 ]

𝑡
   𝑑𝑡 –  

log 𝑡   𝑐2

𝑡
  𝑞𝑎2𝑏2 −  𝑠𝑐2  t + 𝜃0 +

                             1 + 𝑑 +  𝑓 𝑡  𝑑𝑡.                                                                                                                      (3.29) 

 

Where   c, b ,d and  a  are  arbitrary  constants.. 

 

  (2) .  If   𝑝 = 0  in (2.3), then  algebraic  equations (3.17)  have  solutions  

 

        𝑎 > 0 ,  b    are  arbitrary constants  ,          𝛼(𝑡) = 𝛼3∓
(𝑡),     𝛽 = 𝛽3∓

(𝑡)  ,                                               (3.18c) 

 

Where   

 

   𝛼3∓
(𝑡) = 𝑐 ,  𝛽3∓ (𝑡) =   

−𝑐2

𝑡
   

 𝑓 𝑡  𝑑𝑡  [𝑞  𝑓 𝑡  𝑑𝑡+2𝑞𝑎𝑏 ]

𝑡
   𝑑𝑡 –  

log 𝑡   𝑐2

𝑡
 [𝑞𝑎2𝑏2 + 𝑟𝑐 − 𝑠𝑐2] 

                                                                                                                                                                               (3.30) 

 

And  a  pair  of  exact  solutions  for  the  mKdv-Burgers  equation  with  forcing  term (2.5)  are obtained  by  

substituting  (3.12)  and  (3.16)  with (3.18c)  and  (3.30)  into  (3.1), namely 

 

               𝑣 𝑥, 𝑡 = ±
𝑐

2
   

6𝑠

𝑞
  tanh

1

2
 𝜃3∓

+ 1 + 𝑑,                                                                                             (3.31). 

Where 
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             𝜃3∓
= 𝛼3∓

(𝑡)𝑥 + 𝛽3∓
(𝑡)𝑡 + 𝜃0                                                                                                                (3.32) 

 

Now ,  a  pair  of  exact  solutions  of   Eq.(1.3)  by  using (2.2)  ,(3.30),  (3.31) and (3.32), we  get 

 

    𝑢(𝑥, 𝑡) =  ±
𝑐

2
   

6𝑠

𝑞
  tanh

1

2
  𝑐𝑥 +  

−𝑐2

𝑡
   

 𝑓 𝑡  𝑑𝑡  [𝑞  𝑓 𝑡  𝑑𝑡+2𝑞𝑎𝑏 ]

𝑡
   𝑑𝑡 –  

log 𝑡   𝑐2

𝑡
  𝑞𝑎2𝑏2 +  𝑟𝑐 −  𝑠𝑐2  𝑡 +

                           𝜃0 + 1 + 𝑑 +  𝑓 𝑡  𝑑𝑡.                                                                                                             (3.33) 

 

Where  c, b ,d and  a  are  arbitrary  constants.. 

  

We  cannot  obtain  the  solution  of  the  KdV-Burgers  equation  with  forcing  term (1.4) and KdV  equation with 

forcing term (1.6)   from (3.22)  as 𝑞 = 0 and  𝑞 = 𝑟 = 0  because  solution form  is  different  to  the  above  type  

of   equations  solution  form. 

 

In  the  next  section, we  will  discuss  the  KdV-Burgers equation with  forcing  term and  KdV  equation  with  

forcing  term. 

 

 

                                          4.  KDV-BURGERS  EQUATION WITH  FORCING  TERM 

 

 

       In  this  section  the  exact  solution  of  the  KdV-Burgers  equation with  forcing  term (1.4)  and  thus  the  

particular case - KdV  equation with  forcing  term (1.6) also  will be found  by  homogeneous balance  method. 

     

      In  order  that  the  nonlinear  term  𝑝𝑣𝑣𝑥   and  the  third  order  derivative  term  −𝑠𝑣𝑥𝑥𝑥   in  Eq.(2.6)  can  be  

partially  balanced, we  suppose  that  the  solution  of (2.6)  is  of  the  form 

 

           𝑣 𝑥, 𝑡 = 𝑓𝑥𝑥 + 𝑎𝑓𝑥 𝑤 + 𝑏 = 𝑓 ′′𝑤𝑥
2 + 𝑓 ′𝑤𝑥𝑥 + 𝑎𝑓 ′𝑤𝑥 + 𝑏,          𝑤 = 𝑤(𝑥, 𝑡)                                        (4.1)  

 

Where  the  function  𝑓  and  the  function  𝑤  as well as  the  constants  a  and  𝑏  are  to  be  determined. From (4.1)  

one  obtains 

 

                               𝑣𝑡 =  𝑓(3)𝑤𝑥
2𝑤𝑡 + 𝑓 ′′(𝑎𝑤𝑥𝑤𝑡 + 2𝑤𝑥𝑤𝑥𝑡 + 𝑤𝑥𝑥𝑤𝑡) + 𝑓 ′(𝑎 𝑤𝑥𝑡 + 𝑤𝑥𝑥𝑡 ),                                  (4.2) 

   

                       𝑝𝑣𝑣𝑥 =   𝑝   𝑓 ′′𝑓 3 𝑤𝑥
5 + 𝑓 ′′2 3 𝑤𝑥

3𝑤𝑥𝑥 + 𝑎 𝑤𝑥
4 + 𝑓 ′𝑓 3  𝑤𝑥

3𝑤𝑥𝑥 + 𝑎 𝑤𝑥
4 + 𝑏𝑓 3 𝑤𝑥

3 +

                                           𝑓 ′𝑓 ′′  𝑎2𝑤𝑥
3 + 𝑤𝑥

2𝑤𝑥𝑥𝑥 + 5𝑎 𝑤𝑥
2𝑤𝑥𝑥 + 3 𝑤𝑥𝑤𝑥𝑥

2   + 𝑓 ′′ 𝑎𝑏𝑤𝑥
2 +  3𝑏𝑤𝑥𝑤𝑥𝑥  +

                                            𝑓 ′2 (  𝑎2 𝑤𝑥𝑤𝑥𝑥 + 𝑤𝑥𝑥𝑤𝑥𝑥𝑥 + 𝑎𝑤𝑥𝑥
2 + 𝑎𝑤𝑥𝑤𝑥𝑥𝑥  + 𝑓 ′(𝑏 𝑤𝑥𝑥𝑥 + 𝑎𝑏𝑤𝑥𝑥 )], 

                                                                                                                                                                                   (4.3) 

 

     𝑝   𝑓 𝑡   𝑑𝑡 𝑣𝑥  =   𝑝𝑎   𝑓 𝑡  𝑑𝑡   𝑓 ′′′𝑤𝑥
3 + 3𝑓 ′′𝑤𝑥  𝑤𝑥𝑥 + 𝑓 ′𝑤𝑥𝑥𝑥 + 𝑎 𝑓 ′′𝑤𝑥

2 + 𝑎 𝑓 ′ 𝑤𝑥𝑥  ,                         (4.4) 

 

                       𝑟 𝑣𝑥𝑥 =   𝑟   𝑓 4 𝑤𝑥
4 + 𝑓 3  (6 𝑤𝑥

2𝑤𝑥𝑥 + 𝑎 𝑤𝑥
3 +  𝑓 ′′ 3 𝑤𝑥𝑥

2 +  3𝑎𝑤𝑥𝑤𝑥𝑥 + 4 𝑤𝑥𝑤𝑥𝑥𝑥   +

                                             𝑓 ′( 𝑤𝑥𝑥𝑥𝑥 + 𝑎𝑤𝑥𝑥𝑥 )],                                                                                                         (4.5) 

 

                  −𝑠 𝑣𝑥𝑥𝑥 =   −𝑠  𝑓 5 𝑤𝑥
5 + 𝑓 4  (10 𝑤𝑥

3𝑤𝑥𝑥 + 𝑎 𝑤𝑥
4  + 𝑓 3  (10 𝑤𝑥

2𝑤𝑥𝑥𝑥 + 6𝑎 𝑤𝑥
2𝑤𝑥𝑥 +   15 𝑤𝑥𝑤𝑥𝑥

2 ) +

                                          𝑓 ′′ 3𝑎𝑤𝑥𝑥
2 +  5𝑤𝑥𝑤𝑥𝑥𝑥𝑥 +  10 𝑤𝑥𝑥𝑤𝑥𝑥𝑥 + 4𝑎 𝑤𝑥𝑤𝑥𝑥𝑥  +  𝑓 ′( 𝑤𝑥𝑥𝑥𝑥𝑥 + 𝑎𝑤𝑥𝑥𝑥𝑥 )]       

                                                                                                                                                                                  (4.6) 

 

Collecting  all  terms  with  𝑤𝑥
5  in  (4.3)  and  (4.6), and  setting  the  coefficients  of  𝑤𝑥

5  to  zero,  we  obtain  

ordinary differential equation 
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                      𝑠𝑓 5 −   𝑝 𝑓 ′′𝑓 3 = 0,                                                                                                                      (4.7)       

 

Which  has  a  solution     

 

               𝑓 = −
12𝑠

𝑝
ln 𝑤 ,                                                                                                                                       (4.8) 

 

Thereby 

 

      𝑓 ′𝑓 ′′ =
6𝑠

𝑝
 𝑓(3),              𝑓 ′2 =

12𝑠

𝑝
 𝑓(2),                𝑓 ′′2 =  

2𝑠

𝑝
  𝑓(4),        𝑓 ′𝑓 ′′′ =

4𝑠

𝑝
 𝑓(4) .                                     (4.9)     

 

Substituting  (4.2)-(4.6)  into the  left hand side of Eq.(2.6), and  using (4.9), we  have  

 

  vt   +  p  v +  𝑓 𝑡   𝑑𝑡 vx +  rvxx  –  svxxx

=  𝑓 4  r + 5sa 𝑤𝑥
4

+ 𝑓 3  wx
2wt +  pb + ra + 6sa2 +   p  f t   dt    𝑤𝑥

3 − 4s 𝑤𝑥
2wxxx  +  24 as + 6r 𝑤𝑥

2wxx

+ 3s wxwxx
2  

+ f ′′   2 wx  wxt + wxx wt + a  wx  wt + (3pb + 3ra + 12sa2 + 3 p   f(t) dt wx  wxx

+ pa  b +  f t  dt   wx
2 + 2s  wxx  wxxx +  9sa + 3r wxx

2 +  8 sa + 4r wx  wxxx

− 5s  wx  wxxxx  

+ f ′  −s wxxxxx +  r − sa  wxxxx  + (ra + pb + p   f t  dt    wxxx  +   wxxt

+   pa  b +  f t  dt   wxx + a wxt  .  

                                                                                                                                                                              (4.10) 

Now  we  take 

 

                   𝑎 =
−𝑟

5𝑠
                                                                                                                                                (4.11) 

 

 

And  assume 

 

          𝑤 = 1 + exp 𝛼 𝑡 𝑥 + 𝛽 𝑡 𝑡 ,                                                                                                                   (4.12) 

 

With  𝛼 𝑡   and  𝛽 𝑡   are  variable  functions to  be  determined. Substituting  (4.11)  and  (4.12)  into (4.10),  we 

find  that  the right hand side of (4.10) vanishes provided that  𝑏 , 𝛼 𝑡   𝑎𝑛𝑑  𝛽 𝑡   satisfy the following  algebraic 

equations 

 

                                   𝛼2 𝛼 ′𝑥 + 𝛽′𝑡 + 𝛽 +  𝑝𝑏 +
𝑟2

25𝑠
+ 𝑝  𝑓 𝑡  𝑑𝑡  𝛼3 +

6𝑟

5
 𝛼4 − 𝑠𝛼5 = 0 , 

 

 

𝛼2  3 𝛼 ′𝑥 + 𝛽′𝑡 + 𝛽 −
𝑝𝑟

5𝑠
  𝑓 𝑡   𝑑𝑡 −

𝑝𝑟𝑏

5𝑠
 + 𝛼  2𝛼 ′ −

𝑟

5𝑠
  𝛼 ′𝑥 + 𝛽′𝑡 + 𝛽  +

18𝑟

5
 𝛼4 +

                                                                                        

                                                                               3𝑝  𝑓 𝑡  𝑑𝑡 + 𝑏 −
3𝑟2

25𝑠
 𝛼3 − 3𝑠 𝛼5 = 0, 
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−
𝛼 ′𝑟

5𝑠
+ 𝛼  

−𝑟

5𝑠
  𝛼 ′𝑥 + 𝛽′𝑡 + 𝛽 + 2𝛼 ′ +    𝛼2    𝛼 ′𝑥 + 𝛽′𝑡 + 𝛽 +

−𝑝𝑟𝑏

5𝑠
+ (

−𝑝𝑟

5𝑠
)( 𝑓 𝑡  𝑑𝑡) +

                                                                    𝛼3  
−𝑟2

5𝑠
+ 𝑝𝑏 + 𝑝( 𝑓 𝑡  𝑑𝑡) +    𝛼4   

6𝑟

5
 − 𝛼5 𝑠 = 0                           (4.13) 

 

 

  Solving  the  algebraic  equations  (4.13)  we  obtain 

                         

 𝛼 𝑡 = 𝑐,  𝛽 (𝑡) =   
−𝑝𝑐

𝑡
   

 𝑓 𝑡  𝑑𝑡  

𝑡
   𝑑𝑡 –  

log 𝑡   

5𝑡
 [5𝑝𝑐𝑏 + 6𝑐2𝑟]                                                                          (4.14) 

                                                                                                                                                                                                                                                                                                                       

Since  we  have  found  𝑓 𝑤   and  𝑤 𝑥, 𝑡 ,  by  substituting  (4.8) , (4.12)  and  (4.14) into (4.1)  and  using  the  

equality 

   

                                                             
exp 𝜃

1+exp 𝜃
=  

1

2
tanh

1

2
 𝜃 +

1

2
, 

 

We  obtain  a   exact  solution  of  Eq. (2.6)   is, 

 

 𝑣 𝑥, 𝑡 =
12𝑠 𝑐2

𝑝
   

 exp 𝜃

1+exp 𝜃
 

2

−  
 exp 𝜃

1+exp 𝜃
 +

12𝑟𝑐

5𝑝
 

 exp 𝜃

1+exp 𝜃
 + 𝑏                                                                

 

               =  −  
3𝑠 𝑐2

𝑝
 𝑠𝑒𝑐2 1

2
 𝜃 +

6𝑟𝑐

5𝑝
tanh

1

2
𝜃 +

6𝑟𝑐

5𝑝
+ 𝑏,                                                                                         (4.15) 

 

Where  

 

      𝜃 = 𝛼(𝑡)𝑥 + 𝛽(𝑡)𝑡 + 𝜃0,              𝜃0 =  an  arbitrary  constant                                   (4.16)                                                             

. 

Now , exact  solutions  of   Eq.(1.4)  by  using (2.2) , (4.14),(4.15) and (4.16), we  get 

 

  𝑢(𝑥, 𝑡) =  −  
3𝑠 𝑐2

𝑝
 𝑠𝑒𝑐2 1

2
  𝑐𝑥 +  

−𝑝𝑐

𝑡
   

 𝑓 𝑡  𝑑𝑡  

𝑡
   𝑑𝑡 –  

log 𝑡   

5𝑡
  5𝑝𝑐𝑏 + 6𝑐2𝑟  𝑡 + 𝜃0 + 

 

     
6𝑟𝑐

5𝑝
tanh

1

2
  𝑐𝑥 +  

−𝑝𝑐

𝑡
   

 𝑓 𝑡  𝑑𝑡  

𝑡
   𝑑𝑡 –  

log 𝑡   

5𝑡
  5𝑝𝑐𝑏 + 6𝑐2𝑟  𝑡 + 𝜃0 +

6𝑟𝑐

5𝑝
+ 𝑏 +  𝑓 𝑡  𝑑𝑡.                                                                                                                         

 

                                                                                                                                                                                 (4.17) 

 

Where  𝑏  𝑎𝑛𝑑  𝑐  are  arbitrary   constants. 

                    

It  should  be  noted  that  we  cannot  obtain  the  solution of  the  KdV equation (1.6)  from (4.17)  as  𝑟 = 0.  
however , we  can  still suppose that the solution of  KdV equation (1.6) is of the  form (4.1), then the results of 

(4.2)-(4.13) also hold as 𝑟 = 0  and  therefore 𝑎 = 0.   
 

     From  (4.17)  as  𝑟 = 0  we  obtain the exact solution of (1.6)  is 

 

𝑢(𝑥, 𝑡) =  −  
3𝑠 𝑐2

𝑝
 𝑠𝑒𝑐2 1

2
  𝑐𝑥 +  

−𝑝𝑐

𝑡
   

 𝑓 𝑡  𝑑𝑡  

𝑡
   𝑑𝑡 –  

log 𝑡   

5𝑡
  5𝑝𝑐𝑏  𝑡 + 𝜃0 + 𝑏 +  𝑓 𝑡  𝑑𝑡.     

                                                                                                                                                                                (4.18) 

 Where  𝑏  𝑎𝑛𝑑  𝑐  are  arbitrary   constants. 

 

 

                                                                         5. CONCLUSION 

 

     In  this  paper  we  apply  the  homogeneous balance method  to  compound KdV-Burgers  equation, successfully 

obtained  special exact solutions to  that  equation. Also use of  the  homogeneous balance  method, special exact 

solutions  of  many  other  typical nonlinear equations  in  mathematical physics, such  as the  Burgers equation, 
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Benjamin-Bona-Mathony equation, Boussinesq  equation, Kuramoto – Sivasinsky equation  with  forcing  term  and  

so on, can  be  obtained. 
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